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An improved algorithm based on
YOLOv5 for detecting Ambrosia
trifida in UAV images
Chen Xiaoming, Chen Tianzeng, Meng Haomin, Zhang Ziqi,
Wang Dehua, Sun Jianchao and Wang Jun*

College of Engineering and Technology, Jilin Agricultural University, Changchun, China
A YOLOv5-based YOLOv5-KE unmanned aerial vehicle (UAV) image detection

algorithm is proposed to address the low detection accuracy caused by the small

size, high density, and overlapping leaves of Ambrosia trifida targets in UAV

images. The YOLOv5-KE algorithm builds upon the YOLOv5 algorithm by adding

a micro-scale detection layer, adjusting the hierarchical detection settings based

on k-Means for Anchor Box, improving the loss function of CIoU, reselecting and

improving the detection box fusion algorithm. Comparative validation

experiments of the YOLOv5-KE algorithm for Ambrosia trifida recognition were

conducted using a self-built dataset. The experimental results show that the best

detection accuracy of Ambrosia trifida in UAV images is 93.9%, which is 15.2%

higher than the original YOLOv5. Furthermore, this algorithm also outperforms

other existing object detection algorithms such as YOLOv7, DC-YOLOv8, YOLO-

NAS, RT-DETR, Faster RCNN, SSD, and Retina Net. Therefore, YOLOv5-KE is a

practical algorithm for detecting Ambrosia trifida under complex field conditions.

This algorithm shows good potential in detecting weeds of small, high-density,

and overlapping leafy targets in UAV images, it could provide technical reference

for the detection of similar plants.
KEYWORDS

deep learning, unmanned aerial vehicle, small object detection, YOLOv5, invasive plant
1 Introduction

Deep learning (DL) is a powerful machine-learning technique that achieves state-of-

the-art results in various tasks such as image classification (Haq et al., 2021b; Haq, 2022a;

Gulzar, 2023), object detection (Jawaharlalnehru et al., 2022; Magalhães et al., 2023),

natural language processing (Haq et al., 2022), and speech recognition (Kumar et al., 2023).

In recent years, DL has become increasingly popular because, unlike traditional machine

learning methods, it has the ability to learn more complex patterns in large datasets. DL has

been used to solve various problems in different fields such as climate change prediction

and environmental analysis (Haq et al., 2021a; Haq, 2022b; Haq, 2022). Therefore, DL is a

powerful tool that has the potential to address many of the world’s most pressing problems.
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1. CNN based automated weed detection system using uav imagery;

2. Fruit image classification model based on MobileNetV2 with

deep transfer learning technique; 3. Deep learning based supervised

image classification using uav images for forest areas classification;

4. Target object detection from unmanned aerial vehicle (uav)

images based on improved yolo algorithm; 5. Benchmarking edge

computing devices for grape bunches and trunks detection using

accelerated object detection single shot multibox deep learning

models; 6. Insider threat detection based on nlp word embedding

and machine learning; 7. Multilayer neural network based speech

emotion recognition for smart assistance; 8. Smotednn: a novel

model for air pollution forecasting and aqi classification; 9. Cdlstm:

a novel model for climate change forecasting; 10. Deep learning

based modeling of groundwater storage change.

Currently, alien invasive plants have caused extensive and

serious harm to crops (Monteiro and Santos, 2022). Invasive

plants compete with crops for resources such as nutrients, water,

and sunlight in the soil, affecting the growth environment of crops

and reducing their growth rate and yield. Ambrosia trifida,

commonly known as a foreign invasive plant in China, is

considered one of the weeds causing the greatest economic losses

to wheat and other annual crops (Kong et al., 2007). Furthermore,

due to its allergenic pollen and presence in urban areas, Ambrosia

trifida has been identified as a public health issue (Hovick et al.,

2018). Therefore, effectively identifying and managing Ambrosia

trifida, taking reasonable prevention and control measures, is

crucial to ensuring crop yield and quality, improving the

efficiency of farmland, and ensuring the normal lives of residents.

Monitoring harmful plants using remote sensing imagery has

been a hot research topic in recent years. In comparison to the cost

and limitations of ground-based observation and satellite remote

sensing (Radoglou-Grammatikis et al., 2020), unmanned aerial

vehicles (UAVs) have garnered attention due to their low-altitude

flying capability and efficient operations (Tsouros et al., 2019). UAV

plant image detection technology involves using high-resolution

cameras mounted on UAVs to capture plant image data for analysis

and processing, enabling rapid, automated identification and

classification of plants (Betti, 2022). Equipped with high-

performance cameras, UAVs can accurately and swiftly acquire

large-scale, high-resolution field images and achieve high-precision

identification of plants. Additionally, researchers can freely control

UAV flights based on specific needs and field conditions (Wang Z.

et al., 2022), which significantly enhances the detecting efficiency.

The existing plant image detection methods for UAVs can be

mainly classified into two categories: those based on specific

features and those based on abstract features (Mittal et al., 2020).

The methods based on specific features primarily utilize manually

designed features such as SIFT (Scale Invariant Feature Transform),

HOG (Histogram of Oriented Gradient), and SURF (Speeded-Up

Robust Features) to represent the targets. These features provide

local information and texture characteristics of the targets, which

are then used for target classification and position regression using

traditional machine learning algorithms. This method is somewhat

limited by the accuracy of the manually designed features. If these

features cannot adequately express the abstract features of weeds,

they may not adapt well to scenes with dense weed distribution and
Frontiers in Plant Science 02
partial occlusion, thus limiting their performance (Dong et al.,

2021). With the improvement of computer performance, computer

vision based on Convolutional Neural Networks (CNN) has made

great progress (Bhatt et al., 2021). These methods mainly use deep

neural networks (DNN) to automatically learn abstract features to

represent the targets. By constructing convolutional neural

networks or other types of neural networks, they can directly

learn the abstract representation of the targets from the original

images and perform target classification and position regression

(Sarker, 2021). These abstract features are extracted by

convolutional neural networks without human intervention, and

therefore, these methods usually have higher detection accuracy,

and are commonly used for implementing field weed segmentation

and detection.

One-Stage and Two-Stage detection algorithms are the two major

categories of detection methods based on abstract features. The Two-

Stage detection algorithms mainly include SPP-Net (He et al., 2015),

Fast R-CNN (Girshick, 2015), and Faster R-CNN (Ren et al., 2015).

The Two-Stage detection algorithm is divided into two stages: in the

first stage, a series of candidate regions are generated through the

Region Proposal Network (RPN), and in the second stage,

classification and regression operations are performed on all the

candidate regions to obtain the detection results (Wu et al., 2020).

The One-Stage detection algorithm, as a regression-based object

detection method, can directly predict the target category and

location from the input image, usually requiring only one forward

pass to complete the detection process. The current mainstream One-

Stage detection algorithms include SSD (Liu et al., 2016) and the

YOLO family, including YOLO (Redmon et al., 2016), YOLO9000

(Redmon and Farhadi, 2017), YOLOv3 (Redmon and Farhadi, 2018),

YOLOv4 (Bochkovskiy et al., 2020), YOLOv5 (Ultralytics,), YOLOv7

(Wang et al., 2023), DC-YOLOv8 (Lou et al., 2023), YOLO-NAS

(Terven et al., 2023) and RT-DETR (Lv et al., 2023). YOLOv5

detection algorithm, as a type of One-Stage detection algorithm, has

a faster detection speed compared to Two-Stage detection algorithms.

However, due to the small size, high density, and overlapping

characteristics of Ambrosia trifida images captured by drones,

applying the YOLOv5 detection algorithm to detect Ambrosia

trifida can easily lead to false positives and missed detections, this

results in low accuracy in detecting Ambrosia trifida in drone images.

In order to increase the detection accuracy of Ambrosia trifida in

UAV images, this paper introduces a novel UAV image detection

algorithm called YOLOv5-KE based on YOLOv5. YOLOv5-KE

enhances the original YOLOv5 network by adding a micro-scale

detection layer, adjusting the Anchor Box hierarchical detection

settings based on k-Means, improving the loss function of CIoU, and

implementing a detection box fusion mechanism based on confidence

weight to merge detection boxes in multi-resolution images. This aims

to improve the feature extraction capability and detection accuracy of

Ambrosia trifida in UAV images under conditions of small targets and

partial occlusion. Comparative validation experiments conducted on a

self-built dataset of Ambrosia trifida demonstrate that YOLOv5-KE

can accurately detect multi-scale Ambrosia trifida in complex field

environments and shows potential in detecting weeds with high-

density and overlapping leaves. It provids technical references for

similar plant detecting conditions.
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2 Materials and methods

2.1 YOLOv5 network structure

YOLOv5 is a neural network released by Glenn Jocher in 2020,

and its network structure consists of four parts: Backbone network,

Neck network, Head network, and the output end, as shown in

Figure 1 (Wu et al., 2021). The Backbone network of YOLOv5

mainly consists of the Focus structure and the CSP structure. The

Focus structure is a convolutional neural network layer used for

feature extraction, compressing and combining information from

the input feature map to extract higher-level feature

representations. The CSP (Cross Stage Partial) structure

effectively reduces network parameters and computational

complexity while improving feature extraction efficiency. The

intermediate Neck network of YOLOv5 is primarily used to

enhance the model’s feature expression capability and receptive

field, further improving the model’s detection performance

(Kattenborn et al., 2021). YOLOv5 uses two different Neck

network structures: SPP (Spatial Pyramid Pooling) and PAN

(Path Aggregation Network). The SPP structure is a pyramid

pooling structure that can pool feature maps of different sizes to

enhance the model’s perception of targets at different scales. PAN is

a feature pyramid network structure for object detection designed to

enhance the model’s perception of targets at different scales through

multi-level feature fusion. The SPP structure enhances the model’s

perception and scale invariance, while the PAN structure enhances

the fusion ability of multi-scale features. The SPP and PAN

structures can be used in combination to improve the model’s

detection performance. The Head network of YOLOv5 is the same

as the Head network of YOLOv3. The bounding box loss function

used at the output end of YOLOv5 is the CIoU Loss function, which

further introduces the concept of corner distance based on GIoU,

effectively alleviating the impact of rotation and tilt on target

detection performance, thereby improving the model ’s

performance (Ding et al., 2022).
2.2 YOLOv5-KE network structure

The YOLOv5-KE algorithm proposed in this paper is based on

the YOLOv5 algorithm, with the addition of a micro-scale detection

layer, adjustments to the hierarchical detection settings of Anchor
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Boxes based on k-Means, improvements to the loss function of

CIoU, and the reselecting Weighted Box Fusion (WBF) algorithm

as the method for calculating the fusion of detection boxes. The

network structure is illustrated in Figure 2.

2.2.1 Micro-scale detection layer
The head network of YOLOv5 has three scale detection layers,

enabling detection at three different scales: 80x80 (small targets), 40x40

(medium targets), and 20x20 (large targets). Each layer is equipped

with anchors of varying sizes. On the 8x downsampled feature map

(80x80), three types of anchors are placed at each feature point, with

respective widths and heights of (10, 13), (16, 30), and (33, 23).

Similarly, on the 16x downsampled feature map (40x40), three

anchors are placed with widths and heights of (30, 61), (62, 45), and

(59, 119). On the 32x downsampled featuremap (20x20), three anchors

with widths and heights of (116, 90), (156, 198), and (373, 326) are

placed.When the training dataset contains diverse and complex objects

with significant variations in size, the use of multi-scale and multi-

anchor detection in the model effectively enhances detection accuracy,

the detailed network of YOLOv5 is illustrated in Figure 3. However, the

small-scale detection layer of the YOLOv5 network is not well-suited

for recognizing Ambrosia trifida in drone images, as these plants are

small in size and densely distributed. Therefore, the YOLOv5-KE

detection algorithm proposed in this paper introduces a new micro-

scale detection layer into the YOLOv5 model, as depicted in Figure 4.

This detection layer upsamples the 80x80 feature map from the NECK

to 160x160, adds it to the 160x160 feature map from the backbone

network, and then downsamples it back to 80x80. By extracting spatial

features from the lower layers and fusing them with deep semantic

features to generate the feature map, the YOLOv5-KE detection

network structure becomes more comprehensive and detailed,

suitable for detecting the tiny Ambrosia trifida in drone images.

2.2.2 k-Means based anchor box
hierarchical detection

Anchor Box is a concept proposed by Ross Girshick et al. in

2015 in the Faster RCNN network to detect multiple objects within

grid cells (Jiao et al., 2020). The YOLOv5 detection network uses

automatic Anchor Boxes to well match the detected objects (Zhong

et al., 2020). Anchor Boxes heavily rely on pre-learning from the

dataset. In previous studies, Anchor Boxes were automatically

learned from the entire dataset and performed well on datasets

with relatively uniform scales. However, in this study, the size of

Ambrosia trifida in drone images varies significantly, and the

quantity of samples of different sizes is uneven. During detection,

the YOLOv5 detection network tends to focus more on Ambrosia

trifida of the same size but with greater numbers, resulting in lower

recognition accuracy for Ambrosia trifida with fewer instances. For

these reasons, this research sets up 4 detection layers and

categorizes all Ambrosia trifida into 4 groups based on their sizes,

aiming to increase the attention of the YOLOv5-KE detection

network to Ambrosia trifida with fewer individual sizes. The

specific approach is to categorize all Ambrosia trifida into 4

classes based on their sizes {Gi}= G4
i=1. For all Ambrosia trifida   g

tij (xj, yjwj, zj), j ∈ f 1,…M}, i ∈ {1,…N} in each class  Gi   , the
FIGURE 1

Network architecture diagram of YOLOv5.
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distance measure between the ground truth box and the Anchor

Box can be defined as:

d(gt, bbox) = 1 − IoU(gt, bbox) (1)

  IoU(gt, bbox) =
area(gt ∩ bbox)
area(gt ∪ bbox)

  (2)

In the equation: gt represents the true box position of Ambrosia

trifida, and bbox represents the Anchor Box. The larger the IoU value

between gt and bbox, the smaller the distance measurement, the more

accurately that Anchor Box describes the position of Ambrosia trifida.

Each class Gi introduces a different Anchor box, enabling the detection

of Ambrosia trifida of different sizes in unmanned aerial vehicle images.

The clustering process is shown in Algorithm 1.
Fron
Input: Ground truth box Gi

Output: anchor boxes Cj

1: Randomly select K points from the data set as the

clustering center point Cj = C1,C2, … …,CKf g

2: Repeat

3: Steps.

4: Calculated distance between Cj and  Gi from

Equations (1),(2)

5: Recalculate the center of clustering from Equation

(3),(4)

6: Until the center of the cluster converges
Algorithm 1. Program to set the size of the anchors box.
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Ho+1
i =

1
Ni
oHo

i (3)

Zo+1
i =

1
Ni
oZo

i (4)

which Ho+1
i and Zo+1

i are the new clustering centers for

computing the new distance metric.

2.2.3 Improvement of loss function algorithm
The CIoU loss function used in the YOLOv5 neural network is

defined as Equation (5) in reference (Liu and Dai, 2023). This loss

function, building upon the DIoU loss function, incorporates a

measure of the aspect ratio difference between the predicted box

and the ground truth box, which can potentially accelerate the

regression speed of the predicted box and make it more consistent

with the real box. However, it still suffers from significant issues: the

parameter n in the CIoU loss function reflects the difference in aspect

ratio rather than the actual differences in width and height compared

to their confidence levels. As a result, this may hinder the model’s

optimization and reduce the convergence speed (Du et al., 2021).

To address this issue, this study proposes the EIoU loss function,

integrating Focal-enhanced high-quality anchor boxes, known as the

Focal-EIoU loss, to improve the convergence speed and localization

accuracy of the loss function. The penalty term in EIOU is based on

the penalty term in CIOU, where the influence factor of the aspect

ratio is separately calculated for the length and width of the target box

and the anchor box (Mohammed et al., 2022). This loss function

comprises three components: overlap loss, center distance loss, and

width-height loss. The first two components follow the methods in

CIOU, but the width-height loss directly minimizes the difference in

width and height between the target box and the anchor box, leading

to faster convergence speed. Its definition is shown in Equation (6).

To focus the EIoU loss on high-quality examples, the value of IOU is

used to reweight the EIoU loss, resulting in the Focal-EIOU loss

function as follows (Equation 7):

LCIoU = 1 − IOU +
r2(b, bgt)

c2
+ an (5)
FIGURE 2

Schematic diagram of YOLOv5-KE application.
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    LEIoU = LIoU + Ldis + Lasp

= 1 − IoU + r2ðb, bgtÞ
(wc)2+(hc)2

+ r2ðw, wgtÞ
(wc)2

+ r2ðh, kgtÞ
(hc)2

  
(6)

LFocal−EIoU = IOUgLEIoU  (7)
Frontiers in Plant Science 05
Where IOU = A ∩ Bj j= A ∪ Bj j, the g is A parameter that

controls the degree of outlier suppression. In Formula 5, r
represents the normalized Euclidean distance between the center

points of the predicted and ground truth bounding boxes. c

represents the diagonal length of the smallest enclosing box
FIGURE 4

YOLOv5 network structure with the addition of a microscale detection layer.
FIGURE 3

YOLOv5 original network structure.
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containing both the predicted and ground truth bounding boxes. a

is a balancing parameter used to adjust the importance of the

regularization term v. v is a regularization term used to penalize the

aspect ratio discrepancy between the predicted and ground truth

bounding boxes.

2.2.4 Improvement of detection box
fusion algorithm

The fusion of detection boxes based on confidence weighting is

a common step in object detection algorithms (Shen et al., 2022). In

object detection tasks, multiple different models or algorithms are

often used to generate candidate detection boxes, which may exhibit

some degree of overlap or redundancy. To improve the accuracy

and stability of the detection results, it is necessary to merge these

candidate boxes.

The common fusion strategy in YOLOv5 is the Non-Maximum

Suppression (NMS) method (Solovyev et al., 2021), which selects

the most representative and accurate detection results by comparing

the degree of overlap between the candidate boxes. However, the

NMS algorithm typically assumes that the targets are relatively

simple geometric shapes, such as rectangles or circles, and that the

sizes of the targets should be relatively consistent with each other

(Hosang et al., 2017). In the case of identifying Ambrosia trifida, the

leaves of Ambrosia trifida may be very crowded, and the size of

leaves may be significant variations, which cause the NMS

algorithm to incorrectly merge candidate detection boxes.

Additionally, if there is partial overlap or occlusion among

Ambrosia trifida in the image, the NMS algorithm may not able

to accurately determine the boundaries and positions of the targets,

leading to merging errors or missed detections. This problem may

be exacerbated when Ambrosia trifida is densely distributed

(Solovyev et al., 2021).

For these reasons, this study adopts the Weighted Box Fusion

(WBF) algorithm as the fusion algorithm for YOLOv5-KE. The WBF

algorithm enhances the performance of object detection by merging

detection results from multiple scales (Zhang et al., 2023). The fusion

weight calculation in WBF is described by Equations (8-10), and the

illustration of detection box generation and the fusion process are

shown in Figures 5, 6. In Figure 5, the green boxes represent the

predicted boxes, while the red boxes represent the ground truth boxes.

In Figure 6, the scores of the boxes are used as weights, and the

coordinates of the two boxes are merged to obtain a new box.

Therefore, boxes with higher scores have greater weights, and their

contributions are more significant in the process of generating the new

box. The shape and position of the new box are biased towards the box

with a higher weight (Zhai and Zhuang, 2020).

 Cx1 =
Ax1 � As + Bx1 � Bs

As + Bs
    Cy1 =

Ay1 � As + By1 � Bs

As + Bs
   (8)

Cx2 =
Ax2 � As + Bx2 � Bs

As + Bs
    Cy2 =

Ay2 � As + By2 � Bs

As + Bs
   (9)

Cs =
As + Bs

2
  (10)
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2.3 Image data acquisition and processing

2.3.1 Data acquisition
The images of Ambrosia trifida were collected in seven different

areas in Changchun, Jilin Province, China at three different periods,

as shown in Table 1; Figure 7. The image collection was conducted

using a DJI Mavic 3 unmanned aerial vehicle equipped with a

Hasselblad 4/3 CMOS camera, capturing images at heights of 5m,

10m, and 15m.

To reduce data processing time, highlight the characteristics of

Ambrosia trifida, and avoid loss of image information, the original

images with dimensions of 5280×3956 pixels were cropped to

640×640 pixels (Figure 7A). Additionally, due to the potential

instability during drone flights, some blurred images were

obtained. To address this, Laplacian transformation was applied

to remove the blurred images (Yakovlev and Lisovychenko, 2020),

resulting in clear images (Figure 7B). The clear images of Ambrosia

trifida were individually annotated using the image annotation tool

LabelImg (Figures 7C-F).
FIGURE 5

Schematic diagram of non-maximum suppression (NMS) and
weighted box fusion (WBF).
TABLE 1 Specific information of ambrosia trifida photography.

Date Location Growth
Stage

June 2023 Changchun, Nanguan District, Jilin Agricultural
University Back Mountain

Changchun, Jingyue Tan National Forest Park
Changchun, Erdao District, Changqing

Village Farmland

Seedling
Stage

August
2023

Changchun, Nong’an County, Shengli Village
Farmland

Changchun, Jingyue Tan National Forest Park
Changchun, Lvyuan District, Xixin

Village Farmland

Flowering
Stage

September
2023

Changchun, Jiutai District, Xinhe Town
Farmland

Changchun, Kuancheng District, Qianlou Village
Farmland

Changchun, Jingyue Tan National Forest Park

Fruiting
Stage
f
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2.3.2 Data enhancement
Data augmentation can expand the training dataset, reduce

model overfitting, balance data distribution, enhance model

robustness, improve generalization capabilities, and enhance

detection performance. In this study, methods such as image

rotation, image flipping, brightness adjustment, and adding noise

were selected as data augmentation techniques, as shown in

Figure 8. Rotating and flipping images can help the model learn a

more comprehensive and diverse range of features of Ambrosia

trifida, enhancing model robustness. Additionally, brightness

adjustment allows the model to learn target features under

different lighting conditions, improving recognition accuracy

under varying illumination conditions (Mahmud et al., 2021).

Noise can simulate various interferences and uncertainties in real-

world situations. By adding noise, model generalization capabilities

can be improved, enabling accurate detection in complex scenarios.

After data augmentation, a total of 10,000 images were obtained and

divided into training, validation, and test datasets in a 7:2:1 ratio.

2.3.3 Data resampling
In general, images in the dataset are processed to have the same

resolution before training to ensure consistency and comparability

of the data. In contrast to previous studies that only trained on

single-resolution images (Sharma et al., 2020), this study resamples

the Ambrosia trifida images to train on multiple resolutions.
Frontiers in Plant Science 07
Training on multi-resolution images provides broader coverage

and leads to a more stable model. After resampling, the Ambrosia

trifida images are divided into four resolutions: 100×100, 160×160,

320×320, and 640×640. as shown in Figure 9.
3 Experiments on Ambrosia trifida
recognition based on YOLOv5-KE

3.1 Experimental process

To verify the higher detection accuracy of YOLOv5-KE

compared to existing neural networks for Ambrosia trifida, we

trained the aforementioned network models using a self-built

dataset. The training devices consisted of an Intel i5-13600

processor, NVIDIA 3070Ti graphics processor (16GB memory),

and 1TB RAM, with Windows 10 as the operating system. During

training, we adopted the Adam (Adaptive Moment Estimation)

optimizer with learning rate decay to optimize learning efficiency.

By decaying the learning rate, the model was allowed to use a larger

learning rate in the early stages to accelerate convergence, and then

decreased the learning rate in later stages for better parameter

adjustment. This approach improves the performance and stability

of the model, preventing issues like overfitting or getting trapped in

local optima (Figure 10).

For the resampled images at different resolutions, the

training parameters were set as follows: momentum of 0.99,

decay factor of 0.5, 300 epochs, and decay weight of 0.0001. The

specific settings for training model hyperparameters are shown

in Table 2. Using Hyperopt for automated hyperparameter

tuning with the provided parameters, opt for the Tree of

Parzen Estimators(TPE) algorithm to achieve the optimal

hyperparameter combination.

To determine the most suitable drone flying height and input

resolution, we trained the images captured by the drone at heights

of 3m, 5m, and 10m on YOLOv5-KE, YOLOv5, YOLOv7, DC-
FIGURE 6

WBF algorithm fusion process.
B

C D

E F

A

FIGURE 7

Images of Ambrosia trifida taken at data collection sites and by drones (A) Cropped image (B) Laplace transformed image (C-F) Artificially
labeled image.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1360419
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Xiaoming et al. 10.3389/fpls.2024.1360419
YOLOv8, YOLO-NAS, RT-DETR, SSD, Faster RCNN, and Retina

Net neural network models, using input resolutions of 100×100,

160×160, 320×320, and 640×640, respectively.

The neural networks were evaluated based on the following

performance parameters: Precision (P), Recall (R), F1-score, and

Average Precision (AP) (Zhou et al., 2021). Frames Per Second

(FPS) was used as an indicator of detection speed. Precision (P),

Recall (R), and F1-score are defined by Equations (11–13)

respectively.

P =
TP

FP + TP
(11)

R =
TP

FP + TP
   (12)

F1 =
2PR
P + R

=
2TP

2TP + FN + FP
  (13)

Among them, TP (True Positive) represents the cases where

both the algorithm in this study and manual annotation successfully

detected Ambrosia trifida in the drone images. TN (True Negative)

represents the cases where the algorithm failed to detect Ambrosia

trifida, but it was detected by manual annotation. FP (False Positive)

represents the cases where the algorithm detected Ambrosia trifida,

but manual annotation did not. FN (False Negative) represents the

cases where neither the algorithm nor manual annotation detected

Ambrosia trifida in the drone images. During the detection process,

if the Intersection over Union (IoU) between the predicted

bounding box and the true bounding box of Ambrosia trifida is

greater than 0.5, the predicted bounding box is labeled as TP.

Otherwise, it is labeled as FP. If there is no overlap between the true

bounding box and any predicted bounding box, it is labeled as FN.

TN is not needed in this classification process because the final

detection results are fixed. TP and FP represent the correctly and
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incorrectly detected instances of Ambrosia trifida respectively, while

FN represents the instances that were not detected. TN does not

have practical significance.

Precision and recall are conflicting metrics. Generally, higher

precision corresponds to lower recall, and vice versa. In this study,

the identification of Ambrosia trifida has only one category, i.e.,

m=1, and mAP is equal to AP. Therefore, the average precision

(AP) is used to represent the detection accuracy, as shown in

Equation (14).

AP =

Z 1

0

P(R)d(R)  (14)

AP is calculated based on the precision-recall curve and its value

ranges from 0 to 1, a higher AP value indicates a higher recognition

accuracy of the network.
3.2 Experimental results

The comparison experiment results are shown in Figure 11;

Table 3. The experimental results indicate that there is little

difference in detection speed among different models.

Therefore, while maintaining a stable detection speed, we will

prioritize detection accuracy as the primary evaluation metric.

The results indicate that compared with the exist ing

mainstream neural networks, YOLOv5-KE demonstrates the

highest detection accuracy for Ambrosia trifida, with a

precision of 93.9%. Following this, YOLOv5 achieves a

precision of 78.7%, while YOLOv7 follows with a precision of

74.9%. The detection accuracy of YOLOv5-KE is 15.2% higher

than the standard YOLOv5, 16.8% higher than the DC-YOLOv8

model, 15.8% higher than the YOLO-NAS model, 17.5% higher

than the RT-DETR model, 19% higher than the YOLOv7 model,
FIGURE 8

Data enhancement (A) original image, (B) rotated by 90°, (C) rotated by 180°, (D) flipped horizontally, (E) brightness-enhanced, (F) brightness-
darkened. (G) pretzel noise, (H) Gaussian noise.
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38.6% higher than the SSD model, 44% higher than the Retina

Net model, and the highest increase compared to Faster RCNN,

reaching 59.8%.

The model achieves the highest detection accuracy when the

input image resolution is 640×640. As the input resolution

decreases, the detection accuracy of each neural network also

decreases. When the resolution drops from 640×640 to 100×100,

the detection accuracy of YOLOv5-KE drops from 92.6% to 62.3%.

The experimental results are shown in Table 4.

The highest detection accuracy is achieved when the UAV

captures images at a flying height of 5m. As the flying height

increases, the accuracy gradually decreases at 10m and 15m heights.

The results are shown in Table 5.
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4 Discussion

Comparation experimental results have shown that YOLOv5-

KE and YOLOv5 outperform other neural network models such as

YOLOv7, DC-YOLOv8, YOLO-NAS, RT-DETR, Faster RCNN,

Single Shot MultiBox Detector (SSD), and Retina Net in the

recognition accuracy of Ambrosia trifida. In fact, YOLOv5 has

demonstrated excellent performance in previous weed detection

tasks, achieving an average recognition rate of 90.17% for invasive

weed Solanum rostratum Duna (Zaidi et al., 2022). However, in this

study, the recognition accuracy of YOLOv5 for Ambrosia trifida is

only 78.7%. This is because in images captured by drones, the pixels

of a single Ambrosia trifida are usually 50-450 pixels, with
FIGURE 9

Resampling of Ambrosia trifida pictures.
FIGURE 10

Adding a comparison between before and after learning rate decay.
TABLE 2 Specific settings for training model hyperparameters.

Input Resolution Batch size Epoch Iterations Momentum learning rate Decay Factor Decay Weight

100 x 100 64 300 50 0.99 0.02 0.5 0.0001

160 x 160 32 300 100 0.99 0.01 0.5 0.0001

320×320 16 300 200 0.99 0.005 0.5 0.0001

640×640 8 300 400 0.99 0.0025 0.5 0.0001
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significant size differences. In most cases, the proportion of all

Ambrosia trifida weeds in the image does not exceed 40% of all field

weeds. The YOLOv5 neural network has a high attention level for

targets with similar sizes and large quantity, under the three

detection layers, the YOLOv5 network may mistakenly detect

ragweed as other beneficial plants, resulting in a significant

number of missed and false detections.

Experimental results have shown that YOLOv5-KE achieves a

detection accuracy of 93.9% for Ambrosia trifida when the input

resolution is set to 640×640 and the UAV captures images from a

height of 5 meters. This demonstrates the excellent performance of

the proposed YOLOv5-KE network in recognizing Ambrosia

trifida. In order to demonstrate the effectiveness of each module

adjustment in YOLOv5-KE, ablation experiments were conducted

using images with a resolution of 640×640 pixels, as shown in

Table 6. It can be seen that compared to the original YOLOv5, the

addition of a micro-scale detection layer improved the detection

accuracy of YOLOv5-KE by 5.9%. The setting of k-Means based

Anchor Box layered detection and the improvement of loss function

improved the detection accuracy of YOLOv5-KE by 4.2% and 1.7%,
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respectively. The improvement of detection box fusion algorithm

improved the detection accuracy of YOLOv5-KE by 3.4%.

Adding a micro-scale detection layer yields the highest

improvement in the recognition accuracy of Ambrosia trifida.

High-quality “anchor boxes” play a crucial role in object

detection models (Zaidi et al., 2022). Unfortunately, YOLOv5

cannot achieve accurate positioning of Ambrosia trifida. During

the process of feature extraction, YOLOv5 reduces the resolution of

the image through multiple convolution and pooling operations, i.e.

downsampling. The detection layer with a higher downsampling

rate corresponds to a larger receptive field and can detect larger

objects. However, in this study, Ambrosia trifida in UAV images

mostly appear as small targets. For small targets, detection layers

with higher downsampling rates may result in inaccurate

detections. The positive anchor boxes in the micro-scale detection

layer are closer to the ground truth positions of Ambrosia trifida,

thus contributing the most to the improved detection accuracy of

YOLOv5-KE. As shown in Figure 12, the blue boxes represent

YOLOv5-KE detection anchor boxes, while the green boxes

represent the annotated positions of Ambrosia trifida. With only

large target detection layers, the detection performance for

Ambrosia trifida is poor, capturing only a portion of the targets.

By adding medium and small target detection layers, the number of

detected Ambrosia trifida increases but still misses many instances.

After incorporating the micro-scale detection layer, YOLOv5-KE

significantly enhances its ability to capture the feature information

of small target Ambrosia trifida in the image, resulting in a

substantial increase in the number of detected instances. This

improvement better adapts to the scenario of high-density small-

sized Ambrosia trifida targets in UAV images, leading to a

noticeable enhancement in the detection performance.

In the task of Ambrosia trifida detection, the setting of Anchor

Boxes is a crucial issue (Gao et al., 2019). Default anchor box

configurations may not yield optimal results when there are

significant variations in the size of targets within the scene.

Designing anchor boxes with multiple sizes and shapes based on

different datasets can allow the Anchor Boxes to better focus on the

characteristics of objects in the image, thus improving the accuracy

of detection. The YOLOv5-KE model utilizes k-Means-based
FIGURE 11

P-R curves of Ambrosia trifida images with different resolutions for YOLOv5-KE and standard YOLOv5 inputs.
TABLE 3 Results of comparison experiment of recognition accuracy
between YOLOv5-KE and other neural network models.

Neural
network

AP
value
(%)

Difference in AP from
YOLOv5-KE (%)

FPS

YOLOv5-KE 93.9 0 30

YOLOv5 78.7 15.2 30

DC-YOLOv8 77.1 16.8 30

YOLO-NAS 78.1 15.8 30

RT-DETR 76.4 17.5 30

YOLOv7 74.9 19.0 30

SSD 55.3 38.6 35

Faster RCNN 34.1 59.8 15

Retina Net 49.9 44.0 18
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Anchor Box stratified detection, resulting in a 4.2% increase in

detection accuracy. This improvement is achieved by automatically

selecting appropriate Anchor Box sizes based on the distribution of

Ambrosia trifida in the dataset and generating multi-scale Anchor

Boxes at different levels. The detection results after employing k-

Means-based Anchor Box stratified detection are shown in
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Figures 13A, B. In the figures, the orange rectangles represent the

ground truth positions of Ambrosia trifida, the blue rectangles

represent the detected positions, and the red rectangles represent

falsely detected positions. It can be observed that the number of

missed Ambrosia trifida instances reduced from 19 to 7 after using

k-Means-based Anchor Box stratified detection, demonstrating a

significant improvement in performance.

The improved loss function resulted in a 1.7% increase in

detection accuracy for YOLOv5-KE compared to YOLOv5.

This improved loss function biases the regression process

towards high-quality anchor boxes, reducing the negative

impact of low-quality anchor boxes on the recognition

process. This allows the network to learn enough high-quality

positive anchor boxes and improve its ability to detect small
TABLE 5 Results of detection accuracy of drones in different models at
5m, 10m, and 15m image taking heights.

Image shoot-
ing height

neural
network model

AP
value (%)

3m YOLOv5-KE
YOLOv5

DC-YOLOv8
YOLO-NAS
RT-DETR
YOLOv7
SSD

Faster RCNN
Retina Net

93.9
78.7
77.9
77.0
75.3
74.8
55.3
34.1
49.6

5m YOLOv5-KE
YOLOv5

DC-YOLOv8
YOLO-NAS
RT-DETR
YOLOv7
SSD

Faster RCNN
Retina Net

81.3
66.5
66.2
65.9
64.8
65.7
43.4
25.1
40.0

10m YOLOv5-KE
YOLOv5

DC-YOLOv8
YOLO-NAS
RT-DETR
YOLOv7
SSD

Faster RCNN
Retina Net

69.1
51.8
52.0
51.1
50.7
51.4
32.2
16.4
29.3
TABLE 6 Results of YOLOv5-KE recognition accuracy ablation experiment results.

Microscale
detection layer

Anchor Box Hierarchical
Detection Based on

k-Means

Improvement of EIoU-
based loss function

Improvement of detection
box fusion algorithm

AP
value
(%)

78.7

√ 84.6

√ √ 88.8

√ √ √ 90.5

√ √ √ √ 93.9%
fro
The symbol √ signifies the addition and utilization of corresponding improvement modules.
TABLE 4 Results of detection accuracy of neural network models with
different input resolutions.

Input
Resolution

Neural networkmodel AP value (%)

100� 100 YOLOv5-KE
YOLOv5

DC-YOLOv8
YOLO-NAS
RT-DETR
YOLOv7
SSD

Faster RCNN
Retina Net

62.3
51.1
51.0
48.5
50.7
53.7
29.4
21.2
26.4

160� 160 YOLOv5-KE
YOLOv5

DC-YOLOv8
YOLO-NAS
RT-DETR
YOLOv7
SSD

Faster RCNN
Retina Net

70.0
53.2
52.0
51.7
50.7
53.9
37.8
27.8
34.6

320� 320 YOLOv5-KE
YOLOv5

DC-YOLOv8
YOLO-NAS
RT-DETR
YOLOv7
SSD

Faster RCNN
Retina Net

86.8
70.9
67.3
68.2
65.4
66.0
52.7
32.6
47.5

640� 640 YOLOv5-KE
YOLOv5

DC-YOLOv8
YOLO-NAS
RT-DETR
YOLOv7
SSD

Faster RCNN
Retina Net

93.9
78.7
77.1
78.1
76.4
74.9
55.3
34.1
49.9
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Ambrosia trifida. By minimizing the EIOU loss function, the

model can better fit the target bounding boxes, thereby

improving object detection accuracy.

Improvement of detection box fusion algorithm resulted in a

3.4% increase in detection accuracy for YOLOv5-KE compared to

YOLOv5. This is because the feature information of Ambrosia

trifida in UAV images is relatively weak under the conditions of

partial overlap and occlusion of leaves, the NMS algorithm of
Frontiers in Plant Science 12
YOLOv5 is prone to large errors for overlapping pre-selected

boxes, which may make it difficult for a single-scale detection

method to accurately detect small targets. The WBS algorithm of

YOLOv5-KE can fuse detection results from multiple scales by

considering multiple factors and weighted averaging, thereby

reducing this error to some extent and improving the robustness

of object detection results, resulting in a higher detection rate and

accuracy for small targets.
B

C D

A

FIGURE 12

YOLOv5-KE detection anchor box (blue). Ambrosia trifida labeling position (green) (A) 20x20 large-target detection layer, (B) 40x40 medium-target
labeling detection layer, (C) 80x80 small-target detection layer, (D) 160x160 microscale detection layer.
BA

FIGURE 13

Detection results using standard Anchor Box and k-means Anchor Box (A) Standard Anchor Box detection results; (B) k-means based Anchor Box
hierarchical detection results.
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Input resolution is an important factor affecting image

detection accuracy. Higher resolution leads to higher detection

accuracy. If the input image resolution was too low, the model will

not be able to recognize significant features that aid image

recognition. In this study, when the input image resolution was

640×640, the detection accuracy reached its highest level,

consistent with previous research findings and universal rules

(Wang Q. et al., 2022).

The height at which UAV images are taken also affects

recognition accuracy. In this study, images of Ambrosia trifida

were captured using a UAV at flight hights of 5m, 10m, and 15m,

and the accuracy of recognizing Ambrosia trifida was decreasing as

the flight altitude increased. When UAV fly at the height of 15m,

Ambrosia trifida becomes too small in images, making them prone

to being missed. Previous studies have confirmed that with the

increase of drone flying height, the target in the image becomes

smaller, reducing the information of the target object in the image,

leading to a lower recognition accuracy (Liu et al., 2023). However,

it is worth noting that if the drone flying height is too low, it can also

cause image distortion and affect recognition accuracy (Xiong et al.,

2023). In this study, when the UAV flying at a height of 5m, the

detail data of clover ragweed in the image were kept better, it will

not cause image distortion, so that the small target Ambrosia trifida

can be detected more easily.
5 Conclusions

Ambrosia trifida is a malignant weed and was one of the first

invasive species to be listed in the “List of Alien Invasive Species in

China”. Utilizing UAV images for Ambrosia trifida monitoring is

an effective measure to control its growth. However, the small size,

high density, and overlapping features of Ambrosia trifida in UAV

images result in low detection accuracy. In this study, a YOLOv5-

KE UAV image detection algorithm was proposed to detect

Ambrosia trifida. Experimental results show that YOLOv5-KE

achieves a detection accuracy of 93.9%, making it an effective

algorithm for detecting Ambrosia trifida under complex field

conditions. The analysis of YOLOv5-KE also demonstrates its

potential for detecting other types of weed with small size, high

density, and overlapping leaves.
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