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A key ABA biosynthetic gene
OsNCED3 is a positive regulator
in resistance to Nilaparvata
lugens in Oryza sativa
Jitong Li, Hao Liu, Xinyi Lv, Wenjuan Wang, Xinyan Liang,
Lin Chen, Yiping Wang* and Jinglan Liu*

College of Plant Protection, Yangzhou University, Yangzhou, China
The gene encoding 9-cis-epoxycarotenoid dioxygenase 3 (NCED3) functions in

abscisic acid (ABA) biosynthesis, plant growth and development, and tolerance to

adverse temperatures, drought and saline conditions. In this study, three rice

lines were used to explore the function of OsNCED3, these included an

OsNCED3-overexpressing line (OsNCED3-OE), a knockdown line (osnced3-

RNAi) and wild-type rice (WT). These rice lines were infested with the brown

plant hopper (BPH; Nilaparvata lugens) and examined for physiological and

biochemical changes, hormone content, and defense gene expression. The

results showed that OsNCED3 activated rice defense mechanisms, which led

to an increased defense enzyme activity of superoxide dismutase, peroxidase,

and polyphenol oxidase. The overexpression ofOsNCED3 decreased the number

of planthoppers and reduced oviposition and BPH hatching rates. Furthermore,

the overexpression of OsNCED3 increased the concentrations of jasmonic acid,

jasmonyl-isoleucine and ABA relative to WT rice and the osnced3-RNAi line.

These results indicate that OsNCED3 improved the stress tolerance in rice and

support a role for both jasmonates and ABA as defense compounds in the rice-

BPH interaction.
KEYWORDS
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Highlights
• The brown planthopper (BPH, Nilaparvata lugens) is one of the most important

pests of rice in China and causes damage by ingesting phloem sap. OsNCED3 is a

key gene in abscisic acid (ABA) synthesis and functions in drought resistance.

Interestingly, it is not known if OsNCED3 overexpression can increase resistance to

BPH or whether drought resistance is correlated with pest resistance. In this study,
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the role of OsNCED3 in BPH resistance was evaluated in

rice by conducting physiological and biochemical assays,

monitoring changes in hormones, and evaluating

expression of defense genes. Our results show that the

defense gene OsNCED3 is induced by BPH feeding and

correlates with improved plant resistance to BPH in 48 h.

Our findings also support a role for several plant hormones

as defense compounds in the rice-BPH interaction.

Although the control of BPH is still based on chemical

methods, the results of this study indicate that modulation

of endogenous genes in rice may also be utilized to lessen

yield loss, which would be beneficial for the environment

due to the reduced use of chemicals.
1 Introduction

The phytohormone abscisic acid (ABA) is a sesquiterpenoid

with a C15 backbone (Nambara and Marion-Poll, 2005). ABA was

initially identified as a compound that accelerated abscission

(abbreviated as “abscission II”) in cotton and induced dormancy

(abbreviated as “dormin”) in the leaves of Firmiana simplex.

Further analyses showed that dormin has the same structure as

abscission II, and both compounds are considered analogues of

ABA (Taishi et al., 2011). The physiological effects of ABA were first

detected in the early 1950s (Addicott and Lyon, 1969) when

researchers isolated acidic fractions from plant extracts that had

growth inhibitory effects on oat germinal sheaths. These extracts

were classified as members of the b-inhibitor complex, and their

function was consistent with what we know about the physiological

effects of ABA (Taishi et al., 2011). Abiotic stressors have huge

impacts on agricultural productivity and induce the production of

many compounds that function in stress tolerance. ABA has

numerous functions at the cellular level including the induction

of the dehydration-responsive element-binding (DREB)

transcription factors. DREB proteins regulate the expression of

stress-induced genes by binding to DRE/CRT cis-elements in the

promoter region to improve drought and salinity tolerance (Li et al.,

2014). In response to abiotic stressors, mutations in the gene

encoding serine-threonine protein kinase (Open Stomata1, OST1)

rendered Arabidopsis thaliana guard cells insensitive to ABA, which

kept the stomata open (Assmann, 2003). ABA also plays an

important role in temperature stress and can reduce the risk of

frost damage in plants. In tobacco plants exposed to a short period

of heat stress, increased ABA concentrations reduced the cellular

damage caused by high temperatures (Itai et al., 1978). ABA can

also increase tolerance to biotic stressors; for example, ABA

improved the resistance of rice to fungi, bacteria and the brown

planthopper (BPH; Nilaparvata lugens) (Dunn et al., 1990; Robert-

Seilaniantz et al., 2007; Fan et al., 2009; De Vleesschauwer et al.,

2010; Liu et al., 2014; AbuQamar et al., 2017; Liu et al., 2017;

Camisón et al., 2019; Darma et al., 2019; Boba et al., 2020). ABA has

important roles in regulating plant growth, inhibiting seed

germination, and promoting leaf senescence (Hao et al., 2009;
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Liang et al., 2014). Furthermore, ABA reduces water consumption

by regulating stomatal closure, decreasing transpiration

(Christmann et al., 2007) and regulating the activity of water

channel proteins (Parent et al., 2009). ABA increased hydraulic

conductivity and promotes water uptake by roots when soil begins

to harden and dry out (Hose et al., 2000), which influences root and

shoot growth (Hao et al., 2009). Thus, ABA has crucial roles in plant

growth, development and stress tolerance.

In higher plants, 9-cis-epoxycarotenoid dioxygenase (NCED) is

a key enzyme in ABA biosynthesis and is involved in the rate-

limiting step of ABA biosynthesis. NCED is induced earlier than

other ABA synthase genes and is considered a pivotal step in ABA

synthesis (Qin and Zeevaart, 1999). In rice, the OsNCED gene

family is comprised of five genes, OsNCED1–5 (Zhu et al., 2009),

and these have different roles in plant growth and response to

external stressors. OsNCED1 is primarily expressed in rice leaves

but is significantly suppressed during water stress; whereas

OsNCED2 is more highly expressed in rice seeds as compared to

the other four OsNCED genes (Zhu et al., 2009; Ye et al., 2011).

OsNCED3 is highly induced during water stress (Ye et al., 2011) and

regulates the accumulation of the dehydrin and late embryogenesis

abundant (LEA) proteins (Hundertmark and Hincha, 2008; Xiang

et al., 2008). OsNCED3 and OsNCED4 exhibit an overlapping

expression pattern in rice seeds, which suggests a level of

functional redundancy and common control of ABA biosynthesis

in rice seeds in response to salinity stress (Hwang et al., 2018). In

response to rice black-stripe dwarf virus, the expression of

OsNCED4 and OsNCED5 increased in rice as the duration of viral

infection became more prolonged, which suggests a role for both

genes in the regulation of ABA synthesis during viral infection (Ni

et al., 2015).

ABA is synthesized via oxidative cleavage of epoxy-carotenoids.

In maize, xanthophyll epoxygenase catalyzes the epoxidation of

zeaxanthin and antioxidant xanthophylls to form purple

xanthophylls and neoxanthophylls. These products are isomerized

to produce 9-cis-isomers that are cleaved by NCED to form

xanthotoxin; the latter is converted to ABA by short-chain

dehydrogenase/reductase and aldehyde oxidase 3 (Wen, 2019).

OsNCED3 is systematically expressed in various tissues of rice

and is induced by NaCl, PEG and H2O2, which supports a role for

OsNCED3 in abiotic stress tolerance (Huang et al., 2018). When

MhNCED3 from Malus hupehensis was expressed in Arabidopsis

thaliana exposed to chlorine stress, the growth and development of

transgenic A. thaliana improved, and plants exhibited an increase in

ABA content and a decrease in transpiration (Zhang et al., 2015).

Hwang et al. (2010) reported that heterologous expression of

NCED3 in Arabidopsis increased ABA levels (Hwang et al., 2010).

NtNCED3–2 is one of the NCED genes in tobacco, and NtNCED3–2

knockout plants had reduced levels of diterpenes, photosynthetic

pigments, and phytohormones. Furthermore, knockdown of

NtNCED3–2 resulted in decreased expression of genes in the

isoprenoid metabolic pathway as compared to wild-type plants,

resulting in reduced photosynthetic capacity (Yang et al., 2018). In

rice plants, drought stress significantly induced OsNCED3

expression, which was down-regulated when watering was
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resumed. Transgenic lines overexpressing OsNCED3 after drought

stress had higher ABA levels (Xu et al., 2018a). Southern

hybridization experiments in Lycium barbarum showed that

NCED was present in low copy numbers, and NCED expression

gene was synchronized with the accumulation of endogenous ABA

after salt and dehydration stress (Lu et al., 2013). Our previous work

found that OsNCED3 had a positive role in defense against the

brown planthopper through transcriptome profiling but more

details not showed (Sun et al., 2022). In this study, we used

OsNCED3 overexpression, RNA interference and wild-type (WT)

rice to investigate the role of OsNCED3 in conferring resistance to

the brown planthopper (BPH, Nilaparvata lugens). Resistance was

evaluated by examining physiological and biochemical parameters,

changes in hormone content, and defense gene expression. The

results provide a foundation for analyzing ABA function in the

regulation of BPH resistance.
2 Materials and methods

2.1 Plant and insect materials

The wild-type rice variety used in the experiment was

Zhonghua 11(ZH11), and both OsNCED3 overexpression (OE-5)

and silencing (RNAi-5) rice seeds were provided by the School of

Life Sciences, South China Agricultural University and the

phenotype was shown in Xu et al. paper (Xu et al., 2018b). The

test rice was grown normally in the test field at 28~36 °C in summer.

The BPH populations were collected from the China Rice Research

Institute (Hangzhou, China) and kept in the greenhouse of the

Ecological Laboratory under the following conditions: the

temperature was (26 ± 2) °C, the humidity was maintained at

65%~75%, and the photoperiod was controlled at 16 L:8 D. Green

house cultured BPH were transferred to experimental field,

propagated for 3 additional generations and subsequently used

for all the experiments (Sun et al., 2022).
2.2 RNA extraction and quantitative
RT-PCR

Total RNA was isolated by FastPure® Universal Plant Total

RNA Isolation Kit (Vazyme, Nanjing, China). A 2 mL sample of

first-strand cDNA was analyzed in each 20mL reaction by qRT-

PCR. All the tests were performed in three replicates. qRT-PCR was

carried out using SYBR Select Mas-ter Mix (TaKaRa Biotech,

Osaka, Japan) under the following reaction program: qRT-PCR

was performed in a 20 mL reaction volume containing 10 mL of

SYBR GreenPCRMaster Mix, 2 mL of cDNA template (100 ng), and

1 mL each of forward and reverse primer. Each PCR was performed

in a total volume of 20 μL following the manufacturer’s protocol.

The expression level was calculated using the DDCt (threshold

cycle) method (Livak and Schmittgen, 2001). Three biological

replicates were used per sample, and the expression level of each

gene was normalized to that of the reference gene OsActin1.
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2.3 Bioinformatics analysis of OsNCED3
gene in rice

The amino acid sequence of the CDS region of the rice gene

OsNCED3was obtained fromNCBI (https://www.ncbi.nlm.nih.gov/),

and the amino acid similarity was searched through the BLASTp

program (https://blast.ncbi.nlm.nih.gov/Blast.cgi). Based on the

search results, 21 NCED protein amino acid sequences from 21

species containing complete coding for aminoacids in protein (CDS)

in Genbank were selected for phylogenetic analysis with OsNCED3,

and a phylogenetic tree was constructed with Mega 7, and 5 amino

acid sequences with higher similarity were selected and compared

with OsNCED3 by DNAMAN. The five amino acid sequences with

high similarity were selected and compared with OsNCED3 using

DNAMAN; the tertiary structure of the protein was predicted using

SWISSMODEL (https://swissmodel.expasy.org/); and the possible

functional cooperating proteins of the protein were predicted using

String (https://string-db.org).
2.4 Phenotypic differences among OE,
RNAi and WT rice

The growth status of the three types of rice, such as differences

in plant height, root length, was observed again 30 days after rice

germination. ZH11, OsNCED3-OE and osnced3-RNAi lines (n=10

per genotype) were selected.
2.5 Treatment of OsNCED3 transgenic rice
against BPH

10 plants (ZH11, OsNCED3-OE and osnced3-RNAi lines) were

taken when the rice at the age of 4-leaf stage, and each line was set

up with 10 replications, BPH infestation with 30 3rd-instar nymphs

per plant, and the insects were picked up after starved treatment for

1 h. Cultivation was under normal environment and observations

were made and samples of plant sheath were taken at four-time

intervals: 0, 6, 12 and 24 h. All treatments were cultured in normal

environment, and the fertilizer and water were managed properly.
2.6 Determination of rice injury levels and
functional plant loss index after
BPH feeding

ZH11, OsNCED3-OE and osnced3-RNAi lines (n=10 per

genotype) were selected. Plants were infected as previously

described (Sun et al., 2022). Briefly a flexible cylinder (5 cm

diameter, 12 cm high) made from a polyvinyl chloride (PVC)

sheet was inserted into the soil along the rim of the cup. BPH

infestation was done by transferring 30 number of 3rd-instar

nymphs per plant, to the cylinder followed by its sealing with a

gauze. The injury level of rice in each plastic cup was checked at

seven days. After determining injury levels, rice plants were cut into
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pieces, then washed, dried at 110°C for 20 min, and then dried to

constant weight at 60°C. Dry weights were measured with a

precision electronic balance, and the functional plant loss index

(FPLI) was calculated.

FPLI = 100 −
Dry weight of injured plants

Dry weight of uninjured plants
� (1 −

Injured level
9

)� 100
2.7 Determination of insect resistant
substances in rice

For the determination of flavonoid content, the method of

Wang et al. (2005) was referred (Wang et al., 2005): the

absorbance at the wavelength of 510 nm was measured with UV

spectrophotometer, and the standard curve was made with rutin

standard, and then the content of flavonoids in each sample

was calculated.

For the determination of soluble sugar content, the method of

Chen et al. (2017) was referred (Shi et al., 2018): the absorbance at

630 nm was measured by UV spectrophotometer, while the

standard curve was made with glucose standard solution (100 mg/
ml) to calculate the content of soluble sugar in each sample.

For the determination of oxalic acid content, reference was

made to the method of Zhan et al. (2006) (Zhan et al., 2006): the

absorbance was measured at 400 nm with a UV spectrophotometer,

and a standard curve was made with oxalic acid standard to

calculate the content of oxalic acid in each sample.

For the determination of free amino acid content, the method of

Wang et al. (2007) was referred (Wang, 2007): the absorbance was

measured at the wavelength of 570 nm with an ultraviolet

spectrophotometer, while the standard curve was made with

glutamic acid standard to calculate the content of free amino acid

in each sample.
2.8 Extraction and assay of defense-related
enzyme activities

For the determination of superoxide dismutase (SOD) activity,

the method of Chen et al. (2017) was referred (Livak and

Schmittgen, 2001): the absorbance at 560 nm was measured by

UV spectrophotometer under the condition of avoiding light.

For the determination of peroxidase (POD) activity, the method

of Han et al. (2018) was referred (Han, 2018): the absorbance was

measured at 470 nm using a UV spectrophotometer. The data were

recorded with a change of 0.01 in A470 per 1 min as a peroxidase

activity unit U.

Catalase (CAT) activity was determined by referring the

method of Lu et al. (2013) (Lu, 2014): the data were recorded

with a change of 0.01 in A240 every 1 min as a catalase activity

unit U.

For the determination of polyphenol oxidase (PPO) activity, the

method of Soliva et al. (2000) was referred (Soliva et al., 2000): the

data were recorded with a change of 0.01 in A410 per 1 min as one
Frontiers in Plant Science 04
unit of peroxidase activity U. The data were recorded with a change

of 0.01 in A410 per 1 min.
2.9 Determination of hormone content

The hormone content was determined according to the method

of Zhang et al. (2017) (Zhang et al., 2017): the sample was analyzed

using an HPLC-MS. HPLC-MS was used to determine the content

of each hormone.
2.10 Statistical analysis

The statistical significance of differences between treatments was

determined by analysis of variance (ANOVA; Systat Inc.) followed by

Duncan´s multiple range test for multiple comparisons. For

ANOVA, data were analyzed directly if normally distributed; data

that were not normally distributed were transformed to ensure

homogeneity of variances among different groups. Data were

denoted as mean± SE, and analyzed using SPSS 11.0 software (SPSS).
3 Results

3.1 Multiple sequence alignment and
phylogenetic analysis

The predicted amino acid sequence of OsNCED3 was obtained by

searching databases at the National Center for Biotechnology

Information (NCBI). OsNCED3 from Oryza sativa showed 92%

similarity with ObNCED1 in the wild rice, O. brachyantha. Multiple

sequence alignments of OsNCED3, ObNCED1, BdNCED3

(Brachypodium distachyon), SbNCED1 (Sorghum bicolor), SiNCED1

(Setaria italica), and ZmNCED1 (Zea mays) were conducted with

DNAman (https://www.lynnon.com/) (Figure 1A). These sequences

contained both highly and relatively-conserved amino acid residues.

The amino acid sequences of 29 NCED proteins from different plant

species were downloaded from NCBI, and MEGA 7.0 was used for

multiple sequence alignment and construction of a phylogenetic tree

(Figure 1B). Phylogenetic analysis showed that the dendogram could be

divided into branches representing dicots and monocots. The NCEDs

in monocots such as rice, B. distachyon, millet and sorghum are

represented in a branch that differed from the dicots grouped in the

other branch (e.g., Cucurbita pepo, Cucumis melo, and Malus

domestica). The NCEDs in graminaceous plants were closely related

to plants in Chenopodiaceae and Papaveraceae. The tertiary structure

of OsNCED3 was predicted using SWISS-MODEL (https://

swissmodel.expasy.org/), which revealed that OsNCED3 contained

12 a-helices and 36 b-folds (Figure 1C). Proteins that potentially

interact with OsNCED3 were identified with String (https://string-

db.org/). Ten possible interacting proteins were predicted (Figure 1D),

and the highest and lowest scores were 0.941 and 0.613, respectively.

Potential interacting proteins included OSJ_13064 containing

ketoreductase and fatty acid synthase domains.
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3.2 Phenotypic differences among OE,
RNAi and WT rice lines

The phenotypes of wild-type (WT) rice ZH11, the overexpressing

line OsNCED3-OE and the knockdown osnced3-RNAi were compared

in 30-d-old seedlings (Figure 2A). There were no significant differences

in plant height (Figure 2B), root length (Figure 2C), or fresh and dry

weights (Figures 2D, E) when osnced3-RNAi rice was compared with

WT. However, OsNCED3-OE plants were shorter with reduced root

development and lower fresh and dry weights as compared with

osnced3-RNAi and the WT, indicating that OsNCED3 is involved in

rice growth and development.
3.3 Interactions and validation of insect
resistance in transgenic rice

There were significant differences in average injury level and

function plant loss index when BPH fed on OsNCED3-OE, osnced3-

RNAi and WT rice (Figures 3A, B). It indicated that BPH cause more
Frontiers in Plant Science 05
serious damage on osnced3-RNAi, BPH clearly preferred to feed on the

osnced3-RNAi line, and BPH populations on the OsNCED3-OE line

were significantly lower than those on the WT and osnced3-RNAi lines

(Figure 3C). BPH that fed on the OsNCED3-OE line had lower larval

survival rates (Figure 3D). and lower numbers of eggs per plant than

osnced3-RNAi andWT rice (Figure 3E). Furthermore, expression levels

of OsNCED3 in the OsNCED3-OE line continued to increase when

BPHwas allowed to feed (Figure 3F), whereas no changes in expression

levels were detected during BPH feeding in the osnced3-RNAi line.

Overall, these results indicate that BPH feeding was higher on osnced3-

RNAi rice as compared to the OsNCED3-OE line.
3.4 The content of antibiotic-resistant
substances in rice increased with the
infestation of brown planthopper

Flavonoid content in the OsNCED3-OE line increased rapidly

after 12 h of BPH feeding and was 33.45% higher than levels in the

WT (Figure 4A). the flavonoid content at 24 h was significantly
A B

DC

FIGURE 1

Bioinformatics analysis of OsNCED3 gene in rice. (A) comparison of deduced protein sequence encoded by OsNCED3. Black part represents highly
conserved residues; red represents conservative substitution; light blue represents semi conservative substitution. OsNCED3 (Oryza sativa); ObNCED1 (Oryza
brachyantha); SbNCED1 (Sorghum bicolor); ZmNCED1 (Zea mays); BdNCED3 (Brachypodium distachyon); SiNCED1 (Setaria italica). (B) phylogenetic tree of
amino acid sequence of OsNCED gene from different sources; OsNCED3 (Oryza sativa); ObNCED1 (Oryza brachyantha); SbNCED1 (Sorghum bicolor);
ZmNCED1 (Zea mays); BdNCED3 (Brachypodium distachyon); SiNCED1 (Setaria italica); RsNCED3 (Raphanus sativus); PpNCED1 (Prunus persica); RcNCED1
(Rosa chinensis); CrNCED3 (Capsella rubella); AtNCED3 (Arabidopsis thaliana); BnNCED3 (Brassica napus); BoNCED3 (Brassica oleracea); VvNCED1 (Vitis
vinifera); NnNCED1 (Nelumbo nucifera); CmNCED3 (Cucumis melo); PmNCED1 (Prunus mume); CpNCED3 (Cucurbita pepo); MdNCED2 (Malus domestica);
CsNCED3 (Cucumis sativus); HaNCED3 (Helianthus annuus); VrNCED1 (Vigna radiata); PsNCED3 (Papaver somniferum); NaNCED1 (Nicotiana attenuata);
ZjNCED1 (Ziziphus jujuba); TcNCED3 (Theobroma cacao); MeNCED5 (Manihot esculenta); GsNCED1 (Glycine soja); CcNCED1 (Cajanus cajan); SoNCED1
(Spinacia oleracea). (C) Predicted 3D structure of OsNCED3 using PyMOL software. (D) interacting proteins of OsNCED3 using the STRING database.
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FIGURE 2

Growth genotypes of OsNCED3-OE, osnced3-RNAi and WT rice plants. (A) Phenotypes of plant height and root length of indicated genotypes
(n=10); (B) comparison of plant height; (C) comparison of root length; (D) comparison of fresh weight of plants; (E) comparison of dry weight of
plants. The data are mean ± SE. Bars with different letters show significant different at P< 0.05 by PLSD test.
A

B D

E

F

C

FIGURE 3

OsNCED3 positively regulates BPH resistance in rice (A). (B) Average injury levels, and FPLI after BPH feeding on ZH11, OsNCED3-OE, osnced3-RNAi
line. BPH (n=30) were allowed to feed on WT, and OE rice for 7 d, and injury, and FPLI values were then obtained; (C) statistical analysis of number
of BPH in plant after feeding on ZH11, OsNCED3-OE, osnced3-RNAi line; (D) statistical analysis of nymph survival rates; (E) statistical analysis of
number of eggs per plant; (F) qRT-PCR analysis of OsNCED3 transcripts in ZH11, OsNCED3-OE, osnced3-RNAi line after BPH infestation. The data
are mean ± SE. Bars with different letters show significant different at P< 0.05 by PLSD test.
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lower (32.84%) in the osnced3-RNAi line as compared to the WT.

The soluble sugar content was significantly higher in the OsNCED3-

OE line as compared to the WT in the 6–24 h time period after

exposure to BPH (Figure 4B). In contrast, the soluble sugar content

in the OsNCED3-OE line was significantly lower than the osnced3-

RNAi line at 0–12 h, but this difference disappeared at 24 h. The

results showed that the soluble sugar content of the BPH treatment

was significantly lower than that of WT (Figure 4B). Significant

differences in oxalic acid content were observed after 12 h of BPH

exposure, and levels were significantly higher in the OsNCED3-OE

line as compared to the osnced3-RNAi and WT lines (Figure 4C).

The oxalic acid content in the OsNCED3-OE line was 44.39% higher

than the WT at 12 h. The osnced3-RNAi line had significantly

reduced oxalic acid content (down 28.56%) as compared to the WT

at 24 h after BPH exposure. There were no significant differences in

the oxalic acid content of the three lines at 0 and 6 h. Furthermore,

no significant differences were observed in the free amino acid

content of the osnced3-RNAi and WT rice lines at 0–24 h of BPH

feeding (Figure 4D). In contrast, the free amino acid content in the

OsNCED3-OE line was significantly lower than levels in theWT and

osnced3-RNAi lines after 6–24 h of BPH feeding.
3.5 The activities of defense enzymes in
rice increased with the infection of
brown planthopper

SOD activity in the OsNCED3-OE line was significantly higher

than the WT and osnced3-RNAi lines from 0 to 24 h after BPH

feeding (Figure 5A). which indicated that OsNCED3 overexpression

caused a significant increase in SOD levels. POD activity in the

OsNCED3-OE line was significantly higher than levels in the WT
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and osnced3-RNAi lines from 0–12 h, but this difference was not

apparent at 12 or 24 h (Figure 5B). PPO activity in the OsNCED3-

OE, osnced3-RNAi and WT rice lines was not significantly different

at 0 or 6 h; however, PPO activity began to increase at 12 h after

BPH feeding (Figure 5C). PPO activity in the OsNCED3-OE line

was significantly higher than the osnced3-RNAi line at 12 and 24 h

after BPH feeding. CAT activity in the OsNCED3-OE line was

consistently higher than in the osnced3-RNAi and WT rice

(Figure 5D). CAT activity showed a rapid increase from 0–6 h in

the OsNCED3-OE line and remained high throughout the

sampling times.
3.6 The hormones ABA and JA in
transgenic rice plants were significantly
increased under brown
planthopper infestation

There were no significant differences in SA content in OsNCED3-

OE, osnced3-RNAi and WT rice at 0, 12 and 24 h of BPH feeding. The

SA content in WT plants was significantly higher than levels in

OsNCED3-OE and osnced3-RNAi lines at 6 h (Figure 6A). The JA

content in theOsNCED3-OE line was significantly higher than theWT

and osnced3-RNAi plants at all sampling times (Figure 6B). The JA

content in the OsNCED3-OE line was highest at 6 h after BPH feeding;

afterwards, the JA content decreased but remained significantly higher

than levels in the WT and osnced3-RNAi plants. The ABA content was

significantly higher in OsNCED3-OE rice at 6 and 12 h after BPH

infestation (Figure 6C). ABA levels stabilized in the OsNCED3-OE line

at 12 and 24 h after BPH exposure. In the osnced3-RNAi line, there was

a transient increase in the ABA content at 6 h, which decreased at 12

and 24 h; these results indicated that osnced3-RNAi modulated ABA
A B

DC

FIGURE 4

Changes of resistance substances in OsNCED3 transgenic rice after BPH feeding. (A) the results of flavonoid content; (B) the results of soluble sugar
content; (C) the results of oxalic acid content; (D) the results of free amino acid content. The data are mean ± SE. Bars with different letters show
significant different at P< 0.05 by PLSD test.
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levels in the early stages of BPH infestation (Figure 6C). The JA-Ile

content in the OsNCED3-OE line was significantly elevated as

compared with the WT and osnced3-RNAi lines at 6–12 h of

inoculation (Figure 6D); however this difference disappeared at 24 h.

These results indicate that JA-Ile levels rapidly accumulate after BPH

infestation, which is similar to results observed with JA (Figure 6B).

There were no significant differences in JA-Ile levels in osnced3-RNAi

and WT rice. In summary, most of the hormones monitored in this

study showed significant changes early after BPH infestation, and these

levels declined as the infestation time increased.
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3.7 The expression of defense-related
genes in transgenic rice plants was
significantly increased under brown
planthopper infestation

OsAOS1 (LOC_Os03g55800) and OsMYC2 (LOC_

Os10g42430) are involved in JA biosynthesis and regulation,

respectively. Both OsAOS1 and OsMYC2 were significantly

upregulated in the OsNCED3-OE line as compared to WT rice

after BPH feeding (Figure 7). In contrast, OsAOS1 and OsMYC2
A B

DC

FIGURE 6

Determination of hormone content in OsNCED3 transgenic rice. (A) salicylic acid content; (B) jasmonic acid content; (C) abscisic acid content;
(D) jasmonoyl-L-isoleucine content. The data are mean ± SE. Bars with different letters show significant different at P< 0.05 by PLSD test.
A B

DC

FIGURE 5

Changes of defense enzyme activity of OsNCED3 transgenic rice after BPH feeding. (A) the results of superoxide dismutase activity; (B) the results of
peroxidase activity; (C) the results of polyphenol oxidase activity; (D) the results of Catalase activity. The data are mean ± SE. Bars with different
letters show significant different at P< 0.05 by PLSD test.
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expression were significantly reduced in osnced3-RNAi rice as

compared to the WT. OsJAZ1 (LOC_Os04g55920) is a

transcriptional repressor of JA, and its expression was

significantly elevated in osnced3-RNAi rice; this suggests that

OsNCED3 is involved in both JA synthesis and signaling.

OsABA8ox3 (LOC_Os09g28390) and OsPYL9 (LOC_Os06g36670)

are ABA catabolism and ABA receptor genes, respectively. There

was no significant change in OsABA8ox3 expression in OsNCED3-

OE rice as compared to the WT after BPH feeding, but the

expression of osnced3-RNAi decreased significantly. OsPYL9

expression in OsNCED3-OE rice was significantly higher than

expression in the osnced3-RNAi and WT lines. Rice BPH

resistance genes OsbZIP23 (LOC_Os02g52780), Osbph6

(LOC_Os04g35210), and OsKSL4 (LOC_Os04g10060) were all

induced and expressed at higher levels in OsNCED3-OE plants as

compared to WT and the osnced3-RNAi line. In summary, our

results indicate that OsNCED3 is involved in the expression of genes

that confer insect resistance.
4 Discussion

Plant insect tolerance is the ability of plants to tolerate adversity

and compensate for it by relying on factors such as their own growth

as well as reproductive capacity when subjected to harsh biotic

stresses similar to those of insect-sensitive species (Yang, 2005).

Our findings suggest that BPH preferred to feed on osnced3-RNAi

rice as compared to WT and OsNCED3-OE rice. The overexpression

of OsNCED3 reduced BPH-induced damage and improved insect

tolerance. These results suggest that OsNCED3 expression is induced
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by BPH feeding and correlates with improved insect tolerance in a

very short amount of time.

The overexpression and silencing of OsNCED3 in rice resulted in

multiple changes in the concentrations of flavonoids, soluble sugars,

oxalic acid, and amino acids in the OsNCED3-OE and osnced3-RNAi

rice lines. We observed a rapid increase in flavonoid content in

OsNCED3-OE rice that was significantly higher than levels in the

knockdown line, osnced3-RNAi. Plants produce a number of

polyphenolic compounds including flavonoids (Ballester et al., 2010;

Wang et al., 2011), which function as antioxidants that scavenge free

radicals in plants. Furthermore, flavonoids have key roles in

antimicrobial activity and stress tolerance (Heim et al., 2002; Chen

et al., 2007). Soluble sugars provide energy for growth and

development and have signaling functions in plants (Takahashi

et al., 2003; Kato-Noguchi et al., 2010; Boriboonkaset et al., 2013).

There are two opinions on the roles of soluble sugar in plant resistance

to insects; for example, one view is that higher levels of soluble sugars

improve plant resistance to insects. For example, Ji et al. (2006) studied

oviposition and feeding selectivity of the tobacco whitefly, Bemisia

tabaci, on different cucumber varieties. Higher concentrations of

soluble sugars in cucumber reduced whitefly numbers and

development (Ji, 2006). He et al. (2017) also reported that peppers

with higher resistance would have higher resistance to whitefly (Jing

et al., 2017). After Solanum lycopersicum was treated with exogenous

MeJA, Zhang et al. (2009) analyzed the nutrients, secondary

metabolites, and defense enzymes in tomato leaves infested with

whiteflies. The content of soluble sugars and proteins were reduced

and resistance to whiteflies improved, leading the authors to speculated

that exogenous MeJA improved plant resistance by reducing nutrients

such as soluble sugars (Zhang et al., 2020). Our data shows that soluble
FIGURE 7

Changes of key gene expression in OsNCED3 transgenic rice after BPH feeding. The relative expression level of OsAOS1(LOC_Os03g55800). The
relative expression of OsMYC2 (Jasmonic acid transcription factor, LOC_Os10g42430). The relative expression level of OsJAZ1(LOC_Os04g55920).
The relative expression level of Osbph6(LOC_Os04g35210). The relative expression of OsABA8ox3 (LOC_Os09g28390). The relative expression level
of OsPYL9(LOC_Os06g36670). The relative expression of OsbZIP23 (LOC_Os02g52780). The relative expression of OsKSL4 (kaurene synthase-like 4,
LOC_Os04g10060). The data are mean ± SE. Bars with different letters show significant different at P< 0.05 by PLSD test.
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sugars weaken plant resistance to plant hopper. Oxalic acid is another

defensive compound that has an important role in plant resistance to

abiotic and biotic stressors (Tian et al., 2009). For example, kiwifruit

sprayed with oxalic acid had increased levels of defense enzymes and

were more resistant to Penicillium causativeum (Zhu et al., 2016).

Melons (Cucumis melo) treated with oxalic acid were more resistant to

pink mold rot caused by Trichothecium roseum, and oxalic acid

treatment elevated the activity of defense enzymes such as POD and

PPO (Deng et al., 2015). Free amino acids function in the metabolic

homeostasis of plants and also play an important role in plant

resistance (Gao, 2016). Zeng et al. (1992) reported that the free

amino acid content in BPH-resistant varieties of rice was lower than

in susceptible cultivars (Zeng et al., 1992).

SOD, POD and CAT are important antioxidant enzymes that

scavenge free radicals in plants and protect cells from oxidative

damage. SOD scavenges free radicals and converts them to O2 and

hydrogen peroxide, which reduces cellular damage. CAT protects plant

cells by utilizing hydrogen peroxide as a substrate and converting free

radicals to oxygen and water, thus eliminating the toxicity of H2O2

(Xing et al., 2015; Hu, 2020). In addition to metabolizing hydrogen

peroxide, POD catalyzes the polymerization of phenolics into lignin,

which strengthens the plant cell wall and provides a level of protection

from invading insects and pathogens (Tian et al., 2001; Jia et al., 2004).

PPO catalyzes the conversion of phenolic compounds into highly

reactive quinones and provides precursors for defense compounds such

as lignin and phytochelatins (Zhang et al., 2020). In this study, we

observed higher levels of SOD, POD and CAT in the OsNCED3-OE

rice line as compared to osnced3-RNAi andWT rice; this was especially

true for CAT activity. PPO activity increased rapidly beginning at 12 h

and levels were significantly higher than those in the osnced3-RNAi and

WT lines.

Our results definitively show that defense compounds such as

flavonoids and oxalic acid were highest in theOsNCED3-OE line, and

the increase was more obvious beginning 12 h after BPH exposure.

The soluble sugar content was comparable in all three rice lines. The

levels of the antioxidant enzymes SOD, POD and CAT were higher in

the OsNCED3-OE line than the WT beginning at 0 h. In contrast,

PPO activity began to rise at 12 h after BPH exposure. The average

level of damage and the index of functional loss were exclusively

discussed in Sun’s article for overexpression lines, while no mention

was made regarding RNAi interference line, this study demonstrates

that theOsNCED3-OE line exhibits higher insect resistance compared

to the osnced3-RNAi line (Sun et al., 2022). Sun’s EPG analysis reveals

that the feeding of BPH is inhibited by the OsNCED3-OE line. The

data presented by Sun aligns with our results, indicating the

involvement of OsNCED3 in rice’s mechanism of insect resistance

(Sun et al., 2022). Collectively, these results also indicate that levels of

defense compounds were highest in the OsNCED3-OE line, which is

also is more resistant to BPH than WT and osnced3-RNAi rice.

SA has been extensively studied in plants since its original

isolation from willow bark in 1828. SA has an important role in

tolerance to abiotic (e.g., cold and salt stress) and biotic stressors

(diseases and insects) (Kang et al., 2007; Palma et al., 2009; Hussain

et al., 2014; Ueda et al., 2019; Cheng et al., 2020). JA-Ile is the
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bioactive form of JA, and induces the expression of defense-related

genes to protect the plant from biotic stress (Wang, 2018). Although

no significant changes were observed in SA content in the three rice

lines (Figure 6A), both JA and JA-Ile levels increased rapidly in the

OsNCED3-OE line beginning at 6 h after BPH feeding. Beginning at

0 h, the ABA content in OsNCED3-OE rice was higher than the

levels in osnced3-RNAi rice, suggesting a role for OsNCED3 in

regulating ABA synthesis. At 6–12 h after BPH feeding, the ABA

content in all three rice lines increased and then declined rapidly,

which was similar to the increase and decrease in JA and JA-Ile

levels (Figure 6). At 24 h of BPH feeding, the ABA content was

comparable in all three rice lines. Based on the existing research in

our group, we hypothesized that there was a synergistic interaction

between ABA and JA in plants after BPH feeding.

Allene oxide synthase (AOS1) is the second enzyme in the JA

biosynthesis pathway, whereas MYC2 is a transcription factor that

positively regulates JA biosynthesis. Vos et al. (2013) found that

exogenous ABA induced MYC2 expression in Arabidopsis, which

resulted in a JA-mediated defense response. The ABA synthesis

loss-of-function mutant aba2–1 impeded the transcription of the

cabbage worm Pieris rapae post-feeding expression of resistance

genes regulated by the transcription factor MYC2 (Vos et al., 2013).

JAZ (Jasmonate ZIM-domain) is a transcriptional repressor of JA

signaling that inhibits JA-activated responses by repressing MYC2.

JAZ proteins are dependent on the JA signaling pathway to

negatively regulate plant defense against biotic and abiotic

stressors (Browse, 2009; Fu et al., 2017). OsKSL4, a biosynthesis

gene for the diterpene phytocannabinoid ryanodiolactone, acts as a

positive regulator of the defense response in rice (Xu et al., 2007;

Yoshida et al., 2017). OsABA8ox3 is an ABA catabolism-related

gene in rice, and OsPYL9 (pyrabactin resistance 9-like) is an ABA

receptor. OsPYL positively regulates the ABA response when seed

germination occurs, whereas overexpression of OsPYL9 can

significantly improve drought and cold tolerance in rice (Tian

et al., 2015). OsbZIP23 belongs to the rice bZIP transcription

factor family, which promotes in plant resistance (Mellacheruvu

et al., 2016). Osbph6 (brown plant hopper resistance 6) confers

broad-spectrum resistance to BPH (Guo et al., 2018). RT-qPCR

after BPH feeding showed that the expression of 8 genes was higher

in OsNCED3-OE rice than in the WT and osnced3-RNAi lines. The

expression patterns of OsAOS1, OsMYC2, and OsJAZ1 correlated

with changes in JA hormone content, indicating that JA

biosynthesis was promoted during BPH feeding. Expression of the

ABA catabolism gene OsABA8ox3 in OsNCED3-OE rice was not

significantly different from expression in WT rice (Figure 7).

However, expression of OsPYL9 in OsNCED3-OE was

significantly higher than the WT and osnced3-RNAi lines. Based

on the results obtained for OsKSL4, OsbZIP23 and Osbph6, we

concluded that the resistance of rice lines overexpressing OsNCED3

gene was enhanced and the expressed genes identified in Sun et al.

(2022)’s article were found to align with the transcriptome data, and

their expression patterns exhibited consistency, suggesting a

positive impact on enhancing rice resistance against insects (Sun

et al., 2022).
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5 Conclusions

The resistance of three rice lines (OsNCED3-OE, osnced3-RNAi,

and WT) to BPH and the role of OsNCED3 in BPH tolerance was

examined by monitoring physiological and biochemical parameters,

changes in hormone content, and defense gene expression. The

results indicate that OsNCED3 expression is induced by BPH

feeding and correlates with improved insect tolerance in a very

short amount of time. The overexpression of OsNCED3 reduced

BPH-induced damage and improved insect tolerance. BPH clearly

preferred to feed on osnced3-RNAi vs. the OsNCED3-OE and WT

lines, and BPH populations on the OsNCED3-OE line were

significantly lower than those on the WT and osnced3-RNAi. BPH

that fed on the osnced3-RNAi line also had lower larval survival

rates and reduced numbers of eggs per plant as compared to

osnced3-RNAi and WT rice. one graphical summary model

showed in Figure 8.

Our results indicate that levels of defense compounds

(flavonoids and OA) were highest in the OsNCED3-OE line,

which was more resistant to BPH than WT and osnced3-RNAi

rice. Our findings also show that OsNCED3 activated rice defense

mechanisms, which led to increases in the defense enzymes

superoxide dismutase, peroxidase, and polyphenol oxidase. JA,

JA-Ile and ABA concentrations rapidly accumulated in the

OsNCED3-OE line after BPH infestation, and these levels declined

as the infestation time increased. The findings outlined in this study

indicate that modulation of endogenous genes in rice may be a valid

management tactic for reducing yield loss, which is beneficial for

the environment due to the reduced use of chemical agents.
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