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The transition from germinating seeds to emerging seedlings is one of the most

vulnerable plant life cycle stages. Heteromorphic diaspores (seed and fruit

dispersal units) are an adaptive bet-hedging strategy to cope with

spatiotemporally variable environments. While the roles and mechanisms of

seedling traits have been studied in monomorphic species, which produce one

type of diaspore, very little is known about seedlings in heteromorphic species.

Using the dimorphic diaspore model Aethionema arabicum (Brassicaceae), we

identified contrasting mechanisms in the germination responses to different

temperatures of the mucilaginous seeds (M+ seed morphs), the dispersed

indehiscent fruits (IND fruit morphs), and the bare non-mucilaginous M− seeds

obtained from IND fruits by pericarp (fruit coat) removal. What follows the

completion of germination is the pre-emergence seedling growth phase,

which we investigated by comparative growth assays of early seedlings derived

from the M+ seeds, bare M− seeds, and IND fruits. The dimorphic seedlings

derived from M+ and M− seeds did not differ in their responses to ambient

temperature and water potential. The phenotype of seedlings derived from IND

fruits differed in that they had bent hypocotyls and their shoot and root growth

was slower, but the biomechanical hypocotyl properties of 15-day-old seedlings

did not differ between seedlings derived from germinated M+ seeds, M− seeds, or

IND fruits. Comparison of the transcriptomes of the natural dimorphic diaspores,

M+ seeds and IND fruits, identified 2,682 differentially expressed genes (DEGs)

during late germination. During the subsequent 3 days of seedling pre-

emergence growth, the number of DEGs was reduced 10-fold to 277 root

DEGs and 16-fold to 164 shoot DEGs. Among the DEGs in early seedlings were

hormonal regulators, in particular for auxin, ethylene, and gibberellins.

Furthermore, DEGs were identified for water and ion transporters, nitrate

transporter and assimilation enzymes, and cell wall remodeling protein genes

encoding enzymes targeting xyloglucan and pectin. We conclude that the
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fpls.2024.1358312/full
https://www.frontiersin.org/articles/10.3389/fpls.2024.1358312/full
https://www.frontiersin.org/articles/10.3389/fpls.2024.1358312/full
https://orcid.org/0000-0002-9413-2279
https://orcid.org/0000-0003-3282-6029
https://orcid.org/0000-0002-8578-3387
https://orcid.org/0000-0002-6489-5566
https://orcid.org/0000-0002-6802-205X
https://orcid.org/0000-0002-2048-1628
https://orcid.org/0000-0002-0225-873X
https://orcid.org/0000-0003-0955-9241
https://orcid.org/0000-0002-6045-8713
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2024.1358312&domain=pdf&date_stamp=2024-03-08
mailto:jake.chandler@rhul.ac.uk
mailto:j.o.chandler@lancaster.ac.uk
mailto:Gerhard.Leubner@rhul.ac.uk
https://doi.org/10.3389/fpls.2024.1358312
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2024.1358312
https://www.frontiersin.org/journals/plant-science


Arshad et al. 10.3389/fpls.2024.1358312

Frontiers in Plant Science
transcriptomes of seedlings derived from the dimorphic diaspores, M+ seeds and

IND fruits, undergo transcriptional resetting during the post-germination pre-

emergence growth transition phase from germinated diaspores to

growing seedlings.
KEYWORDS

fruit and seed heteromorphism, bet-hedging strategy, diaspore dimorphism, seed
seedling transition, transcriptome resetting, seedling stress resilience, pre-emergence
growth, pericarp-imposed dormancy
1 Introduction

The transition fromgerminating seeds toemergingseedlings is one

of the most vulnerable plant life cycle stages, which depends on seed

and seedling phenotypic plasticity and complex interactions with

environmental cues (Fenner, 1987; Walck et al., 2011; Gardarin

et al., 2016). Seed germination and fruit germination depend on

basic requirements for water, oxygen, and an appropriate

temperature and are generally considered to be completed by radicle

protrusion (visible germination). Germination is further spread over

time by dormancy mechanisms, which block germination under

favorable conditions so that germination occurs when conditions for

establishing a new plant generation are likely to be suitable (Finch-

Savage and Leubner-Metzger, 2006; Baskin and Baskin, 2014; Finch-

Savage and Footitt, 2017). Successful seedling establishment and

spreading seedling emergence over time, therefore, depend primarily

on germination timing; in addition, post-germination seedling traits

are of major importance.What follows the completion of germination

is the pre-emergence seedling growth phase, which may be prone to

increasing post-germination stress in the soil environment, and

consequently, seeds/seedlings are often lost and fail to establish

during this stage (Moles and Westoby, 2006; Finch-Savage and

Bassel, 2016; Gardarin et al., 2016). Pre-emergence seedling growth

is heterotrophic growth in which the seeds’ storage reserves are used to

establish a root and to fuel shoot elongation until the seedling emerges

from the soil and switches to greening and self-nourishing autotrophic

growth (Fenner, 1987; Finch-Savage and Bassel, 2016; Ha et al., 2017;

Smolikova et al., 2022). While the roles and mechanisms of seedling

traits have been studied in monomorphic species, which produce one

type of diaspore (dispersed seeds or fruits), very little is known about

seedlings in heteromorphic species.

Diaspore (seed/fruit) heteromorphism is the production by an

individual plant of two (dimorphism) or more distinct kinds of seeds

and/or fruits that differ inmorphological (e.g.,mass, shape, and color),

dispersal ability (e.g., dormancy and mode of dispersal), and other

diaspore properties (Imbert, 2002; Baskin and Baskin, 2014; Baskin

et al., 2014). Heteromorphic diaspore traits have been proposed to be

an adaptive bet-hedging strategy to cope with spatiotemporally

variable environments. Distinct dormancy breaking requirements of

themorphs causedifferences ingermination timing, and consequently,
02
seedling emergence is spread over time and space (Maun and Payne,

1989; Lu et al., 2017a; b; Arshad et al., 2019; Lu et al., 2020). For

example, comparison of seedlings derived from the dimorphic seeds of

the cold desert halophyte Suaeda corniculata demonstrated that

seedlings from black seeds emerged in July and August, and those

frombrown seeds emerged inMay, and these dimorphic seedlings also

differed in size and root/shoot ratio (Cao et al., 2012; Yang et al., 2015).

Seedlings derived fromdimorphic seeds ofAtriplex centralasiatica and

other Suaeda species differed in salinity tolerance (Xu et al., 2011;

Zhanget al., 2021;Cao et al., 2022; Song et al., 2023).Whether seedlings

derived from dimorphic seeds also differ in responsiveness to other

abiotic stress factors such as heat or drought has not been investigated.

Here, we exploit the diaspore dimorphism of Aethionema

arabicum (Figure 1), an annual member of the earliest diverging

sister tribe within the Brassicaceae, in which seed and fruit

dimorphism was associated with a switch to an annual life history

(Lenser et al., 2016; Mohammadin et al., 2017; Chandler et al., 2024).

Ae. arabicum is adapted to arid and semiarid environments, its life-

history strategy appears to be a blend of bet-hedging and phenotypic

plasticity (Bhattacharya et al., 2019b), and it exhibits true seed and fruit

dimorphism with no intermediate morphs (Lenser et al., 2016). Two

distinct fruit types are produced on the same infructescence: dehiscent

(DEH) fruits, with four to six mucilaginous (M+) seeds, and

indehiscent (IND) fruits, each containing a single non-mucilaginous

(M−) seed. Uponmaturity, DEH fruits shatter, releasing theM+ seeds,

while the dry IND fruits are dispersed in their entirety by abscission.

Two very contrasting biophysical and ecophysiological dispersal

mechanisms of the Ae. arabicum dimorphic diaspores were revealed

(Arshad et al., 2019). Dehiscence of large fruits leads to the release of

M+ seed diaspores, which adhere to substrata via seed coat mucilage,

thereby preventing dispersal (anti-telechory). IND fruit diaspores

(containing non-mucilaginous seeds) disperse by wind or water

currents, promoting dispersal (telechory) over a longer range. The

pericarp properties confer enhanced dispersal ability and degree of

dormancy to the IND fruit morph to support telechory, while the M+

seed morph supports anti-telechory. The germination of M+ seeds of

some Ae. arabicum accessions is inhibited by light, while other Ae.

arabicum accessions, including the widely used TUR (Turkey)

accession, germinate equally well in continuous light and darkness

(Merai et al., 2019). Dimorphic fruits and seeds of the Ae. arabicum
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TUR accession differ in their molecular mechanisms throughout their

development on the mother plant, in the mature dry state upon

dispersal, and in dormancy and germination properties during

imbibition (Lenser et al., 2018; Arshad et al., 2019; Wilhelmsson

et al., 2019; Nichols et al., 2020; Arshad et al., 2021; Steinbrecher and

Leubner-Metzger, 2022; Chandler et al., 2024). We demonstrate here

that the seedlings of theAe. arabicumTUR accession derived from the

dimorphic diaspores (M+ seeds and IND fruits) differ during their pre-

emergence growth and undergo resetting of their transcriptomes

during the transition from germinated diaspores to early seedlings.
2 Results

2.1 Resetting of distinct Ae. arabicum
dimorphic diaspore responses to abiotic
stresses during the seed-to-seedling
transition phase

Figure 1 shows the life cycle of the annual Ae. arabicum, which

is characterized by the production and dispersal of dimorphic

diaspores. The M+ seed diaspore is dispersed by dehiscence (pod
Frontiers in Plant Science 03
shatter), and upon imbibition, it produces a mucilaginous layer

during germination (Figure 1B). The IND fruit diaspore is dispersed

by abscission and constitutes an indehiscent fruit in which the

single M− seed is covered by the pericarp (fruit coat), which confers

coat dormancy and prevents or delays germination (Figure 1C).

Earlier work with Ae. arabicum TUR (Chandler et al., 2024)

revealed the molecular and morphological mechanisms

underpinning the distinct dormancy and germination responses

of the dimorphic diaspores to different imbibition temperatures. A

comparison of the maximal germination percentages (Gmax) and

the germination rates (speed) of germination (GR50; i.e., the inverse

of the time of the diaspore population to reach 50% radicle

protrusion) identified 14°C as the optimal temperature for the

highest germination speed of the M+ seed morphs, the bare M−

seeds (manually extracted from IND fruits by pericarp removal),

and the IND fruit morphs (Supplementary Figure 1). The IND fruit

morph, however, exhibited a degree of pericarp-imposed dormancy

across the entire temperature window. Thus, our initial

physiological experiments investigating the effects of abiotic stress

factors on seedling growth focused on comparing M+ and M−

seedlings derived from germinated M+ and bare M− seeds,

respectively. These experiments, involving the removal of the
FIGURE 1

Annual life cycle of the dimorphic diaspore model Aethionema arabicum. (A) Dimorphic fruit and seed development and dispersal of the M+ seed and IND
fruit diaspores. (B) Germination of the M+ seed diaspore. (C) Germination of the IND fruit diaspore. (D) Seedling growth of M+ and M− seedlings derived from
the M+ and M− seeds, respectively. Resetting of the dimorphism during pre-emergence growth leads to adult plants that are indistinguishable regarding their
M+ or IND origin. These plants restart producing dimorphic diaspores during reproduction. Rearranged and redrawn using parts from Arshad et al. (2019).
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pericarp to obtain exposed M− seeds, align with dimorphic systems

(see the Introduction) characterized by true seeds of distinct colors

as diaspores. In such systems, the resulting seedlings exhibit

differential responses to salinity, with the unique seedling

reactions having already been established during dimorphic seed

development (Xu et al., 2011; Zhang et al., 2021; Cao et al., 2022;

Song et al., 2023). In our subsequent comparative biomechanical

and transcriptome analyses with Ae. arabicum TUR, we compared

the seed–seedling transition phase and early growth of seedlings

derived from germinated M+ seeds, bare M− seeds, and IND fruits.

Adult plants grown fromM+ andM− seedlings are indistinguishable

from each other and produce dimorphic diaspores (Figure 1).

To study the effects of thermal stress on M+ and M− seedling

growth independently from the temperature effects on dimorphic

diaspore germination (Supplementary Figure 1), M+ and M− seeds

were imbibed at an optimal germination temperature, and seeds

that had just completed germination (1-mm radicle protrusion

visible) were transferred to agar plates for conducting the seedling

growth assay (Figure 2). M+ and M− seedlings grown on vertical

agar plates at 14°C, 20°C, 24°C, 30°C, and 35°C were compared for

their root and shoot lengths at the times indicated [in “hat” (hours

after transfer)], and seedling growth rates were calculated. Though

the total seedling length differed significantly in several cases

between the morphs, the difference was very small, and there was

no overall morph-specific physiological response. Similarly,

seedling growth rates did not differ between the M+ and M−

morphs (Figure 2A). The fastest seedling growth rate was

observed at 72 hat, and 30°C was identified as the temperature

for fastest growth leading to the longest seedlings at 240 hat

(Figure 2B; Supplementary Figure 2). Fresh and dry weights of

separated root and shoot tissue at the end of the experiment (10

days) revealed a strong temperature response (p < 0.001), with the

highest masses observed at 30°C (Supplementary Figure 2).

Together with seedling lengths, growth rates, and fresh weights,

the most optimal seedling growth condition considered was thus

30°C, likely corresponding with the maximum climatic

temperatures of sites in Turkey from which Ae. arabicum TUR

was collected (Arshad et al., 2019). At 35°C, there were slight

indications that M+ seedlings had greater vigor, with a higher

mean shoot fresh and dry weight than M− seedlings

(Supplementary Figure 2). Temperature, therefore, had a

profound effect on M+ and M− seedling growth, in particular on

post-germination pre-emergence growth until 72 hat (Figure 2).

To study the effect of osmotic stress on the growth of Ae.

arabicum M+ and M− seedlings, their growth was analyzed at

lowered water potentials using high-molecular-weight

polyethylene glycol (PEG). After more than 3 weeks of vertical

growth, seedling morphs did not differ in their total length and

growth rates under three different concentrations of PEG

(Supplementary Figure 3). Taken together, no differences in the

physiological responses of M+ and M− seedlings derived from M+

seeds and bare M− seeds to temperature and reduced water potential

were identified. This suggests that during the seed–seedling

transition, the observed dimorphic diaspore trait differences

observed in abiotic stress responses (Lenser et al., 2016, 2018;

Arshad et al., 2019; Wilhelmsson et al., 2019; Bhattacharya et al.,
Frontiers in Plant Science 04
2019a, b; Arshad et al., 2020, 2021; Fernandez-Pozo et al., 2021;

Chandler et al., 2024) may be reset to a large extent. To test this

hypothesis, we conducted transcriptome analysis.
2.2 Comparative RNA-seq analysis of late
germination and post-germination pre-
emergence seedling growth reveals
gradual resetting of transcriptomes

Figure 3A depicts the experimental design for the RNA-seq

analysis in which we compared the transcriptomes during the late

germination phase with those during early seedling growth.

Samples were collected from imbibed Ae. arabicum M+ seeds, M−

seeds, and IND fruits at T1%, i.e., the time for the onset of the

completion of germination of a seed population, and at T100%, i.e.,

the time when the entire population had completed germination by

visible radicle protrusion (Figure 3A). It is known from previous

work (Wilhelmsson et al., 2019; Arshad et al., 2021; Chandler et al.,

2024) that the pericarp of imbibed IND fruits is dead tissue that

does not contain any RNA and that dry seed and germination

transcriptomes until T1% differ considerably between the dimorphic

diaspores. The physiological sampling times for T1% and T100% of

M+ seeds, bare M− seeds, and IND fruits are indicated in Figure 3A.

Diaspores that had just completed germination (1-mm radicle

protrusion) were transferred to agar plates at T100% (0 hat) for

conducting the seedling growth assay. Root and shoot tissues were

harvested from seedling samples at key physiological stages (72 hat

and 240 hat) during early seedling growth (Figure 3).

The 72-hat pre-emergence growth samples correspond to the

maximal growth rate, and 72 hat was associated with the onset of

cotyledon greening by chlorophyll accumulation (Figure 3B).

Between 6 and 10 days, the growth rates of M+ and M− seedlings

derived from germinated M+ seeds and bare M− seeds, respectively,

remained roughly equal. M+ and M− seedlings derived from

germinated M+ seeds and bare M− seeds had straight hypocotyls.

In contrast to this, seedlings derived from IND fruits often exhibited

a bent lower hypocotyl connected with an overall slower shoot and

root growth (Figure 4A). To investigate if morph caused a long-

lasting effect on the biomechanical properties of the hypocotyls, we

conducted comparative hypocotyl tensile tests of 15-day-old

seedlings (Figure 4B). No significant differences in the hypocotyl

breaking force were evident between the seedlings derived from

germinated M+ seeds, bare M− seeds, and IND fruits (Figure 4C).

The observed difference in hypocotyl shape (bent versus straight)

and the slower shoot and root growth of IND fruit-derived

seedlings, therefore, did not affect the hypocotyl biomechanical

properties at this stage of seedling growth.

To provide insights into the association between RNA-seq

samples, datasets were visualized using principal component

analysis (PCA), based on the 500 genes with the highest variance.

Replicate RNA-seq samples clustered tightly by diaspore and by

organ (root and shoot) type (Figure 5A). As expected, three distinct

clusters were separated primarily by the derivation of the samples

from seed, root, or shoot tissue based on the first two components,

explaining 48% and 44% of the variability. In this combined analysis
frontiersin.org
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(Figure 5A), IND samples at T100% (germinated diaspores) remain

distinct from all other tissues and time points. Separation of samples

involved in key processes of germination (T1% andT100%), root growth

(72 and 240 hat), and shoot growth (72 and 240 hat) revealed

comparative transcriptome profiles between the morphs in greater

detail (Figure 5). Clear differences were observed with IND samples,

such that both T1% and T100% samples clustered separately from M+

andM− seed samples.M+ andM− seed samples, however, showed tight

correlations throughout the course of germination (Figure 5B). As
Frontiers in Plant Science 05
seedlings, differences between morphs appear to be smaller. M+ and

M− samples clustered together during the two time points during root

(Figure 5C) and shoot (Figure 5D) growth. IND root samples remain

distinct fromM+ andM− samples.However, transcriptional profiles of

IND shoot tissue suggest that while samples at 72 hat remain as a

separate cluster, by 240 hat, there is a tendency toward greater

similarity of M+ and M− samples.

Cleaned RNA-seq reads mapped to the Ae. arabicum genome

were obtained for 23,594 genes (Supplementary Dataset 1). To
A B

C

FIGURE 2

The effect of a range of constant temperatures on the growth of Aethionema arabicum M+ and M− seedlings. (A) M+ and M− seedlings were grown on
vertical agar plates at constant temperatures as indicated. Seedling growth was scored over time starting at 0 hat (hours after transfer). The mean ± SEM
(N = 3 plates, each with seven seedlings) of seedling growth rates over time and seedling lengths at 72 and 240 hat are presented; for further details, see
Supplementary Figure 2. ANOVA of growth rates revealed that morph had no effect overall at 14°C (p = 0.114), 24°C (p = 0.089), 30°C (p = 0.959), or 35°C
(p = 0.217), while at 20°C (p = 0.027), M+ seedlings grew at a faster rate than M− seedlings. Statistical analysis (unpaired t-test) of day 10 M+ and M− seedlings
demonstrated that the slightly different lengths between M+ and M− seedlings were significant (*) at 14°C (M− seedlings slightly longer, p = 0.012), 20°C (M−

seedlings slightly shorter, p = 0.049), and 24°C (M− seedlings slightly shorter, p = 0.040), while no significant length difference was obtained at 30°C and 35°
C. (B) Temperature dependence of seedling growth rate and seedling length at 72 and 240 hat. The optimal seedling growth temperature (30°C) is indicated.
ANOVA of 72 and 240-hat seedling growth rates and seedling length across the entire temperature range revealed no significant differences between the
morphs (M+ versus M−). (C) M+ and M− seedlings were grown on vertical agar plates in continuous white light (170 µmol·m−2·s−1). Seedling growth assays
were conducted with seedlings derived from germinated M+ and M− seeds, which were selected for transfer to agar plates containing media based on 1-mm
protrusion of the radicle (0 hat).
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make the transcript abundance data easily and publicly accessible, a

gene expression atlas was generated, which was implemented in the

Ae. arabicum genome database (DB) (Fernandez-Pozo et al., 2021)

at https://plantcode.cup.uni-freiburg.de/aetar_db/index.php. The

Ae. arabicum gene expression atlas includes the transcriptome

results of this work and work published earlier (Merai et al., 2019;

Wilhelmsson et al., 2019; Arshad et al., 2021; Chandler et al., 2024)

and allows adding future transcriptome datasets. The transcript

abundance data for the 23,594 Ae. arabicum genes were further

investigated, and differentially expressed genes (DEGs;

Supplementary Dataset 1) were detected in a strict consensus

(overlap) approach using an adjusted p-value cutoff set to 0.001

(Wilhelmsson et al., 2019). Pairwise comparisons of M+ seeds vs.

bare M− seeds (seeds only), M+ seeds vs. IND fruits (natural

dispersal units), and M− vs. IND (pericarp effect) allowed

transcriptome exploration of the dimorphic syndrome during

seed germination and seedling growth. Comparisons showed that

M+ and M− seed transcriptomes became remarkably similar during

the completion of germination (Figure 6A; Supplementary Table 1).

A total of 180 and 55 DEGs were detected at T1% and T100%,
Frontiers in Plant Science 06
respectively, while after 72 hat, the seedling transcriptomes were

almost identical in the root (three DEGs) and shoot (two DEGs). By

contrast, comparisons between the natural diaspores, M+ seed vs.

IND fruit, showed a much higher number of DEGs during

germination. A total of 2,041 DEGs during T1% increased to 2,682

by T100%, thereafter reducing 10-fold (277 root DEGs) and 16-fold

(164 shoot DEGs) by 72 hat. By 240 hat, the time of true leaf

emergence for seedlings, differences between M+ seed vs. IND fruit-

derived seedlings were only evident from 60 DEGs in root samples

and 10 DEGs in shoot samples (Figure 6B; Supplementary Table 1).

Interestingly, a similar but more pronounced pattern of DEGs

was observed in the comparison of the pericarp effect (bare M− seed

vs. IND fruit) on M− seed germination and seedling growth

(Figure 6C; Supplementary Table 1). The number of DEGs at T1%

was similar to that detected in the M+ vs. IND comparison (2,041 vs.

1,938). The greatest differences were observed at T100% (3,228

DEGs) at the onset of pre-emergence growth. Here, the number

of upregulated DEGs in M− seeds increased 1.4-fold (to 1,220

DEGs), while the number of downregulated DEGs increased 1.9-

fold (to 2,008 DEGs). As seedlings progressed through root and

shoot growth, the pericarp imposed a total of 347 root-specific

DEGs at 72 hat, while shoot-specific DEGs were lower (64). By 240

hat, differences in shoot samples comprised four up- and four

downregulated DEGs, while 62 up- and 69 downregulated DEGs

were detected in the root tissues (Figure 6C; Supplementary

Table 1). Taken together, these results suggest the tendency

toward transcriptional “resetting” of seedling morphs mainly

during the post-germination pre-emergence growth phase.

In the ecologically relevant comparison (M+ seed vs. IND fruit),

shoot resetting occurred earlier (by 72 hat), and root resetting

occurred later (differences still evident at 240 hat). Comparison of

M+/IND DEG lists (Supplementary Dataset 1) between the T100%

(germinated diaspores) and the T1% (ungerminated diaspores) time

points revealed that about one-third of the DEGs are overlapping

and two-thirds are unique to either T100% or T1% (Figure 7A).

Comparison of the M+/IND and M−/IND DEG lists at T100%

revealed that while the majority of the DEGs are overlapping,

there is also a considerable number of DEGs unique to either M+/

IND or M−/IND (Figure 7A). For the ecologically relevant

comparison (M+/IND), the comparison between the T100% seed

and the 72-hat seedling state delivered root and shoot DEGs

common and unique for pre-emergence seedling growth

(Figure 7B). Comparison of M+/IND DEG lists during pre-

emergence seedling growth revealed that most of the DEGs at 72

hat are unique for root and shoot, a finding that strongly suggests

that the two compartments are distinct (Figure 7C). To investigate

the effect of the pericarp on the pre-emergence seedling growth at

M+/IND and M−/IND, DEG lists for root and shoot at 72 hat were

compared and delivered DEG lists representing pericarp-dependent

and pericarp-independent mechanisms (Figure 7B; Supplementary

Dataset 1). These comparative DEG lists (M+/IND vs. M−/IND)

contained for roots a total of 190 up- and 226 downregulated genes

and for shoots a total of 43 up- and 138 downregulated genes.

To gain insight into the processes differing during the transition

from germinated diaspores to early seedlings derived from M+, M−,

and IND, Gene Ontology (GO) term enrichment analysis of DEG
A

B

FIGURE 3

Diaspore germination and seedling growth phases for the
comparative transcriptome analysis. (A) Overall experimental design
for comparative RNA-seq analysis of diaspore germination and
seedling establishment. Time points were selected during
completion of germination (T1% and T100%; times of these are
indicated), early [72 hat (hours after transfer)], and late (240 hat)
seedling growth. Within-root and within-shoot tissue pairwise
comparisons were based on the effect of the seed morph (M+ seed
vs. bare M− seed), the effect of the pericarp (M− seed vs. IND fruit),
and the ecological dispersal unit (M+ seed vs. IND fruit). (B) Key
events and phases of seedling growth at the optimal temperature
(30°C) and time course analysis of chlorophyll accumulation during
cotyledon greening. Error bars = ± 1 SEM. N = 3, each with 10
replicate seedlings.
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lists was performed comparing M+ seeds versus IND fruits and M−

seeds versus IND for the T100% (germinated diaspores) and the 72

hat (root and shoot separately) stages (Figure 8; Supplementary

Figure 4, Supplementary Dataset 2). Broadly, selected identified GO

terms were categorized by key processes identified as differing

between seedlings originating from the different diaspores

(Figure 8; Supplementary Figure 4). For example, genes up in

roots of seedlings 72 hat derived from M+ or M− seeds compared

to IND diaspores were significantly enriched in GO terms related to

nitrates (e.g., nitrate assimilation), cell wall (e.g., cellulose catabolic

process), and transport (e.g., regulation of ion transport) (clusters 1

and 5). Interestingly, some cell wall and nitrate-related terms (e.g.,

cell wall pectin metabolic process and nitrate transport) were
Frontiers in Plant Science 07
enriched in genes more highly expressed in 72-hat seedlings

derived from IND compared to M+ and M− (clusters 8 and 5). A

pronounced effect of pericarp at the T100% stage was evident in the

enrichment of abiotic stress-related GO terms “response to

oxidative stress”, “response to salt stress”, and “anaerobic

respiration”. Terms identifying hormone signaling (e.g., ethylene,

auxin, gibberellin, and ABA) were also identified (Figure 8;

Supplementary Figure 4; Supplementary Dataset 2). Overall, it

was evident that pericarp presence at the diaspore stage was a

driver of differences in gene expression, with similar differences

evident when comparing M+ or M− seeds against IND diaspores.

However, some contrasts were more evident when comparing 72-

hat seedlings derived from M+ to IND (rather than M− to IND),
FIGURE 4

Comparative biomechanical analysis of Aethionema arabicum seedlings derived from M+ seeds, M− seeds, and IND fruits. (A) Fifteen-day-old
seedlings from germinated (0 hat) IND fruits (left panel) and bare M− seeds (right panel). * IND pericarps of germinated fruits (at 0 hat) were manually
split open to aid seedling growth. Note that seedlings derived from IND fruits often had bent lower hypocotyls and, in general, grew slower
compared to seedlings derived from M− seeds, which had straight hypocotyls. (B) Hypocotyl tensile test. (C) Hypocotyl breaking forces of 15-day-old
seedlings derived from IND fruits, bare M− seeds, and M+ seeds. Box plots with Tukey’s whiskers of hypocotyl breaking forces are presented from
force-displacement data obtained using N = 42 (M+), N = 38 (M−), and N = 15 (IND) seedlings. The hypocotyls show no significant difference in their
breaking force.
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suggesting seed morph-specific responses that were not dependent

on pericarp presence at imbibition, particularly evident in the

enrichment of GO terms “flavonol biosynthetic process” and

“anthocyanin-containing compound biosynthetic process”. The

pre-emergence seedling growth DEGs from these lists of enriched

GO categories (Figure 8; Supplementary Figure 4) and a

comparison to early seed germination and dormancy (Chandler

et al., 2024) are the focus of the following analysis into the resetting

of dimorphic expression patterns.
2.3 Resetting of dimorphic expression
patterns of hypoxia and hormone-
related genes

In earlier work, we identified morph-specific expression

patterns of hormone-related genes during seed and fruit

development (Arshad et al. , 2021) and dormancy and

germination of the dimorphic diaspores (Chandler et al., 2024).

This revealed the importance of ABA metabolism and signaling in

dimorphic diaspore development and germination, and key roles

for ABA and hypoxia in imposing pericarp-imposed dormancy in

IND fruits. Figure 9A shows that when IND fruits were compared to

M+ and M− seeds, the distinct expression patterns of hypoxia-
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responsive genes in seeds were reset during the transition from the

germination (T100%) to the early seedling (72 hat) phase. This was

evident for the hypoxia-regulated transcription factor (TF) genes,

such as AearNAC102 and AearERF71/73, and downstream genes,

such as the ethanolic fermentation enzyme gene AearADH1a

(Chandler et al., 2024). The Ae. arabicum genes presented in

Figure 9A were identified as part of the core hypoxia-responsive

gene list derived from hypoxia-treated Arabidopsis thaliana

seedlings (Christianson et al., 2009; Gasch et al., 2016; Lee and

Bailey-Serres, 2019), and the resetting of their expression patterns,

therefore, also indicates the absence of hypoxia once the M−

seedlings have emerged from the IND pericarp. Most genes

involved in ethylene biosynthesis, 1-aminocyclopropane-1-

carboxylic acid (ACC) oxidase (ACO) and ACC synthase (ACS),

and many genes encoding ethylene response factor (ERF) TFs also

exhibited resetting during pre-emergence seedling growth

(Figure 9A; Supplementary Figure 5A). However, for genes

encoding the ACC oxidases AearACO2 and AearACO4, the

ethylene receptor AearETR2, and several ERF TFs (AearERF2,

AearERF11, AearERF113/RAP2.6, and AearRAP2.11), distinct

transcript abundances were retained in 72-hat shoots or roots

(Supplementary Figure 5A). The A. thaliana homologs of these

ERF TFs are known to be involved in the control of seedling growth

by modulating ABA, ethylene, gibberellin, and auxin signaling (Kim
A

B D

C

FIGURE 5

Principal component analysis (PCA) of Aethionema arabicum seed and seedling RNA-seq samples. (A) PCA of RNA-seq samples obtained during M+

seed, M− seed, and IND fruit germination and seedling establishment. Colors indicate morph, while symbols indicate seed, root, or shoot tissue at 1%
germination (T1%), 100% germination (T100%), or 72 or 240 hours after transfer (hat) to seedling growth plates. (B) PCA of RNA-seq samples during
diaspore germination. (C) PCA of RNA-seq samples during seedling root growth at 72 and 240 hat. (D) PCA of RNA-seq samples during seedling
shoot growth at 72 and 240 hat.
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et al., 2012; Zhou et al., 2016; Lorrai et al., 2018; Zhu et al., 2020;

Templalexis et al., 2022). AtRAP2.11 is, in addition, known as a

major regulator of potassium and nitrate transporters in responses

to low-nutrient conditions (Kim et al., 2012; Meng et al., 2016;

Templalexis et al., 2022).

In contrast to ethylene-related genes, for all ABA-related

metabolism and signaling genes, as well as for the PYR/PYL/

RCAR-type ABA receptor genes, resetting of their expression was

complete in 72-hat seedlings (Figure 9B; Supplementary Figure 5B).

An exception was the ABA-responsive element (ABRE)-binding

protein/factor (ABF) AearAREB3b for which higher transcript

abundances prevailed in 72-hat M− seedling shoots, but this

difference disappeared in 240-hat seedlings (Supplementary

Figure 5B). Morph-specific expression patterns for ABA

biosynthesis [e.g., 9-cis-epoxycarotenoid dioxygenase (NCED)

genes] and ABF-type TFs, and ABA contents were a hallmark

during the dimorphic seed/fruit development (Lenser et al., 2018;
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Arshad et al., 2021) and in imbibed dimorphic diaspores (Chandler

et al., 2024). Differences in ABA relations were, therefore, most

important between dimorphic diaspores but became less important

between M+ and M− seedlings since they were reset during pre-

emergence seedling growth. In contrast to this, distinct expression

patterns for gibberellin (GA)-related genes prevailed in 72-hat

seedlings (Figure 9B; Supplementary Figure 6A). The transcript

abundances for the GA 3-oxidase (biosynthesis of bioactive GA)

gene AearGA3ox1 and the AearGID1b gene encoding a GA receptor

were higher in 72-hat M− seedling shoots derived from IND fruits

compared to M+ seedling shoots, suggesting that GA biosynthesis

and sensitivity differ between the morphs during early seedling

growth. Similarly, the transcript abundances of GASA (“GA-

stimulated Arabidopsis”) genes known to be stimulated by GA

and regulated by DELLA repressor proteins (Zhang and Wang,

2017) were higher in 72-hat M− seedling roots derived from IND

fruits compared to M+ seedling roots, while genes for DELLA
A B C

FIGURE 6

Number of differentially expressed genes (DEGs) identified during the developmental transition from germination to seedling establishment of
Aethionema arabicum. Total number of DEGs detected during the developmental transition from germination to seedling establishment. Shown are
DEGs upregulated (↑) and downregulated (↓) based on pairwise comparisons of (A) M+ seed vs. M− seed (M+/M−), (B) M+ seed vs. IND fruit (M+/IND),
and (C) M− seed vs. IND fruit (M+/IND). In all comparisons, the second treatment type was the baseline to which the first treatment was compared as
transcript abundance ratio, i.e., M+/M−, M+/IND, and M−/IND. The dashed line indicates a hypothetical trajectory of DEGs for the corresponding
tissues. DEG detection was performed using the pipeline-adjusted p-value cutoff set to 0.001 as previously described by Wilhelmsson et al. (2019).
Symbols indicate seed, root, or shoot tissue at 1% germination (T1%), 100% germination (T100%), or 72 or 240 hours after transfer (hat) to seedling
growth plates. For further details, see Supplementary Table 1 and Supplementary Dataset 1.
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repressor proteins did not differ between the morphs (Figure 9B;

Supplementary Figure 6A). In general, ABA has an inhibitory and

GA has a promoting role in the complex hormonal control of

seedling shoot and root growth (Ahammed et al., 2020). We

conclude from the Ae. arabicum results that for most genes,

resetting occurs during the post-germination pre-emergence

growth phase (T100% seeds to 72-hat seedlings) but also that

several ethylene and GA-related genes involved in hormonal

interactions are among the DEGs in 72-hat seedlings for which

resetting occurs later during seedling growth (Figure 7).

That Ae. arabicum shoot and root development changed during

pre-emergence seedling, which was also evident from the

chlorophyll accumulation (Figure 3), the DEG list comparison

(Figure 7D), and the shoot-specific induction of chlorophyll-

related genes (Supplementary Figure 7A). Interestingly, these

chlorophyll-related genes were DEGs in 72-hat shoots with lower

expression in M− seedlings derived from IND fruits. Ethylene, GA,

and ABA interact with auxin to regulate seedling growth differently

in shoots and roots (Belin et al., 2009; Hu et al., 2017; Ahammed

et al., 2020). Auxin/indole-3-acetic acid (Aux/IAA) proteins (IAAs)

repress auxin-inducible genes by inhibiting auxin response TFs

(ARFs). In Ae. arabicum, several ARFs and Aux/IAA proteins were

DEGs during late germination with lower (ARFs) and higher

(IAAs) transcript abundances in germinated IND fruits (T100%)

when compared with germinated M+ andM− seeds (Figure 10A and

Supplementary Figure 6B). With the exception of AearARF6, which

was more highly expressed in IND fruit-derived 72-hat and 240-hat

seedling shoots, these expression differences had disappeared in 72-

hat seedlings. The A. thaliana dormancy/auxin-associated protein is
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known to be involved in the auxin sensitivity of seedlings (Johnson

et al., 2015); its Ae. arabicum homolog was more highly expressed in

germinated IND fruits (Figure 10B). Small auxin-upregulated RNA

(SAUR) genes are auxin-responsive genes involved in cell

elongation growth and other processes (Stortenbeker and Bemer,

2019). An example in A. thaliana seeds is AtSAUR11, which

accumulates eightfold in the endosperm as compared to the

embryo (Dekkers et al., 2013). In general, the differential

expression of Ae. arabicum SAUR genes during late germination

(T100%) was reset in 72-hat seedlings (Figure 10B; Supplementary

Figure 6B). A notable exception was AearSAUR11 for which the

transcript abundance was high in germinated IND fruits (T100%)

and increased further >10-fold in 72-hat M− seedling shoots derived

from IND fruit as compared to M+ seedling shoots (Figure 10B).
2.4 Dimorphic expression of transporter
genes for water, auxin, nitrate,
and flavonoids

Polar auxin transport and auxin homeostasis are key to seedling

shoot and root growth and are facilitated by tightly regulated efflux

[PIN (PIN-FORMED proteins) and PILS (PIN-LIKES)] and influx

(AUX1) carriers, which coordinate cell type-specific asymmetric

subcellular auxin localization and local auxin gradients across tissues

(Belin et al., 2009; Hu et al., 2017; Yi et al., 2021; Bogaert et al., 2022;

Feraru et al., 2022; Nakabayashi et al., 2022; Waidmann et al., 2023).

Several auxin carriers including AearAUX1, AearABCG36

(Figure 10B), AearPILS5, and AearPILS6 (Figure 11A) were
A B

DC

FIGURE 7

Comparative analysis of Aethionema arabicum differentially expressed gene (DEG) lists presented as Venn diagrams. (A) Effects of germination time and
pericarp as comparisons of the list of M+/IND DEGs at T100% (blue circle) to either M+/IND at T1% (grey circle) or M−/IND at T100% (red circle). (B) Effect of pre-
emergence growth by comparisons of the list of M+/IND DEGs at T100% (blue circle) M+/IND 72-hat DEG lists of roots (brown circle) or shoots (green circle).
(C) Effect of shoot and root. (D) Effect of pericarp on pre-emergence seedling growth by comparing M+/IND 72-hat DEG lists with M−/IND 72-hat DEG lists
for roots (brown circle) and shoots (green circle). Seed, root, or shoot tissue at 1% germination (T1%), 100% germination (T100%), or 72 or 240 hours after
transfer (hat) to seedling growth plates was compared. For gene lists of overlapping and unique DEGs, see Supplementary Dataset 1.
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identified as DEGs during late germination (T100%), but their

expression difference was reset during seedling pre-emergence

growth. In contrast to these auxin transporters, AearPILS3, which

was also a DEG in germinated diaspores (T100%), remained as a DEG in

shoots at 72 hat (Figure 11A). AearPILS7 was not expressed during

diaspore germination, but it was induced afterward and identified as a

DEG in roots during pre-emergence seedling growth. The transcript

abundances for AearPILS7 were lower in 72-hat and 240-hat seedling

roots derived from germinated IND fruits as compared to seedling

roots derived from germinated M+ and M− seeds (Figure 11A). In A.

thaliana seedlings, AtPILS7 is involved in fine-tuning stress-responsive

root auxin signaling in response to phosphate availability and

regulation of phosphate transporter gene expression (Yi et al., 2021).

In phylogenies across the plant kingdom, the PILS protein sequences of

embryophytes plus green algae form a clade distinct from the PIN

proteins, and the seven A. thaliana and other embryophyte PILS
Frontiers in Plant Science 11
protein sequences are distributed over two PILS subclades 2 and 3

(Feraru et al., 2012; Bogaert et al., 2022). Figure 11B shows a family-

wide phylogenetic analysis of Brassicaceae PILS protein sequences with

the five identified Ae. arabicum protein sequences distributed across

the two subclades (one in subclade 2 and four in subclade 3). In

addition to PIN and PILS efflux carriers, which are specific for indole-

3-acetic acid (IAA) transport, ABCG36 is known to act as a plasma

membrane located exporter for the IAA precursor indole-3-butyric

acid (Geisler et al., 2017; Aryal et al., 2019; Nakabayashi et al., 2022).

Based on the AearABCG36 expression patterns, it is a germination

DEG that is reset during pre-emergence growth (Figure 10B).

Auxin and other hormones regulate the transition from

germination to seedling growth by affecting the expression patterns

of water and ion transporters (Yi et al., 2021; Tan et al., 2022;

Templalexis et al., 2022). This includes aquaporins, e.g., plasma

membrane intrinsic proteins (PIPs) and tonoplast intrinsic proteins
FIGURE 8

Gene Ontology (GO) term enrichment in differentially expressed gene (DEG) lists. GO terms were selected and assigned categories, and enrichment scores
[log(1/p-value)] were clustered hierarchically by 1-Pearson correlation using Morpheus (https://software.broadinstitute.org/morpheus/). GO terms
representative of each cluster are shown here, with all selected GO terms shown in Supplementary Figure 4, and full GO term enrichment p-values for all
DEG lists can be found in Supplementary Dataset 2. Blue indicates non-significantly enriched values (p > 0.05), with white representing the significant cutoff
(p = 0.05) and red indicating where GO terms are significantly enriched in the DEG lists (p < 0.05), saturated at p = 0.001. Hierarchical clustering was redone
with selected GO terms, and the original cluster was based on dendrogram cut Supplementary Figure 4 as indicated.
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A B

FIGURE 9

Comparative spatiotemporal analysis of transcript abundance patterns of selected Aethionema arabicum differentially expressed genes (DEGs).
(A) Hypoxia-responsive genes. (B) Abscisic acid (ABA) and gibberellin (GA)-related genes. M+ seeds, M− seeds, and IND fruits were imbibed in dH2O
under darkness at 9°C, sampled, and harvested at T1% and T100%. Diaspores that had completed germination (1-mm radicle protrusion) were
transferred (at 0 hat, hours after transfer) to vertical plates for the seedling growth assay at 30°C in continuous white light (for details, see Figure 2).
RNA-seq mean ± SEM values of three biological replicates are presented, and each replicate consisted of 90 seeds or tissue (root or shoot) from 12
seedlings. The pre-emergence growth phase leading from germinated diaspores (T100%) to seedlings at 72 and 240 hours after transfer (hat) is
shaded gray; seed–seedling transition RNA-seq values for roots (left panels) and shoots (right panels) are presented. AearPOC1/2 is the cumulative
sum of AearPOC1 plus AearPOC2 transcript abundances. Seed, root, or shoot tissue at 1% germination (T1%), 100% germination (T100%), or 72 or 240
hours after transfer (hat) to seedling growth plates was compared. For gene abbreviations and IDs, see Supplementary Table 2.
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(TIPs), transporting water, ammonia (NH3), and other solutes (Loqué

et al., 2005; Footitt et al., 2019; Hoai et al., 2020). Figure 12A shows that

the transcript abundances of AearPIP3A/2;7 and AearPIP1E/1;4 were

more highly expressed in IND fruits during late germination (T100%)

and remained higher in 72-hat seedling roots derived from IND fruits

as compared to seedling roots derived from M+ and M− seeds.

AearTIP1,4, for which the A. thaliana homolog is regulated by ABA

in seeds (Footitt et al., 2019), and AearTIP1/1,1 were reset during pre-
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emergence growth (Figure 12A). In contrast to this, expression of the

NH3 transporter genes AearTIP2;3a and AearTIP2;3b was higher in

IND fruits during late germination (T100%) and remained higher in 72-

hat seedling roots derived from IND fruits as compared to seedling

roots derived from M+ and M− seeds (Figure 12A). In A. thaliana

seedlings, root high-affinity nitrate (NO3
−) transporters such as NRT2

interact with polar auxin transport (Wang et al., 2023a).AearNTR2 and

AearNTR3.1were not expressed duringAe. arabicum germination, and
A B

FIGURE 10

Comparative spatiotemporal analysis of transcript abundance patterns of auxin-related Aethionema arabicum differentially expressed genes (DEGs).
(A) Auxin response factor (ARF) and auxin/indole-3-acetic acid (Aux/IAA) genes. (B) Auxin/dormancy-associated and small auxin-upregulated RNA
(SAUR) genes. RNA-seq mean ± SEM values of three biological replicates are presented; for details, see Figure 9 and main text. For gene
abbreviations and IDs, see Supplementary Table 2.
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their root-specific induction in 72-hat seedlings was lower in roots

derived from IND fruits (Figure 12B).

Nitrate and potassium transporter gene expression in A. thaliana

seedlings is mediated by auxin and the ERF TF RAP2.11 in responses

to low-nutrient conditions (Kim et al., 2012; Meng et al., 2016;

Templalexis et al., 2022). The expression patterns of AearRAP2.11

(Supplementary Figure 5A) and the transporters for nitrateAearNTR2

(Figure 12B) and potassium AearKUP3 (Supplementary Figure 7A)

showed reduced transcript abundances in 72-hat roots derived from
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IND fruits, which suggest a role of RAP2.11 in the regulation of

potassium and nitrate relations during pre-emergence seedling

growth. Key enzymes for nitrate assimilation include nitrate

reductase (NR) and nitrite reductase (NRI) for which the expression

is regulated by hormones and abiotic stresses (Tang et al., 2022). As for

the nitrate transporters, also the genes for nitrate assimilation enzymes

AearNR1, AearNR2, and AearNIR1 were not expressed during

germination, and their induction in 72-hat seedling roots was lower

in rootsderived fromINDfruits (Figure12B).This suggests thatnitrate
A

B

FIGURE 11

Comparative spatiotemporal analysis of transcript abundance patterns and phylogeny of PILS auxin transporter genes. (A) Expression patterns of Aethionema
arabicum PILS genes. RNA-seq mean ± SEM values of three biological replicates are presented; for details, see Figure 9. (B) Phylogenetic tree of the
predicted amino acid sequences of Brassicaceae PILS (PIN-FORMED-LIKES) auxin efflux carrier. Known and putative amino acid PILS sequences were aligned
using ClustalW, and Neighbor-Joining trees were built as described in the Materials and Methods. Naming of PILS sequences was as follows: species as four-
letter code (Brra, Brassica rapa; Brol, Brassica oleracea; Dist, Diptychocarpus strictus; Isti, Isatis tinctoria; Lesa, Lepidium sativum; Mype, Myagrum
perfoliatum), gene identifier in brackets, and naming based on highest sequence similarity with the Arabidopsis thaliana PILS sequences (in blue). For
Aethionema arabicum PILS gene (in red) identifier, see Supplementary Table 2. Species selection was based on Brassicaceae phylogeny in which Aethionema
is the sister to all Brassicaceae, Arabidopsis and Lepidium represent core Brassicaceae lineage I, the two Brassica species represent the lineage II
Brassicaceae, and Isatis and Myagrum represent lineage II Isatideae (Franzke et al., 2011).
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transport and assimilation differ in 72-hat roots of seedlings derived

from IND fruits and M+ seeds and that instead of resetting, a distinct

reprogramming occurred.

The dimorphic expression patterns of genes encoding enzymes

of the flavonoid biosynthesis pathway and proanthocyanidin (PA)

accumulation are examples of root-specificDEGsduringAe. arabicum

pre-emergence growth at 72 hat for which the transcript abundances

were higher in seedlings derived from M+ seeds as compared to

seedlings derived from M− seeds or IND fruits (Figure 13). In A.

thaliana,mutations inmanyof theflavonoidbiosynthetic genes aswell

as in genes of the MYB-bHLH-WDR (MBW) protein complex
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regulating flavonoid biosynthesis lead to “transparent testa (tt)”

mutant phenotypes with reduced seed dormancy (Lepiniec et al.,

2006; Macgregor et al., 2015; Xu et al., 2015). A. thaliana TT19

encodes a glutathione-S-transferase (GST)-like protein that

functions as a carrier to transport anthocyanin and PA precursors

and is involved in the accumulation of PAs in the seed coat (Kitamura

et al., 2010; Sun et al., 2012). The AearGSTF12/TT19 transcript

abundances during seed germination were high in IND fruits, while

there was no expression during M+ and M− seed germination

(Figure 13A). This expression pattern changed during seedling pre-

emergence growth associated with the induction of the flavonoid
A B

FIGURE 12

Comparative spatiotemporal analysis of transcript abundance patterns of Aethionema arabicum transporter and enzyme differentially expressed
genes (DEGs). (A) Water and ion transporter genes. (B) Nitrate transporter and enzyme genes. RNA-seq mean ± SEM values of three biological
replicates are presented; for details, see Figure 9 and main text. For gene abbreviations and IDs, see Supplementary Table 2.
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biosynthetic pathway enzymes, which led to higher expression in 72-

hat roots of seedlings derived from M+ seeds.

The induction of the flavonoid biosynthesis pathway (Figure 13B)

genes by theMBW complex was associated with enhanced expression

of the WDR protein AearTTG1 (Figure 13C). Its expression pattern
Frontiers in Plant Science 16
during germination supports a role in the enhanced expression of

AearGSTF12/TT19 in IND fruits, but it does not explain the higher

expression of AearGSTF12/TT19 and the flavonoid biosynthesis

pathway enzymes in M+ seed-derived seedling roots at 72 hat

(Figure 13A). No bHLH and no MYB TF with enhanced expression
A B

C

FIGURE 13

Comparative spatiotemporal analysis of transcript abundance patterns of Aethionema arabicum flavonoid biosynthesis pathway genes. (A) Flavonoid
biosynthesis enzymes and the GSTF12/TT19 transporter gene for proanthocyanidin precursor molecules. RNA-seq mean ± SEM values of three biological
replicates are presented; for details, see Figure 9 and main text. (B) Simplified scheme of the flavonoid biosynthesis pathway. (C) Transcriptional control of
the flavonoid biosynthesis pathway by MYB-bHLH-WDR complexes. For abbreviations, see main text. For gene abbreviations and IDs, see Supplementary
Table 2.
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inM+ seed-derived seedling roots at 72 hat were identified. SeveralAe.

arabicum MYB TFs were identified as DEGs during late seed

germination (T100%) with higher expression in IND fruits compared

to imbibed M+ and M− seeds, but for all of them, resetting occurred

during pre-emergence growth (Supplementary Figures 8A, B).Among
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these DEGs is MYB30, which is a key TF in A. thaliana seeds and

seedlings integrating ABA, ethylene, and reactive oxygen species

(ROS) signaling (Mabuchi et al., 2018; Khedia et al., 2019; Maki

et al., 2019; Nie et al., 2022; Zhang et al., 2023). Other DEGs are

presented and discussed in Supplementary Figure 7B.
A B

FIGURE 14

Comparative spatiotemporal analysis of transcript abundance patterns of Aethionema arabicum differentially expressed genes (DEGs). (A) Seed–
seedling transition genes. (B) NAC and WRKY transcription factor (TF) genes. RNA-seq mean ± SEM values of three biological replicates are
presented; for details, see Figure 9 and main text. For gene abbreviations and IDs, see Supplementary Table 2.
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2.5 Resetting of maturation and dormancy
genes, TFs, and seed–seedling
transition markers

Dormancy and maturation gene expression usually decline

during the germination of non-dormant seeds. In A. thaliana and

other species, the transcript abundances for the Delay of

Germination 1 (DOG1) and Seed Dormancy 4-Like (SDR4L)

decline in imbibed non-dormant seeds (Graeber et al., 2014; Wu

et al., 2022), while Dormancy-associated protein Like 1 (DLY1) and

Non-Yellowing 1/Stay-Green 1 (NYE1/SGR1) exhibit more complex

expression patterns during seed imbibition (Rae et al., 2014;

Wilhelmsson et al., 2019). The transcript abundances of

AearDOG1, AearSDR4L, Aear DLY1, and Aear NYE1/SGR1 were

higher in imbibed IND fruits as compared to imbibed M+ and M−

seeds and declined for AearDOG1 and AearSDR4L (Figure 14A).

The observed expression difference during germination for all four

genes disappeared during pre-emergence growth, and this resetting

led to roughly equal transcript abundances in 72-hat seedlings.

Germin (GER) and germin-like proteins are expressed in seeds, but

their functions are largely unknown (Membre et al., 2000). In Ae.

arabicum, AearGER3 is a DEG during late germination, but not in

seedlings, where it is expressed in a shoot-specific manner

(Supplementary Figure 9A). Late embryogenesis-abundant (LEA)

proteins accumulate late in seed development and play major roles in

desiccation tolerance (Hundertmark and Hincha, 2008; Zinsmeister

et al., 2020; Smolikova et al., 2022). Most genes encoding LEA proteins

are known to be ABA-induced, and their transcript abundances decline

during seed germination. Consistent with the ABA inducibility and

higher ABA contents in IND fruits (Chandler et al., 2024), the transcript

abundances of Ae. arabicum LEA genes were higher in imbibed IND

fruits as compared to M+ and M− seeds (Supplementary Figure 9).

Expressionpatternsof specificLEAandHeatShockProtein (HSP)genes

are presented in detail in Supplementary Figure 9.

For most Ae. arabicum TFs, which were identified as DEGs

between IND fruit and M+ seed diaspores during the germination

phase, resetting of the expression pattern was observed during the

post-germination pre-emergence phase (Supplementary Figure 8).

Examples where the expression differences during late germination

(T100%) persisted or were even intensified into the seedling phase

include the auxin and ethylene-related TF genes AearARF6 and

AearERF113 presented earlier (Figure 10A; Supplementary

Figure 5A). Resetting during the post-germination pre-emergence

phase was also observed for NAC (NAM, ATAF, and CUC) TFs

involved in hypoxia responses (AearNAC102, Figure 9A) and for

AearNAC40 and AearNAC60 (Figure 14A), which, in A. thaliana,

are functionally redundant in the inhibition of dormancy (Song

et al., 2022). Homologs of AearNAC3/59 (Figure 14B) and

AearNAC87 (Figure 14B) are known for being involved in the

primary root growth of A. thaliana seedlings, for being expressed in

the endosperm during germination (Dekkers et al., 2013), and for

controlling programmed cell death during root growth (Huysmans

et al., 2018). In contrast to these NAC TFs, higher transcript

abundances in IND fruit diaspores during germination were

maintained for AearNAC2 and AearNAC32, and this difference

was further intensified at the 72-hat seedling state (Figure 14B). In
Frontiers in Plant Science 18
A. thaliana, NAC2 has a role in integrating environmental and

hormone (auxin and ethylene) stimuli during seedling root growth

(He et al., 2005) and integration of auxin signaling (Park et al.,

2011), and NAC32 has a role in upstream TF in the control of

seedling root elongation and ROS signaling (Maki et al., 2019).

The WRKY9 andWRKY40 TFs are known as central repressors

of ABA signaling during A. thaliana seed germination and seedling

growth (Wang et al., 2021) and of ROS and stress signaling (Shin

and Schachtman, 2004; Van Aken et al., 2013; Arjmand et al., 2023).

In Ae. arabicum, AearWRKY9 and AearWRKY40 were identified as

DEGs more highly expressed in germinating IND fruits as

compared to M+ seeds, and this expression pattern was retained

in 72-hat seedlings (Figure 14B, Supplementary Figure 8C).

WRKY51 and WRKY56 belong to a subgroup of WRKY TFs

involved in controlling auxin transport during A. thaliana root

development (Templalexis et al., 2022). AearWRKY51 and

AearWRKY56 are DEGs with higher expression in IND fruits

during the germination of the Ae. arabicum dimorphic diaspores

(Figure 14A, Supplementary Figure 8C). While resetting of this

expression difference during pre-emergence growth was observed

for AearWRKY51, it was retained and further intensified for

AearWRKY56 in 72-hat seedling roots (Figure 14B). Expression

patterns of other TFs including homeobox TFs controlling seed-to-

seedling phase transition node regulators and the plant-specific AT-

rich sequence zinc-binding protein (PLATZ) TFs are presented in

detail in Supplementary Figure 8. Taken together, both resetting

and intensification of differential expression patterns were observed

during the seed-to-seedling transition for TFs from several distinct

gene families. For the TFs that were identified as DEGs at the

seedling stage expression, the transcript abundances were always

higher in seedlings derived from IND fruits and lower in seedlings

derived from M+ seeds.
2.6 Resetting of cell wall remodeling
protein gene expression during seed–
seedling transition

Cell expansion growth is driven by water uptake, which is

restricted unless cell wall loosening is achieved by the action of cell

wall remodeling proteins (CWRPs) or apoplastic ROS (Finch-

Savage and Leubner-Metzger, 2006; Steinbrecher and Leubner-

Metzger, 2017; 2018). Expansins are CWRPs that disrupt non-

covalent bonds that tether cell wall matrix polysaccharides to the

surface of cellulose microfibrils or each other. Expansins are

required for endosperm weakening and embryo elongation during

germination and seedling growth (Voegele et al., 2011; Graeber

et al., 2014; Boron et al., 2015; Cosgrove, 2016; Ilias et al., 2019). In

agreement with the slower germination of Ae. arabicum IND fruits

as compared to M+ seeds, the expression of AearEXPA2 and most

other expansins was lower in imbibed IND fruits (Figure 15A;

Supplementary Figure 10A). Resetting during post-germination

pre-emergence growth was observed for most expansins, which

were DEGs during germination, but other expansins also exhibited

differential expression in seedling roots. Xyloglucan remodeling

enzymes involved in seed germination include a-xylosidase (aXYL)
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(Shigeyama et al., 2016), b-xylosidase (bXYL) (Arsovski et al.,

2009), and xyloglucan endotransglucosylase/hydrolase (XTH)

(Voegele et al., 2011; Endo et al., 2012; Graeber et al., 2014;

Steinbrecher and Leubner-Metzger, 2017; Holloway et al., 2021).

In agreement with roles in imbibed Ae. arabicum dimorphic

diaspores, AearaXYL1, AearbXYL1, and AearbXYL2 are DEGs

during germination with lower expression in IND fruits

(Figure 15A). Resetting during post-germination pre-emergence
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growth leads to roughly similar expression in seedlings derived

from germinated IND fruits and M+ seeds.

Earlier work by Chandler et al. (2024) demonstrated that during

early germination (until T1%), the cumulative expression of all

XTHs in imbibed Ae. arabicum dimorphic diaspores is lower in

IND fruits compared to M+ and M− seeds. Interestingly, the

transcript abundances of many AearXTH genes increased in IND

fruits during the late germination (until T100%), and these were,
A B

FIGURE 15

Comparative spatiotemporal analysis of transcript abundance patterns of Aethionema arabicum differentially expressed genes (DEGs) encoding cell
wall remodeling proteins. (A) Expansin and xylosidase genes. (B) Xyloglucan endotransglucosylase/hydrolase (XTH) and b-galactosidase genes. RNA-
seq mean ± SEM values of three biological replicates are presented; for details, see Figure 9 and main text. For gene abbreviations and IDs, see
Supplementary Table 2.
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therefore, identified as germination DEGs (Figure 15B;

Supplementary Figure 10A). In general, resetting during post-

germination pre-emergence growth was observed for XTH genes,

but AearXTH12, AearXTH23, AearXTH31, and AearXTH26 were

DEGs during seedling growth, and their transcript abundances were

lower in 72-hat seedling roots derived from germinated IND fruits

compared to seedling roots derived from M+ or M− seeds. In A.

thaliana seedlings, AtXTH23 is known to be involved in root

development and adaptation to salt stress (Xu et al., 2020), gene

induction is induced by touch and darkness (Lee et al., 2005), and

AtXTH12 and AtXTH26 exhibit only endotransglucosylase activity

(Maris et al., 2010). In contrast to AearXTH2, AearXTH23,

AearXTH26, and AearXTH31, the transcript abundances of

AearXTH24 were higher in 72-hat seedling roots derived from

germinated IND fruits (Figure 15B; Supplementary Figure 10A). In

A. thaliana seedlings, overexpression of AtXTH24 is known for its

role in promoting hypocotyl growth of etiolated seedlings (Dhar

et al., 2022). In A. thaliana seedlings, AtXTH6 is known to be

regulated by ABA and auxins (Overvoorde et al., 2005; Huang et al.,

2007). In Ae. arabicum seedlings, AearXTH6 is specifically

expressed in seedling shoots and lower in 72-hat and 240-hat

seedling shoots derived from germinated IND fruits (Figure 15B).

b-Galactosidases have b-1,4-galactose in xyloglucan side chains

as targets (Steinbrecher and Leubner-Metzger, 2017; Moneo-

Sanchez et al., 2019; Steinbrecher and Leubner-Metzger, 2022). In

Ae. arabicum, resetting during post-germination pre-emergence

growth was not observed for AearbGAL4, and the expression

remained higher in 72-hat seedlings derived from IND fruits

(Figure 15B). In A. thaliana seedlings, bGAL4’s involvement in

cell wall changes is associated with the cessation of cell elongation

and increased rigidity (Moneo-Sánchez et al., 2016). b-
Galactosidases also have b-1,4-galactan in cell wall pectin

(rhamnogalacturonan) as a target. Pectins are complex cell wall

matrix polysaccharides characterized by a-1,4-linked galacturonic

acid and a dynamic degree of methylesterification, and b-
galactosidase and various other cell wall remodeling enzymes

target pectin (Cao, 2012; Daher and Braybrook, 2015; Scheler

et al., 2015). Their expression patterns in Ae. arabicum are

presented in detail in Supplementary Figure 10. Taken together,

CWRP gene expression in the dimorphic diaspore model Ae.

arabicum revealed either resetting or distinct expression patterns

(as DEG in seedlings) during the seed–seedling transition.
3 Discussion

3.1 The dimorphic diaspore syndrome and
distinct seedling responses to
abiotic stresses

The hormonal interactions during seed germination/dormancy

(GA-ABA antagonism dominant) and early seedling growth (auxin-

ethylene interactions dominant) differ fundamentally (Finch-

Savage and Leubner-Metzger, 2006; Linkies and Leubner-Metzger,

2012; Hu et al., 2017; Ahammed et al., 2020; Smolikova et al., 2022;
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Wang et al., 2023b). Seedlings during pre-emergence growth may

encounter increasing post-germination stress in the soil

environment, and consequently, seeds/seedlings often fail to

establish during this stage (Moles and Westoby, 2006; Finch-

Savage and Bassel, 2016; Gardarin et al., 2016). It is clear from

many dimorphic diaspore systems that the germination/dormancy

traits of the two distinct morphs differ in their responses to

environmental cues including abiotic stresses and that the

underpinning molecular (hormonal, transcriptomic, and

epigenetic) mechanisms differ (Xu et al., 2011; Zhou et al., 2015;

Lu et al., 2015a, b; Lenser et al., 2016; Wilhelmsson et al., 2019;

Arshad et al., 2021; Gianella et al., 2021; Zhang et al., 2021; Cao

et al., 2022; Loades et al., 2023; Song et al., 2023; Chandler et al.,

2024). Whether or not seedlings derived from dimorphic diaspores

differ in their molecular responses has been far less investigated.

Very little is known about if and when these differences disappear

by resetting during seedling growth and whether or not these

seedling differences were already induced during the dimorphic

seed development on the mother plant and then retained

during imbibition.

Comparative analysis of seedlings derived from Atriplex and

Suaeda dimorphic seeds that were distinct in seed color revealed

that seedlings were also distinct in responses to salinity and certain

molecular features (Xu et al., 2011; Zhang et al., 2021; Cao et al.,

2022; Song et al., 2023). Among the enriched functional gene

categories that differed in the seedling transcriptomes were genes

encoding inorganic ion transport, hormone metabolism, transport

and signaling, TFs and signal transduction components, CWRPs,

lipid metabolism, redox, and osmotic homeostasis. In these systems,

dimorphic seeds differing in color, size, and dormancy were

dispersed by pod shattering from dehiscent fruits. A conclusion

from these publications is that the observed differences in salinity

tolerance of the dimorphic seedlings were already initiated during

seed development on the mother plant. Compared to this, the

situation in the Ae. arabicum dimorphic diaspore system is different

in that seedlings derived from either M+ or bare M− seeds did not

show any obvious differences in a range of constant temperature or

osmotic stress (Figure 2; Supplementary Figures 3, 4). What is

different in the Ae. arabicum M+ seed and the IND fruit morph

system is the presence of the pericarp, which is known to impose

coat dormancy and delay the germination of imbibed IND fruits

(Lenser et al., 2016; Chandler et al., 2024).

Pericarp removal experiments with monocarpic species

demonstrated that beyond seed traits, the pericarp can also affect

seedling establishment and performance (Hu et al., 2009; Mamut

et al., 2014; Zhou et al., 2015; Lu et al., 2015b; Lu et al., 2017b; a;

Ignatz et al., 2019). Interestingly, in Ae. arabicum, the pericarp

restraint led to different growth of hypocotyls derived from imbibed

IND fruits as compared to M+ and M− seedlings derived from M+

and bare M− seeds (Figure 4). This pericarp effect on pre-emergence

seedling growth delivered a 5–20-fold higher number of DEGs from

the M+/IND and M−/IND comparisons (Figures 7, 8) as compared

to the 23 DEGs obtained in the M+/M− seedling comparison. The

pericarp, therefore, plays an important role in the phenotypic

plasticity of the Ae. arabicum dimorphic diaspores and has a
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significant downstream effect on the root and shoot transcriptomes

of M− seedlings derived from IND fruits. Details about the

identified Ae. arabicum DEGs were already described in the

Results section. The following discussion, therefore, focuses on

general aspects and selected major functional DEG categories of

the transcriptome resetting process.
3.2 Transcriptome resetting during pre-
emergence growth and DEG persistence
in seedlings

For the majority of the 1,900–2,000 M+/IND and M−/IND

DEGs at the completion of germination (T100%), resetting

occurred during pre-emergence seedling growth and is completed

in 72-hat seedlings (Figures 7, 8). Examples of this include all

hypoxia-responsive and many hormone-related genes (see Section

2.3), as well as dormancy, maturation, LEA, and HSP genes (see

Section 2.5). However, a considerable number of ethylene, GA, and

auxin-related genes either persisted as a DEG in 72-hat seedling or

developed into a DEG during pre-emergence seedling growth

(T100% to 72-hat seedling roots or shoots). This includes

enhanced transcript expression for the ethylene-forming enzyme

gene AearACO2 in 72-hat seedlings derived from IND fruits

(Supplementary Figure 5), GA-related genes including encoding

the bioactive GA4-forming enzyme AearGA3ox1, the GA receptor

AearGID1b (Figure 9B), and several auxin-related genes including

AearSAUR11 (Figure 10B). Ethylene, GA, and ABA interact with

auxin to regulate seedling growth differently in shoots and roots

(Belin et al., 2009; Hu et al., 2017; Ahammed et al., 2020; Wang

et al., 2023b). ACO2 is known for its role in counteracting ABA

effects in seeds (Linkies et al., 2009; Linkies and Leubner-Metzger,

2012) and in promoting apical hook formation in seedling shoots

(Wang et al., 2023b), and ethylene mediates the ABA inhibition on

seedling root growth (Ahammed et al., 2020). Flavonoid

biosynthesis pathway genes (Figure 13) exhibited a distinct

expression pattern from most other DEGs with a root-specific

upregulation in 72-hat M+ seedlings derived from germinated M+

seeds. The role of flavonoids in M+ seedlings as compared to M−

seedlings and the distinct regulation by MBW protein complexes

remain to be elucidated by future research.

ERF and ARF TFs are involved in the control of seedling growth

by modulating ABA, ethylene, gibberellin, and auxin signaling (Kim

et al., 2012; Zhou et al., 2016; Lorrai et al., 2018; Zhu et al., 2020;

Templalexis et al., 2022). In agreement with the role of distinct

hormonal signaling in M+ and M− Ae. arabicum seedlings,

transcripts for AearARF6 and several ERF TFs are DEGs in 72-

hat seedling roots or shoots (Figure 9; Supplementary Figure 5).

ARF and ERF TFs were also identified as DEGs in seedlings derived

from the dimorphic (black versus brown) seeds of Suaeda

aralocaspica (Cao et al., 2022). Resetting for the majority of the

Ae. arabicum TF DEGs during pre-emergence seedling growth was

completed at 72 hat (Figure 14; Supplementary Figure 8). Notable

exceptions were two NAC (AearNAC2 and AearNAC32) and two

WRKY (AearWRKY9 and AearWRKY40) TF genes for which

higher transcript abundances in IND fruit diaspores during
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germination persisted at the 72-hat seedling state (Figure 14B). In

A. thaliana seedling growth, these TFs are involved in integrating

environmental and hormonal stimuli (see Section 2.5). Taken

together, transcriptomes of M+ and M− Ae. arabicum seedlings

derived from germinated M+ seeds and IND fruits differ in the

expression of genes involved in ethylene and GA metabolism,

hormone signaling, and for various TFs with roles in integrating

environmental and hormonal stimuli.
3.3 Dimorphic expression patterns of
auxin/ion transporter and CWRP genes
in seedlings

Precise auxin distribution patterns and polar transport are

required for the control of root and hypocotyl growth and

development (Teale et al., 2006; Hu et al., 2017; Wang et al.,

2023b). The PILS auxin carriers are known to be involved in

intracellular auxin homeostasis (Feraru et al., 2012, 2019; Bogaert

et al., 2022; Feraru et al., 2022). In Ae. arabicum, several auxin

carriers were DEGs during late germination (T100%), but their

expression difference was reset during seedling pre-emergence

growth (Figures 9, 10). AearPILS3, in addition, remained a DEG

at 72 hat where it was more highly expressed only in seedling shoots

derived from IND fruits. AearPILS7 became a root-specific DEG at

72 and 240 hat, where it was more highly expressed only in seedling

roots derived from IND fruits. Seedlings derived from IND fruits

differed from M+ and M− seedlings derived from germinated M+

seeds and bare M− seeds, respectively, in that their lower hypocotyls

were often bent and not straight and that their hypocotyl and root

growth was slower (Figure 4). We speculate that differences in auxin

biosynthesis, signaling, and transport play a major role in this

altered seedling growth phenotype. This phenotype was, however,

not connected with a difference in hypocotyl mechanics (fracture

force) of 15-day-old Ae. arabicum seedlings (Figure 4). Microtensile

measurements of A. thaliana seedlings (Saxe et al., 2016)

demonstrated that hypocotyls differed mechanically between early

(day 4) and later (day 5–7) seedlings, but there were no differences

among the later seedlings (Saxe et al., 2016). It seems, therefore, that

despite the slower growth and the bent hypocotyls of IND fruit-

derived Ae. arabicum seedlings, possible mechanical differences

between pre-emergence (72 hat) have already disappeared in later

(>240 hat) seedlings.

Downstream of the hormonal regulation are distinct expression

patterns in seedlings derived from IND fruits for water and ion

transporters (Figure 12) potentially affecting the turgor pressure

and for CWRP genes (Figure 15) potentially affecting the cell wall

extensibility. The rapid and uniform seedling growth depends on

cell expansion, which requires cell wall loosening by the action of

CWRPs or apoplastic ROS (Finch-Savage and Leubner-Metzger,

2006; Steinbrecher and Leubner-Metzger, 2017; 2018). Among the

CWRP DEGs in Ae. arabicum seedlings were genes encoding

enzymes that target xyloglucan (bGAL4 and XTHs) and pectin

(Figure 15, Supplementary Figure 10). AearXTH12, AearXTH23,

and AearXTH6 were less expressed in 72-hat and 240-hat seedlings

derived from IND fruits as compared to M+ and M− seedlings
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derived from germinated M+ and M− seeds. XTHs are known to

affect seedling vigor (Ducatti et al., 2022) and hypocotyl growth

(Miedes et al., 2013; Dhar et al., 2022), and AtXTH6 is known to be

regulated by ABA and auxins in seedlings (Overvoorde et al., 2005;

Huang et al., 2007). Morph-specific differential expression of other

xyloglucan remodeling enzymes was observed during Ae. arabicum

fruit and seed development (Steinbrecher and Leubner-Metzger,

2022), dimorphic diaspore germination (Chandler et al., 2024), and

dimorphic seedling growth (this work). CWRP gene expression in

the dimorphic diaspore model Ae. arabicum, therefore, revealed

either resetting or distinct expression patterns (as DEG in seedlings)

during seed–seedling transition. Taken together, we conclude that

the transcriptomes of seedlings derived from the dimorphic

diaspores, M+ seeds and IND fruits, undergo transcriptional

resetting during the post-germination pre-emergence growth

transition phase from germinated diaspores to growing seedlings.
4 Materials and methods

4.1 Plant material and germination assays

Plants of Ae. arabicum (L.) Andrz. ex DC. were grown from

accessions TUR ES1020 (from Turkey) as described by Chandler

et al. (2024). Mature M+ seeds and IND fruits were harvested,

further dried over silica gel for 1 week, and stored for a few months

at −20°C in air-tight containers. For germination assays, dry mature

seeds (M+ or M−) or IND fruits were placed in 3-cm Petri dishes

containing two layers of filter paper, 3 mL deionized water (dH2O),

and 0.1% Plant Preservative Mixture (Plant Cell Technology,

Washington, DC, USA). Temperature response profiles

(Supplementary Figure 1) were obtained by incubating plates on a

GRD1-LH temperature gradient plate device (Grant Instruments

Ltd., Cambridge, UK). Subsequent germination assays were

conducted by incubating plates in MLR-350 Versatile

Environmental Test Chambers (Sanyo-Panasonic, Bracknell, UK)

at the indicated imbibition temperature as described by Chandler

et al. (2024). Seed germination, scored as radicle emergence, of three

biological replicates of 30 seeds or fruits was analyzed.
4.2 Seedling growth assays

Seedling growth assays were conducted using just-germinated

seeds (1-mm radicle protrusion visible; obtained from surface-

sterilized seeds germinated in darkness at 9°C), which were

selected for transfer to 12 cm × 12 cm plates containing media

based on 1-mm protrusion of the radicle. As medium autoclaved

1% (w/v) agar in 1/10 Murashige and Skoog (MS) basal medium

(M5519, Sigma, Darmstadt, Germany) was used. For the seedling

growth assays, plates were incubated vertically in constant white

light (170 µmol·m−2·s−1) in MLR-350 Versatile Environmental Test

Chambers (Sanyo-Panasonic, Bracknell, UK) at a constant

temperature, as indicated (Figure 2; Supplementary Figure 2). For

seedling growth assays during osmotic stress (Supplementary

Figure 3), water potentials were lowered using high-molecular-
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weight polyethylene glycol (PEG6000; 26603.293, VWR, Radnor,

PA, USA) using an overlay method (Van Der Weele et al., 2000;

Verslues and Bray, 2004). Seedling growth assay constant

temperatures were 14°C for osmotic stress, and temperatures for

the thermal stress experiments were between 14°C and 35°C.
4.3 Biochemical and
biomechanical analyses

The chlorophyll content of seedlings grown horizontally at 30°C

was determined after extracting pigments from leaf tissues

homogenized in methanol at room temperature for 15 min while

shaking at 1,000 rpm on a thermomixer (S8012-0000, Starlab,

Milton Keynes, UK). The obtained extracts were centrifuged for 5

min at 14,000 g. The absorbance of the supernatants was

determined at 750 nm, 665 nm, and 652 nm using a microplate

reader (Spark® 10M, Tecan, Zürich, Switzerland) and subsequently

used to calculate chlorophyll contents (Porra et al., 1989). For the

biomechanical analyses (Steinbrecher and Leubner-Metzger, 2017),

just-germinated Ae. arabicum seeds (M+ and M−) and IND fruits

were transferred to agar plates as described above and grown for 15

days under constant white light at 30°C. IND fruits were manually

split open just after the completion of germination (radicle

protruding the pericarp) at 0 hat. To conduct biomechanical

analyses of hypocotyls, seedlings were clamped, leaving a 7-mm

gap between the jaws of a single-column tensile testing machine

(Zwick Roell ZwickiLine Z0.5, Ulm, Germany). A constant speed

for separation was set at 5 mm/min. Force-displacement data were

obtained, and hypocotyl breaking forces were calculated (Figure 4).
4.4 RNA extraction for RNA-seq
transcriptome analysis

A sampling of imbibed M+ seeds, M− seeds, and IND fruits for

molecular analyses was described by Chandler et al. (2024). Three

biological replicates of samples each corresponding to 20-mg dry

weight of seed material were pulverized in liquid N2 using mortar

and pestle. Extraction of total RNA was performed as described by

Graeber et al. (2011). Sampling and RNA extraction were

performed of root and shoot tissue from seedlings grown at 30°C

(grown from pre-germinated seeds at 9°C in darkness). Tissue was

homogenized at 6,500 rpm using a Precellys 24 (Bertin Instruments,

CNIM Group, Paris, France). Seed and shoot total RNA was

isolated using a protocol modified by Chang et al. (1993). After

th e add i t i on o f RNA ex t r a c t i on bu ff e r [2% (w/v )

hexadecyltrimethylammonium bromide (CTAB), 2% (w/v)

polyvinylpolypyrrolidone (PVP), 100 mM Tris-HCl pH 8.0, 25

mM ethylenediaminetetraacetic acid (EDTA), 2 M NaCl, and 2%

(v/v) b-mercaptoethanol], samples were incubated at 65°C for 10

min with intermittent vortexing. Chloroform:isoamylalcohol (24:1)

extractions were repeated three times. After the addition of 10 M

LiCl to a final concentration of 2 M, RNA was precipitated

overnight at 4°C and then dissolved in NaCl-Tris-EDTA (STE)
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buffer [1 M NaCl, 0.5% (w/v) sodium dodecyl sulfate (SDS), 10 mM

Tris-HCl pH 8.0, and 1 mM EDTA]. Three further chloroform:

isoamylalcohol (24:1) extractions were then performed before

precipitation in 100% (v/v) ethanol overnight at −80°C. Samples

were then centrifuged for 20 min at 4°C. After the removal of the

aqueous phase, the RNA pellets were washed with 70% (v/v)

ethanol. Samples were centrifuged for 20 min, the ethanol was

carefully removed, and the RNA was subsequently dissolved in

RNase-free water. Genomic DNA was removed by DNase-I

(QIAGEN, Valencia, CA, USA) digestion in solution, followed by

additional purification using columns (QIAGEN RNeasy Kit).

Shoot tissue RNA was isolated using the RNeasy Plant Mini Kit

(QIAGEN) and manufacturer’s instructions. RNA quantity and

purity were determined using a NanoDrop™ spectrophotometer

(ND-1000, ThermoScientific™, Wilmington, DE, USA) and an

Agilent 2100 Bioanalyzer with the RNA 6000 Nano Kit (Agilent

Technologies, Santa Clara, CA, USA) using the 2100 Expert

Software to calculate RNA Integrity Number (RIN) values.
4.5 Analysis of RNA-seq transcriptome data

Transcriptome assembly, data trimming, filtering, read

mapping, feature counting, and DEG detection were performed

using the pipeline previously described by Wilhelmsson et al.

(2019). PCA was performed using R (R Core Team, 2021) and

the Bioconductor package DESeq2 (Love et al., 2014) and plotPCA

on log(x + 1)-transformed RPKM values with non-zero values in at

least one sample. GO term enrichment in DEG lists was calculated

with R package topGO using the elim method with Fisher’s exact

test (Alexa and Rahnenfuhrer, 2021). Gene identifiers and symbols

are according to earlier publications of the Ae. arabicum genome

(version 2.5) and transcriptome (Wilhelmsson et al., 2019; Arshad

et al., 2021; Chandler et al., 2024), and the Ae. arabicum web portal

(https://plantcode.cup.uni-freiburg.de/aetar_db/index.php) links

this to the current (Fernandez-Pozo et al., 2021) and future

genome DB and gene expression atlas.
4.6 Phylogenetic analysis

To identify Brassicaceae PILS genes (Figure 11), the A. thaliana

sequences (Yi et al., 2021; Bogaert et al., 2022; Waidmann et al.,

2023) were used, and BLAST analyses were conducted via

Phytozome (Goodstein et al., 2012). The combined information

of the BLAST analyses was used to conduct the phylogenetic

analysis with known and putative PILS amino acid sequences

aligned using ClustalW (BLOSUM cost matrix, Gap open cost 10,

Gap extend cost 0.1), and Neighbor-Joining trees (Saitou and Nei,

1987) were built using Geneious 8.1.9 Tree Builder (Geneious, San

Diego, CA, USA) using Jukes-Cantor distance. Consensus support

(minimum 20%) was determined using bootstrap (1,000).
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4.7 Statistical analysis

Data are expressed as mean ± 1 SEM. Statistical analysis of

experiments was performed using the GraphPad Prism software

(v.7.0a; San Diego, CA, USA) for the analysis of variance (ANOVA)

and unpaired t-test procedures. For studies examining abiotic stress

effects, data were analyzed by two-way ANOVA, with seedling

morph and seedling age (time) as between-group factors. Multiple

comparisons were performed using Sidak’s post-hoc correction in

GraphPad Prism. Results were considered statistically significant if

the p-value was less than 0.05.
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