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Introduction: Rapid and accurate estimation of leaf area index (LAI) is of great

significance for the precision agriculture because LAI is an important parameter

to evaluate crop canopy structure and growth status.

Methods: In this study, 20 vegetation indices were constructed by using cotton

canopy spectra. Then, cotton LAI estimation models were constructed based on

multiple machine learning (ML) methods extreme learning machine (ELM),

random forest (RF), back propagation (BP), multivariable linear regression

(MLR), support vector machine (SVM)], and the optimal modeling strategy (RF)

was selected. Finally, the vegetation indices with a high correlation with LAI were

fused to construct the VI-fusion RF model, to explore the potential of multi-

vegetation index fusion in the estimation of cotton LAI.

Results: The RF model had the highest estimation accuracy among the LAI

estimation models, and the estimation accuracy of models constructed by fusing

multiple VIs was higher than that of models constructed based on single VIs.

Among the multi-VI fusion models, the RF model constructed based on the

fusion of seven vegetation indices (MNDSI, SRI, GRVI, REP, CIred-edge, MSR, and

NVI) had the highest estimation accuracy, with coefficient of determination (R2),

rootmean square error (RMSE), normalized rootmean square error (NRMSE), and

mean absolute error (MAE) of 0.90, 0.50, 0.14, and 0.26, respectively.

Discussion: Appropriate fusion of vegetation indices can include more spectral

features in modeling and significantly improve the cotton LAI estimation

accuracy. This study will provide a technical reference for improving the

cotton LAI estimation accuracy, and the proposed method has great potential

for crop growth monitoring applications.
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1 Introduction

Leaf area index (LAI) is a prominent influencing factor of

vegetation photosynthesis and carbon cycling (Fang et al., 2019).

It has been used as the most important indicator for canopy

photosynthesis and energy exchange (Parker, 2020). However,

accurate prediction of crop LAI remains a challenge in crop

growth monitoring, production management, and yield

estimation. Traditionally, LAI is measured by destructive

sampling. This method is costly, labor intensive, time consuming,

error-prone, and susceptible to human factors. In recent years, with

the rapid development of remote sensing technology, hyperspectral

remote sensing can be used to acquire detailed and rich spectral

information, which can be used to quantitatively analyze the weak

spectral differences of features. It has proved to have strong

advantages in crop species identification, crop growth parameter

inversion, yield estimation, and pest and disease monitoring (Zhu

et al., 2020; Liu et al., 2021). Therefore, in this study, hyperspectral

remote sensing was used to predict LAI changes.

Vegetation index (VI) is constructed by combining spectral

features. In LAI prediction, the correlation between LAI and plant

canopy spectral reflectance is determined first, then spectral features

are screened out to construct VI. Finally, the linear or nonlinear

relationship is used to estimate LAI (Li et al., 2018). Because VI can

obviously reduce noises, at present, VI is widely used for the

inversion of plant LAI (Qiao et al., 2020). For example, Ma et al.

(2022) estimated cotton LAI by constructing NDVI, RVI, and DVI

and found that DVI had the highest correlation with LAI

(correlation coefficient, −0.76). Nie et al. (2023) assessed the

stability and applicability of different VIs in LAI prediction for

different crops and discovered that SRI (simple ratio index) had the

highest accuracy in estimating cotton and winter wheat LAI, and

MTCI (MERIS terrestrial chlorophyll index) had the highest

accuracy in estimating maize LAI. Based on the same modeling

process and parameters, Dong et al. (2019) found that the VI

constructed based on red-edge reflectance had good performance in

estimating the LAI of different crops. It can be seen that the

correlation between LAI and VI and the modeling results for

different crops are different.

However, the accuracy of a single VI in predicting LAI is not high

(Yang et al., 2017). For example, Chemura et al. (2018) estimated the

nitrogen content of coffee leaves by Sentinel-2 MSI spectral data and

found that the estimation accuracy of the model constructed by

RNDVI (R2, 0.48) was lower than that of the model directly

constructed using spectral features (R2, 0.57). Xing et al. (2020)

estimated the LAI by constructing triangular vegetation index

(TTVI) and 14 conventional vegetation indices and found that

although the accuracy of the model constructed by TTVI was

higher than that of the models constructed by the conventional

VIs, the accuracy was still low (the highest R2 was only 0.60). Wang

et al. (2023) found that the chlorophyll spectral features of Sabina

vulgaris Ant. in Mu Us Sandy Land had higher correlations with

normalized vegetation index (NDVI), ratio vegetation index (RVI),

and modified normalized vegetation index (mNDVI), and the

difference between the accuracy of the constructed univariate linear

regression model (R2 = 0.9) and the lowest accuracy (R2 = 0.1) was
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large, indicating a high instability of the model. The low accuracy and

high instability of the models built by individual VIs may be due to

the fact that a single VI contains few spectral features, and shortwave

infrared (SWIR) spectra are susceptible to the influences of soil

moisture, vegetation moisture, and atmospheric moisture

(Thompson et al., 2018; Degerickx et al., 2019; Srinet et al., 2019),

thereby reducing the accuracy and instability of spectral estimation.

In addition, using all hyperspectral data for modeling can easily lead

to information redundancy and model overfitting, which reduces the

accuracy, versatility, and stability of the model (Moharram et al.,

2023). It should be noted that multiple VI fusions could provide rich

spectral information, and the constructed model could integrate the

advantages of these VIs (Barzin et al., 2020); besides, the optimal VI

fusion method could highlight the spectral features, significantly

increasing the prediction accuracy. Therefore, it is necessary to

explore the potential of multiple VI fusions in estimating cotton

LAI, which is crucial to improve the accuracy of cotton LAI

estimation and accurately monitor cotton growth.

In summary, although individual VIs have been widely used to

estimate crop LAI, the estimation using an individual VI is easily

affected by factors such as soil background and light conditions,

which ultimately reduces model universality and stability.

Especially, individual VIs contain limited spectral information,

which always results in a low accuracy of VI estimation. In this

study, a ML-based cotton LAI estimation model was constructed by

fusing multiple VIs, and the optimal fusion model was selected. The

specific objectives of the study were as follows: (1) to determine the

VIs participating in the modeling through correlation analysis; (2)

to select the optimal estimation model by constructing cotton LAI

estimation models using machine learning modeling strategies

(ELM, RF, BP, MLR, and SVM) based on the selected VIs; and

(3) to randomly arrange and fuse the VIs participating in the

modeling (i.e., for index 1, 2, and 3, there were seven fusions

including 1, 2, 3, 1 + 2, 1 + 3, 2 + 3, and 1 + 2 + 3) to determine the

optimal VI fusion method based on the selected optimal model.

This study will provide a technical reference for large-scale rapid

cotton growth monitoring and yield estimation.
2 Materials and methods

2.1 Study site and experimental design

The research was carried out in the Shihezi, China (86.03°E,

44.18°N, a.s.l. 429 m) (Figure 1). This region has a typical temperate

continental climate. The average annual precipitation was only

125.9–207.7 mm, and the annual accumulated temperature (≥10°

C) was 3,570°C–3,729°C. In addition, there was a large day–night

temperature difference. The soil type was loam. Soil organic matter,

alkaline hydrolyzable nitrogen, available phosphorus, and available

potassium content were 20.10 g/kg, 60.92 mg/kg, 17.83 mg/kg, and

142 mg/kg, respectively. The previous crop was cotton.

In late April 2021, cotton seeds (variety Xinluzao 45) were

sown, and drip irrigation and plastic film mulching were adopted

[six rows and three irrigation tapes were under the mulching of one

film (2.35 m in width)].
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The randomized complete block design was adopted in this

experiment, including five N treatments: 0 kg·ha−1 [N0 (CK)], 110

kg·ha−1 (N1), 220 kg·ha−1 (N2), 330 kg·ha−1 (N3, conventional

application rate), and 440 kg·ha−1 (N4). Each treatment had three

replicates (plots). Each plot was 70.5 m2 (7.05 m × 10 m), and the

plot spacing was 4.7 m. Urea (N, 46%) of 345 kg·ha−1 and potassium

dihydrogen phosphate (P2O5, 52%; K2O, 34%) of 240 kg·ha−1 were

applied. The first fertilization was conducted on June 12, and

fertilizers were applied every 8–9 days thereafter (nine

times totally).
2.2 Acquisition of cotton canopy spectrum

The canopy spectrum of cotton plants without pests and

diseases were collected at 12:00–14:00 on sunny days at the

budding stage (June 21), flowering stage (July 10), initial bolling

stage (July 25), and full bolling stage (August 18) using an ASD-

FieldSpec Pro FRTM spectrometer. During acquisition, the probe of

the sensor was downward, the vertical height was 50 cm, the sensor

angle was 25°, and the scanning time was 0.2 s. Three sampling

points were selected in each plot, and spectral acquisition was

performed five times for each point. Finally, the average was

calculated, which was the spectrum of the sample point. Spectral

acquisition were conducted eight times totally during the whole

growth period, and a total of 360 data were obtained. Previous

studies have shown that the spectrum at 1,800 nm–2,500 nm is

greatly affected by soil background and air moisture (Chandrasekar

et al., 2022). Therefore, in this study, only spectral changes at 350

nm–1,800 nm were analyzed.
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2.3 Determination of leaf area index

After spectral acquisition, three cotton plants were selected

from each plot. Then, leaves were separated, placed in a crisper

box, and sent to the lab for LAI determination using a LI-3100 leaf

area meter. Eight samplings were conducted during the whole

growth period, and a total of 360 cotton plant samples were

collected. The calculation method of LAI is shown in Equation 1:

LAI =
K0� N

K
1

where K0 is the representative of cotton leaf area in a plot, N is

the cotton plant number of one plot, and K is plot area.
2.4 Model establishment

The VIs have been widely used to monitor vegetation

information. Especially, VIs can distinguish non-vegetation

information such as water bodies and enhance vegetation

information ((Donovan et al., 2021; (Morsy et al., 2022). In this

study, 20 VIs (Table 1) were selected for correlation analysis.
2.5 Correlation analysis

To explore the interaction between VIs and the correlations

between VIs and LAI, a correlation matrix between VIs and LAI was

generated using Origin. Pearson correlation coefficient indicates the

level of correlation (−1–1). The higher the absolute value, the closer

the correlation (Bermudez-Edo et al., 2018).
FIGURE 1

Location of test area and experimental design. N0, no nitrogen (N) fertilizer was applied; N1, N fertilizer application rate was 110 kg ha−1; N2, N
fertilizer application rate was 220 kg ha−1; N3, N fertilizer application rate was 330 kg ha−1; N4, N fertilizer application rate was 440 kg ha−1.
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2.6 Modeling

In this study, the entire dataset (360) was randomly divided into a

modeling set (300) and a validation set (60) (5: 1) to ensure the

generality and stability of the model (Joseph, 2022). The results of

statistical analysis of the entire dataset, the modeling set, and the

validation set (Table 2) showed that the modeling set had a larger data

range than the validation set and that the mean, minimum, maximum,

standard deviation, and coefficient of variation of the modeling and

validation sets were very similar. This indicates that the division of

modeling and validation sets are very uniform, which is conducive to

the accurate evaluation of model performance (Wu, 2023).
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Multiple VIs with high correlation with LAI were selected to

construct ELM, RF, BP, MLR, and SVM models for LAI estimation

using the Scikit-Learn package in Python. Then, the accuracy of the

constructed models were compared, and the cross-validation was

performed to select the optimal modeling method. Based on the

optimal model, the 20 VIs (Table 1) were randomly arranged and

fused, and the optimal fusion was selected. Figure 2 shows the

specific workflow. In this study, the change trend of the spectral

reflectance of cotton canopy and LAI during the whole growth

period were first analyzed, and then, 20 VIs related to LAI were

selected based on previous studies. After that, the correlations

between LAI and VIs were analyzed, and the VIs with a
TABLE 1 Vegetation indices tested in this study.

Index Equation References

Normalized vegetation index (NDVI) R800nm − R680nm

R800nmþR680nm

Tucker, 1979

Green Normalized Difference Vegetation Index (GNDVI) R800nm − R550nm

R800nmþR550nm

Gitelson et al., 1996

Renormalized Difference Vegetation Index (RDVI) R800nm − R680nmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R800nmþR680nm

p Roujean and Breon, 1995

Soil-Adjusted Vegetation Index (SAVI) 1 + 0:5ð Þ � ðR800nm − R670nm)
ðR800nmþR670nmþ0:5Þ

Haboudane et al., 2004

Modified Simple Ratio (MSR) (
R800nm

R680nm
− 1)/

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R800nm

R680nm
þ1

s
Xie et al., 2016

Triangular Vegetation Index (TVI) 0:5� ½120� (R750nm − R550nm) − 200� (R670nm − R550nm)� Haboudane et al., 2004

Optimized Soil-Adjusted Vegetation Index (OSAVI) ð1þ 0:16Þ � ðR800nm − R705nm)
R800nmþR670nmþ0:16

Rondeaux et al.,1996

Modified Normalized Difference Vegetation
Index (mNDVI)

(R800nm − R680nm)/(R800nmþR680nm − 2ñR445nm) Huete et al.,1997

MNDSI (Modified Normalized Difference Spectral Index) (R940nm − 0:8� R950nm) − R730nm

(R940nm − 0:8� R950nm)þR730nm

Cao et al., 2017

NDI (Normalized Difference Index) R712nm − R674nm

R712nm þ  R674nm

Delegido et al., 2013

RVI (Ratio Vegetation Index) R810nm

R560nm

Aparicio et al., 2000

EVI (Enhanced Vegetation Index) 2:5� ðR800nm − R670nm)
R800nmþ6� R670nm − 7:5� R475nmþ1

Zhang et al., 2020

DSI (Difference Spectral Index) R760nm − R739nm Tanaka et al., 2015

SRI (Simple ratio indices) R750nm

R550nm

Ranjan et al., 2012

GRVI (Green Ratio Vegetation Index) R800nm

R550nm

Mao et al., 2020

NVI (New Vegetation Index) R777nm − R747nm

R673nm 
Gupta et al., 2001

REP (Red edge position) 700þ 40� R( R670nm+R780nm
2 − R700nm)

ðR740nm − R700nmÞ
Li et al., 2013

CIred-edge (Chrolophyll Red-Edge Index)
R800nm

R710nm
− 1 Swain et al., 2013

MTVI (Modified Triangular Vegetation Index) 1:2� ½1:2� (R800nm − R550nm) − 200� (R670nm − R550nm)� Haboudane et al., 2004

RES (Red Edge Symmetry) R718nm − R675nm

R755nm þ  R675nm

Ju et al., 2010
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correlation coefficient with LAI of no less than 0.6 (Meng et al.,

2021) and a correlation coefficient with other VIs of less than 0.9

were selected (Pasternak and Pawluszek-Filipiak, 2022). Then, the

LAI estimation models based on machine learning (ELM, RF, BP,

MLR, and SVM) were constructed and compared to select the

optimal model. Finally, the VIs participating in the modeling were

randomly arranged and fused (i.e., for index 1, 2, and 3, there were

seven fusions including 1, 2, 3, 1 + 2, 1 + 3, 2 + 3, and 1 + 2 + 3), and

the model was verified to select the best vegetation index

fusion model.

2.6.1 ELM model
ELM is an algorithm based on the SLFN. It is characterized by

random generation of connection weights between input and

hidden layers and thresholds of hidden layer neurons. No special

operation is required in training, and the only value is the hidden

layer neuron number. The global optimal solution is obtained after

completing training (Sun and Gao, 2022).

Given N samples (xi, yi) (i ≤ N, xi ∈ Rn and xi ∈ Rm), xi is the

input, yi is the output (expected value). Then, an SLFN with L

hidden layer nodes can be obtained by following Equation (2):

o
L

i=1
bi   f (wi · xj + bj) = Oj     1 ≤ j ≤ N 2

where bi = (bi1, bi2,⋯, bim)T is the output weight matrix for

hidden nodes and output nodes, f(x) is the activation function, wi

and xj are inner products, and oj is the value of the output.

2.6.2 RF model
RF is a learning algorithm integrating multiple CART decision

trees. The decision tree model is constructed by randomly selecting

multiple samples from the raw samples by bootstrap resampling.

There are two key parameters involved in the RF modeling: mtry

and ntree. mtry is the number of node splits each time the decision

tree model is reconstructed. ntree is the number of decision trees.

Through voting on the output of each decision tree, classification

can be achieved (Liu et al., 2021b). In regression prediction, the

predicted value is the average of the outputs of all trees as shown in

Equation (3).

h(x) =
1
ko

k

i=1
h(x,   qi) 3

where h(x) is the predicted value, qi is an independently

distributed random vector that determines the growth of the

decision tree, x is the input matrix, h(x, qi) is the output of the

ith regression tree, and k is the number of regression trees.
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2.6.3 BP neural network model
BP neural network has a good performance in nonlinear fitting and

is widely used in classification and regression. In BP neural network

modeling, prior assumption is not required. The ReLu function is used

as the activation function by the hidden layer, and the number is 1. The

linear function and Adam are used as the activation function and the

optimizer, respectively, by the output layer. The node number is

determined according to Jiang et al. (2021), and the number of

nodes of the output layer and hidden layer is determined by an

iterative loop. In this study, the iterations were 100, 500, and 1,000.

In addition, the learning rates were 0.01, 0.001, and 0.0001.

2.6.4 SVM model
SVM has been widely used in crop inversion research for its

high accuracy and generalization ability for small sample data

(Hosseini et al., 2021). It can map the nonlinear separable data to

the kernel function-created high-dimensional feature space, and

construct a linear classification equivalent to a nonlinear

classification in the input space. In this study, kernel function,

kernel coefficient (g), and regularized coefficient (C) were {poly,

RBF, sigmoid}, 10−8–108, and 10−8–108, respectively.

2.6.5 MLR model
MLR predicts dependent variables through regression by the

optimal combination of multiple independent variables. Multiple

linear fitting can predict the relationship between multiple types of

known independent variables and their corresponding single

dependent variables (Meerasri and Sothornvit, 2022). The

expression of MLR is as follows (Equation 4):

y = w0x0 + w1x1 +…+wnxn 4

It can be shortened to the following matrix (Equation 5):

y = xw 5

where y is the dependent variable (LAI), x is the independent

variable (vegetation indices), and w is the coefficient of the

independent variable.
2.7 Model validation

In this study, the R2, RMSE, nRMSE, and MAE were used to

assess the model accuracy. The larger the R2, the better the model

fit; the smaller the RMSE, nRMSE, and MAE, the higher the model

accuracy. The calculation of R2, RMSE, nRMSE, and MAE was

based on the research of Wang et al. (2022) and Jiang et al. (2023).
TABLE 2 Statistics of the modeling and validation sets.

Data set Sample size Maximum Minimum Mean
Standard
deviation

Coefficient
of variation

Total set 360 6.36 0.505 3.48 1.54 44.3

Modeling set 300 6.36 0.519 3.69 1.56 46.2

Validation set 60 6.16 0.505 3.37 1.49 40.5
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3 Result

3.1 Variation of cotton LAI at different
growth stages

Cotton LAI increased first and then reduced (Figure 3), and the

influence of different N treatments on cotton LAI was great

throughout the entire growth period. The more N was applied,

the greater was the LAI. The dynamics of cotton LAI in different

treatments were similar throughout the entire growth period. The

changes of LAI in different treatments were small at the beginning.

Then, the LAI increased, and the difference in LAI between different

treatments also increased. The LAI peaked in the late flowering

stage and then declined.
3.2 Changes in cotton canopy spectra

The spectral reflectance changed consistently in different

treatments (Figure 4). In the visible region, there was little

difference. With the growth of N dose, the spectral reflectance

declined (N0 > N1 > N2 > N3 > N4). In addition, the reflectance

varied obviously among stages in the NIR region.

In the bud stage, the reflectance of the N0 and N1 treatments

were low (N0< N1) and that of the N2, N3, and N4 treatments were

high (N4 > N3 > N2) in the NIR region. In addition, there was a

significant difference in the reflectance between different treatments

throughout the entire growth period. The reflectance increased with

the increase in N dose (N4 > N3 > N2 > N1 > N0).
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3.3 Correlation analysis between cotton
LAI and vegetation indices

The coefficients of correlation between VIs and LAI were 0.14–

0.67 (Figure 5). LAI had a negative correlation with MTVI and RES

and a positive correlation with other VIs. Among them, MNDSI

had the highest correlation with LAI (0.67), and TVI had the lowest

correlation with LAI (0.14). The correlation between VIs varied
FIGURE 2

Flowchart of modeling.
FIGURE 3

Cotton leaf area index (LAI) variations under N treatments.
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greatly. The correlation between SAVI and MTVI was the lowest

(0.033), while that between EVI and RDVI and between RES and

REP were the highest (0.98). In addition, RES had a positive

correlation with MTVI, but a negative correlation with other VIs.

MTVI had a positive correlation with RDVI, SAVI, TVI, and EVA,

and a negative correlation with other VIs.
3.4 Cotton LAI estimation by ML model

The 20 VIs were used to construct cotton LAI prediction models

based on a single VI (Table 3), and it was found that the accuracy of the

models were generally low. To further explore the advantages of multi-

VIs fusion and the performance of the constructed models, considering

the multicollinearity between VIs and the overfitting of the model, this

study selected the VIs with a correlation coefficient with LAI of not less

than 0.6 and a correlation coefficient with other VIs of less than 0.9

(results of Section 3.3) for modeling (Table 4), including: GNDVI, MSR,

MNDSI, RVI, SRI, GRVI, NVI, REP, and CIred-edge. The comparison

of the ELM, RF, BP, LR, and SVMmodeling showed that the RFmodels

had the highest accuracy, with R2, MAE, RMSE, and NRMSE being

0.87, 0.37, 0.57, and 0.16, respectively, followed by the ELM, BP, and LR

models. SVM models had the lowest accuracy, with R2, MAE, RMSE,

and NRMSE being 0.51, 0.84, 1.11, and 0.32, respectively.
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3.5 Construction of cotton LAI estimation
models based on RF and multi-vegetation
indices fusion

The selected nine VIs were randomly arranged and fused. When

there were 1, 2, 3, 4, 5, 6, 7, 8, and 9 VIs for fusion, 1, 15, 15, 15, 15, 15,

15, 9, and 1 combinations were randomly selected, respectively. Only

the optimal fusions under different number of VIs are shown here. It

was found that the RF model had the highest accuracy whenMNDSI,

SRI, GRVI, REP, CIred-edge, MSR, and NVI were fused (Table 5).

The RF-7 model had the highest R2 (0.90) and the smallest RMSE

(0.50), NRMSE (0.14), and MAE (0.26). The accuracy of the models

built by a single VI was the lowest, with R2, MAE, RMSE, and

NRMSE being 0.63, 0.82, 1.03, and 0.30, respectively.
3.6 Model validation

The results of linear fitting of predicted LAI by RF models

(Table 5) and measured LAI (Figure 6) showed that the slope of the

fitted line of measured LAI and RF-7 was closest to 1, and the slope

of the fitted lines of measured LAI and single VIs was the lowest

(Figure 6A). When 1, 2, 3, 4, 5, 6, and 7 VIs were fused (Figures 6A–

G), the model accuracy increased with the increase in the number of

VIs fused, but the accuracy decreased when 8 and 9 VIs were fused
B

C D

A

FIGURE 4

Cotton canopy spectral reflectance under N treatments [(A) budding stage; (B) flowering stage; (C) initial bolling stage; (D) full bolling stage].
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(Figures 6H, I). The slopes of all curves were less than 1, indicating

that there was no over-fitting.
4 Discussion

4.1 Variation of cotton LAI and canopy
spectrum under different
nitrogen treatments

Leaf area index reflects the energy flow andmaterial cycle in plant

canopy and is closely related to crop yield. Therefore, it is commonly

used in the study of photosynthesis, respiration, and carbon

accumulation of vegetation (Lu et al., 2020; Sun et al., 2023). In

this study, the cotton LAI under different N treatments showed an

unimodal variation trend. This reflects that N has an obvious

regulatory effect on cotton LAI, which is related to the growth

characteristics of cotton at different stages (Ninkuu et al., 2023).

From bud to flowering stage, due to the increase in cotton branches
Frontiers in Plant Science 08
and leaves, the cotton leaf area continues to increase, resulting in a

rapid increase in LAI, and the difference in LAI between N treatments

also increases. This is similar to the results ofWen (2016). Nitrogen is

the main nutrient required for cotton growth, and sufficient N supply

could promote leaf enlargement. The bud stage is a key period for

cotton vegetative growth. With the increase in temperature, cotton

growth accelerates. This ultimately leads to increased LAI. During the

flowering stage, cotton enters into the reproductive growth stage, and

a large amount of organic matter is transferred to reproductive

organs. In the late flowering stage, LAI is the largest, and then, LAI

gradually declines in the bolling stage. However, Kumar et al. (2022)

found that LAI began to decrease after the boll-opening stage. On the

one hand, it may be caused by the different temperature, sunshine

time, and rainfall in different regions (high temperature and long

sunshine time can accelerate cotton growth, but rainfall slows down

cotton growth). On the other hand, the increasing competition

between vegetative and reproductive growth in the flowering and

bud stages leads to leaf shedding and decreased LAI (Li, 2022).

Especially, in this study, the LAI declined fastest in the N4 treatment.
TABLE 3 Accuracy of cotton LAI estimation models constructed based on different modeling methods and 20 VIs.

Model Variables R2 MAE RMSE NRMSE

ELM

NDVI, GNDVI, RDVI, SAVI, MSR, TVI,
OSAVI, MNDVI, MNDSI, NDI, RVI, EVI, DSI,
SRI, GRVI, NVI, REP, CIred-edge, MTVI, RES

0.37 1.09 1.32 0.38

RF 0.39 1.07 1.29 0.37

BP 0.35 1.10 1.34 0.38

MLR 0.34 1.17 1.38 0.40

SVR 0.32 1.19 1.41 0.41
FIGURE 5

Correlation analysis between vegetation indices and LAI. The ellipse tilted to the left and colored red represents a positive correlation, and the ellipse
tilted to the right and colored blue represents a negative correlation.
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HighN dose leads to too vigorous vegetative growth. The lower leaves

block each other, leading to poor ventilation and early leaf aging and

shedding. In addition, in our previous report (Fan et al., 2023), the

LAI of cotton changed most significantly under the N3 treatment,

while the LAI changed the most under N4 treatment in this study.

This may be due to the fact that the N4 in this study was 440 kg N

ha−1. However, in previous study, the N3 was 360 kg N ha−1 and the

N4 was 480 kg N ha−1. Although the N application rate N4 is the

largest in this study, it is lower than that in previous study. This

indicates that the demand for N fertilizer in cotton is limited, and it is

not that the more nitrogen is fertilized, the greater the LAI.

The uptake, transport, and assimilation of N show dynamic changes

in cotton leaves, and the nutrient composition and content in leaves also

change continuously, resulting in changes in leaf color, morphology, and

spectral reflectance (Sun et al., 2022). In the visible region, there was no

significant difference in canopy spectral reflectance at different stages, and

the reflectance decreased with the growth of N dose. In the NIR region,

the difference increased, and the reflectance increased with the growth of

N dose. This is consistent with the results of Liu et al. (2019). However, in

our previous study (Fan et al., 2023), the canopy spectral reflectance

reached the maximum under N3 treatment. In this study, the canopy

spectral reflectance was the largest under N4 treatment. This may be due
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to the fact that although the N4 in this study is the largest, it is still lower

than the N4 in the previous study. Excessive or small nitrogen fertilizer

application can lead to a decrease in LAI, thereby reducing the canopy

spectral reflectance.

The spectral reflectance of visible region mainly reflects leaf

pigment status. In crop photosynthesis, chlorophyll reflects green

light and absorbs red and violet light, resulting in low canopy

spectral reflectance (Li et al., 2019; Yang et al., 2022). The

reflectance in the NIR region is mainly affected by optical

properties and leaf structure. In addition, the differences in

intercellular space, composition, and shape are also influencing

factors (Richetti et al., 2019; Spafford et al., 2021). Thus, the

reflectance of the NIR region gradually reduces over time.
4.2 Construction of cotton LAI estimation
model based on the fusion of multiple
vegetation indices

Vegetation index can provide crop growth information. At

present, a large number of remote sensing studies of cotton LAI

based on a single vegetation index have been carried out (Yan et al.,
TABLE 4 Accuracy of cotton LAI estimation models constructed based on the vegetation indices with a correlation coefficient of not less than 0.6
with leaf area index.

Model Parameters Variables R2 MAE RMSE NRMSE

ELM neurons(40, tanh)

GNDVI, MSR,
MNDSI, RVI SRI,
GRVI, NVI, REP,

CIred-edge

0.71 0.63 0.90 0.26

RF
(n_estimators:14,
max_depth:63)

0.87 0.37
0.57

0.16

BP

hidden_layer_sizes:10;
solver:lbfgs;

0.61 0.70 1.02 0.29
random_state:0;
max_iter:500;

MLR – 0.54 0.83 1.09 0.32

SVM
Kernel: rbf;

Cost:0.3;gamma:30;
0.51 0.84

1.11
0.32
TABLE 5 Accuracy of the optimal RF models for cotton LAI estimation when different vegetation indices are fused.

Model Vegetation indices R2 MAE RMSE NRMSE

RF-9
GNDVI, MNDSI, SRI, GRVI, REP, CIred-edge, MSR,
RVI, NVI

0.87
0.41 0.56 0.16

RF-8 GNDVI, MNDSI, SRI, GRVI, REP, CIred-edge, MSR, RVI 0.89 0.33 0.52 0.15

RF-7 MNDSI, SRI, GRVI, REP, CIred-edge, MSR, NVI 0.90 0.26 0.50 0.14

RF-6 GNDVI, MNDSI, SRI, GRVI, REP, RVI 0.87 0.34 0.57 0.16

RF-5 MNDSI, SRI, REP, MSR, NVI 0.74 0.63 0.84 0.24

RF-4 MNDSI, GRVI, CIred-edge, NVI 0.71 0.72 0.96 0.28

RF-3 CIred-edge, RVI, NVI 0.69 0.74 0.96 0.27

RF-2 MNDSI, NVI 0.68 0.74 0.93 0.27

RF-1 MNDSI 0.63 0.82 1.03 0.30
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2022). In this study, the correlation analysis of LAI and VIs was

carried out. It was found that MNDSI had the highest correlation

with LAI. This is consistent with the results of Gao et al. (2013).

MNDSI can better reflect the status of cotton LAI. The spectral

bands in MNDSI has a strong absorption on the spectra of cotton

LAI (Li et al., 2018). Therefore, future studies can try to accurately

predict cotton LAI changes through this index. In this study, the

correlations between some VIs were very high, with a correlation

coefficient of 0.98 (EVI and RDVI, RES and REP). This may be due

to the fact that these VIs contain the same spectral bands, resulting

in very high multicollinearity between the VIs, so it is necessary to

filter the VIs before fusion.

It was found that the ML models based on 20 VIs had a low

accuracy. This may be due to the high correlations between some

VIs. Therefore, the VIs with a correlation coefficient not less than

0.6 were selected for modeling. It was found that this improved the

prediction accuracy of all models (ELM, RF, BP, MLR, and SVM).

This indicates that LAI has its unique spectral features and

corresponding VIs. Among the models, the RF models had the
Frontiers in Plant Science 10
highest accuracy. This is consistent with the results of Han et al.

(2019) andWang et al. (2021). RF is a tree-based ensemble learning.

It higher accuracy in this study may be due to that the data are

trained using randomly selected subsets at each node, and the best

performing prediction variables are selected to split nodes

(insensitive to noise), which can effectively solve problems such as

overfitting and collinearity (Lu and He, 2019).

In this study, multiple VIs were randomly arranged and fused,

and the optimal fusion was selected for RF modeling. It was found

that the model accuracy constructed using VI fusion was higher

than that of the model constructed using a single VI. This is similar

to the results of Qi et al. (2020) and Rumora et al. (2021). This may

be due to that each VI is a physical structure and has limited valid

bands (only two to three bands). It was also found that the model

accuracy based on the fusion of seven VIs (RF-7) had the highest

accuracy. This indicates that the fusion of the seven VIs synthesizes

the structural characteristics of each VI and contains more

reflectance information, which ultimately improves the LAI

prediction accuracy. However, when eight and nine VIs were
B C

D E F
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FIGURE 6

Fitting results of the measured and the RF model predicted LAI based on validation set (A–I) represent the optimal fusions when one to nine VIs
were fused).
frontiersin.org

https://doi.org/10.3389/fpls.2024.1357193
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Fan et al. 10.3389/fpls.2024.1357193
fused, the model accuracy began to decrease. This may be due to

that (1) different VIs have different sensitivities to the same

parameter; the model accuracy increases when the highly sensitive

VIs are fused for modeling, and vice versa. (2) The influences of

canopy structure, cover, and soil background brightness on different

VIs are also different (Qiao et al., 2022). (3) There is data

redundancy between VIs, which affects the model accuracy.

Therefore, appropriate VI fusion can eliminate the influence of

environmental factors, realize the complementarity of spectral

features, and increase vegetation information, which ultimately

improves model accuracy and stability.

In addition, hyperspectral data are more informative than VIs.

It is widely used in different remote sensing analysis and feature

classification tasks because hyperspectral data covers a wide range

of bands and contains all the spectral information of features.

However, it faces the problem of information redundancy, which

increases the complexity of data processing and analysis, and may

reduce the interpretability of the model (Jiang et al., 2022). In

addition, sensitive wavelengths are more susceptible to interference

from non-target factors, such as soil background and light

conditions (Meiyan et al., 2023). In contrast, the VI is usually

based on the combination of specific wavelengths, which can

effectively eliminate the interference of soil signals and other

factors, and is specially used for the monitoring of vegetation

parameters. It is well targeted and has a high interpretability for

vegetation-related research (Cao et al., 2021).

At present, the vegetation canopy spectral acquisition

instruments mainly include hyperspectral sensors and multispectral

(RGB) sensors. The wide spectral range of hyperspectra, including

visible light and near-infrared spectra, provides rich spectral

information, which enables hyperspectral data to capture detailed

spectral characteristics of features (Liu et al., 2023a), such as spectral

reflectance, absorption peaks, and absorption valleys. These detailed

spectral features make hyperspectral data have higher performance

and application potential in object detection. However, the number of

RGB bands is small and contains less information (Liu et al., 2022a),

making it difficult to fully reflect the changes in the spectral features of

vegetation parameters. Nevertheless, due to the processing

complexity and high cost of hyperspectral data, RGB still has

certain advantages in some scenarios, especially in vegetation

monitoring and simple object classification tasks. For example, Liu

et al. (2022b) improved the estimation accuracy of potato

aboveground biomass (AGB) by extracting different texture features

from RGB images.

In recent years, many scholars have preprocessed hyperspectral

data and achieved good estimation results. For example, Liu et al.

(2022c) used the Savitzky-Golay (SG) smoothing to smooth the

spectrum collected by unmanned aerial vehicles (UAVs) and the

random forest to extract the characteristic bands, and found that

the PLSR model had the highest estimation accuracy for AGB. Liu

et al. (2023b) extracted spectral features from UAV-collected RGB

images and hyperspectral data through wavelet transform and

found that the fusion of the features of RGB images and

hyperspectral data could improve the estimation accuracy of

AGB. Since hyperspectra can provide comprehensive spectral
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information, future research can transform the raw hyperspectral

data to highlight spectral features, extract features by some methods

to reduce data redundancy, and calculate the vegetation index based

on the spectral features to construct a model. In addition, RGB

images and hyperspectral data can be combined to explore the

potential of multi-source remote sensing data fusion in predicting

cotton LAI.
5 Conclusions

In this study, the variations in cotton canopy spectral reflectance

and LAI were analyzed, and the ML models for cotton LAI prediction

were constructed by multi-VI fusion, to explore the optimal VI fusion

that contributes to a high cotton LAI prediction accuracy. Cotton LAI

raised first and then reduced throughout the entire growth period

under different N treatments. In the visible region, no obvious

difference in reflectance was detected among growth stages, and the

spectral reflectance decreased with the growth of nitrogen dose.

However, it was opposite in the NIR region. The correlations

between different VIs and LAI are different, and the correlations

between some VIs are very high, resulting in data redundancy. The

RF model constructed based on multi-VI fusion had the highest

accuracy, while the accuracy of the SVM model was the lowest. In

addition, the RF model constructed based on the fusion of MNDSI,

SRI, GRVI, REP, CIred-edge, MSR, and NVI had the highest accuracy,

with R2, MAE, RMSE, and NRMSE of 0.90, 0.26, 50, and 0.14,

respectively. The validation results of the optimal model showed that

the R2, MAE, RSME, and NRMSE were 0.84, 0.60, 0.77, and 0.21,

respectively. Therefore, fusion of appropriate VIs can increase the

number of spectral features and further improve the cotton LAI

prediction accuracy. However, the number of VIs constructed in this

study is limited, and the MLs chosen are traditional. Therefore, more

VIs will be constructed in the future, and more deep learning methods

will be applied to optimize the VI fusion and the LAI prediction model.
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