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Introduction: Thalictrum fargesii is a medicinal plant belonging to the genus

Thalictrum of the Ranunculaceae family and has been used in herbal medicine in

the Himalayan regions of China and India. This species is taxonomically challenging

because of its morphological similarities to other species within the genus. Thus,

herbal drugs from this species are frequently adulterated, substituted, or mixed with

other species, thereby endangering consumer safety.

Methods: The present study aimed to sequence and assemble the entire

chloroplast (cp) genome of T. fargesii using the Illumina HiSeq 2500 platform

to better understand the genomic architecture, gene composition, and

phylogenetic relationships within the Thalictrum.

Results and discussion: The cp genome was 155,929 bp long and contained large

single-copy (85,395 bp) and small single-copy (17,576 bp) regions that were

segregated by a pair of inverted repeat regions (26,479 bp) to form a quadripartite

structure. The cp genome contains 133 genes, including 88 protein-coding genes

(PCGs), 37 tRNA genes, and 8 rRNA genes. Additionally, this genome contains 64

codons that encode 20 amino acids, the most preferred of which are alanine and

leucine. We identified 68 SSRs, 27 long repeats, and 242 high-confidence C-to-U

RNA-editing sites in the cp genome. Moreover, we discovered seven divergent

hotspot regions in the cp genome of T. fargesii, among which ndhD-psaC and

rpl16-rps3 may be useful for developing molecular markers for identifying ethnodrug

species and their contaminants. A comparative study with eight other species in the

genus revealed that pafI and rps19 had highly variable sites in the cp genome of

T. fargesii. Additionally, two special features, (i) the shortest length of the ycf1 gene at

the IRA-SSC boundary and (ii) the distance between the rps19 fragment and trnH at

the IRA-LSC junction, distinguish the cp genome of T. fargesii from those of other

species within the genus. Furthermore, phylogenetic analysis revealed that T. fargesii

was closely related to T. tenue and T. petaloidium.
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Conclusion: Considering all these lines of evidence, our findings offer crucial

molecular and evolutionary information that could play a significant role in

further species identification, evolution, and phylogenetic studies on T. fargesii.
KEYWORDS
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1 Introduction

The genus Thalictrum belongs to the subfamily Thalictroideae

of Ranunculaceae, with the subgenera Thalictrum and Lecoyerium,

which includes approximately 200 species and is distributed in Asia,

Europe, Africa, North America, and South America (Zhu and Xiao,

1989). At least 43 species of this genus have been used medicinally

(Chen et al., 2003), 26 of which have been used as medicinal herbs

in China and have been found to contain bioactive compounds,

such as thalidomide, thalicarpine, lithospermoside, and

dasycarponin (Wu et al., 1979; Huang and Williams, 1998).

Among them, Thalictrum fargesii Franch. ex Finet & Gagnep. is

distributed throughout Asia and has been reported to have

ethnomedicinal and traditional uses in the Tibetan region of

China (Zhang et al., 2021) and the Himalayan region of India

(Singh et al., 2016). In China, T. fargesii is geographically

distributed in the Anhui, Chongqing, Fujian, Gansu, Guizhou,

Henan, Hubei, Hunan, Jiangxi, Shaanxi, Sichuan, and Zhejiang

Provinces (Wang and Wang, 1979; Fu and Zhu, 2001; Xie, 2016;

Wang et al., 2018). Thalictroideae is a monophyletic group that is

well supported by systematic molecular studies of Ranunculaceae

(Johansson and Jansen, 1993; Hoot, 1995; Johansson, 1995; Ro et al.,

1997; Wang and Chen, 2007). Ren et al. (2011) first examined

detailed floral development in this subfamily. They classified this

species based on chloroplast rbcL, matK, trnL-F, and nuclear ITS

primers (Wang and Chen, 2007), and a taxonomic report on this

species was provided by Zeng et al. (2021).

The plant of T. fargesii is termed “CHENG KOU TANG SONG

CAO” in China for its thalidasine roots (Zhou et al., 2011). The roots of

this species are also rich in the naturally active compounds 5-methoxy

salicylic acid, thalfoetidine, thaligasinine, and thalisopidine (Wu and Yi,

1991; NCBI, 2022). Alkaloids from this species have been reported to

exhibit various pharmacological activities including antitumor,

antimicrobial, antitussive, antiamoebic, antiparasitic, antiplatelet

aggregation, antisilicosis, hypotensive, and HIV antiviral activities

(Gao, 1999; Singh et al., 2023). This species is used in traditional

Chinese medicine to treat dysentery, diarrhea, viral hepatitis, influenza,

measles, carbuncles, boils, and eye congestion (Chen et al., 2003). A

pharmacophylogenic study showed that aporphine, protopine, pavine,

phenanthrene, and bisbenzylisoquinoline are prominent in the

Thalictrum genus (Da-Cheng et al., 2015). Additionally, metabolites
02
related to their structural features and roles have been studied in T.

fargesii (Khamidullina et al., 2006).

Because of its immense potential in herbal medicine, this species

is collected from the wild or grown by rural farmers in China.

Consequently, in local herbal markets, the species is often confused

by morphological similarities with other related species in the genus,

and adulterated, altered, or mixed in the herbal formulation with or

without intention (Bainsal et al., 2022). No doubt, it poses a serious

threat to consumer safety. Thus, proper identification of T. fargesii is

of great importance in herbal formulations, which are often

misunderstood, confused, or incorrectly recorded during plant

identification. For example, during the course of herbarium

specimens, T. fortune was found to be mixed with T. fargesii

Franchet ex Finet & Gagnepain (1903: 608), resulting in wrong

records of the geographical distribution of these species (Zeng

et al., 2022). Moreover, Li et al. (2016) clarified the variations in T.

fargesii and proposed a synonym for T. xingshanicum, revealing that

the name of T. fargesii was previously misunderstood. In addition,

herbarium collections of T. fargesii from Neijiang, Sichuan Province

were misled by misidentification of the collections of T. ramosum in

Gansu Province (Zeng et al., 2023). These misidentifications can be

explained by the morphological variation related to environmental

factors (e.g., weather, soil properties, elevation level, etc.) where the

plants have grown (Hernández-Nicolás et al., 2017). It is important to

eliminate such dilemmas using molecular approaches rather than

morphological observations (Duminil and Di Michele, 2009).

Identifying member species within the Ranunculaceae family,

especially within the Thalictrum, is taxonomically challenging

because of the inability to distinguish these species through

universal molecular markers and similar morphological traits (Li

et al., 2020). Previous studies have revealed that Thalictrum species

form a highly supported clade, indicating that they are

monophyletic (Cai et al., 2022; Michimoto et al., 2022).

Thalictrum species exhibit small chromosomes compared with

those of Rununculus, and this genus is challenging and diverse in

terms of taxonomy and phylogeny based on variations in

morphological traits (Langlet, 1927; Tamura, 1995; Xiang et al.,

2022). As a critical solution, chloroplast (cp) genomic resources

have facilitated the classification of members of the Ranunculaceae

family, providing data and insight into evolutionary relationships

(Zhai et al., 2019), phylogenetic resolution (bootstrap support and
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tree certainty) (Morales-Briones et al., 2019), and marker

exploration (Xiang et al., 2022).

In the photosynthesis of green plants, chloroplasts play the most

significant role in coordinating the expression of different genes

between these organelles and the nuclear genome in response to

environmental stress, including cellular signaling (Daniell et al.,

2016; Serrano et al., 2016; Yu et al., 2019; Tano et al., 2023).

Interestingly, because of the presence of inherited conserved

genes and their organization and low recombination and

substitution rates, compared with nuclear genomes, cp genomes

serve as resources for phylogenetic analysis and evolutionary studies

(Wolfe et al., 1987; Corriveau and Coleman, 1988; Birky, 2001;

Provan et al., 2001; Zhang et al., 2003; Ravi et al., 2008). Moreover,

DNA barcoding and molecular breeding have been studied using cp

genomes (Daniell et al., 2016). Several strategies have been adopted

to sequence the organelle genome, including amplification of the

whole cp genome using a universal set of primers, sequencing

(Cronn et al., 2008; Dong et al., 2013), and using total genomic

DNA to extract the cp genome (Velasco et al., 2007; McPherson

et al., 2013). Considering the available taxonomic evidence, the

importance of cp genome studies of folk medicinal plants has been

demonstrated by several studies (He et al., 2021; Lin et al., 2021; Pu

et al., 2022).

From several previous studies, significant molecular cross-talks

have been reported on the characteristics of cp genomes within

Thalictrum, such as T. cirrhosum (Zhe et al., 2023), T. coreanum

(Park et al., 2015), T. foliolosum (Pu et al., 2022), and Thalictrum

aquilegiifolium var. sibiricum (Michimoto et al., 2022). Current

research has focused predominantly on T. fargesii, emphasizing the

need to construct the whole cp genome using next-generation

sequencing, characterization, long and simple sequence repeats

(SSRs), phylogenetic analysis, nucleotide diversity, and selection

pressure of genes within the Thalictrum. This study aimed to

generate molecular data for the cp genome of T. fargesii to

provide taxonomic and molecular information to biologists,

practitioners, and professionals in herbal medicine to develop

molecular markers to avoid misidentification.
2 Materials and methods

2.1 DNA extraction and next-
generation sequencing

The T. fargesii plant sample used for cp genome sequencing was

identified and artificially reproduced in the Wenchuan Botanical

Garden of the Aba Tibetan and Qiang Autonomous Prefecture in

Sichuan Province, China. The voucher specimen (Accession No.

CP00002) was identified and deposited at the Herbarium of

Neijiang Normal University (Neijiang City, China; Shixi Chen,

saihei@foxmail.com). After collecting leaf specimens, they were

stored at room temperature and packaged in 0.2 g of silicon

dioxide. We used a modified cetyltrimethylammonium bromide

(CTAB) method to extract total genomic DNA from fresh leaves

(Porebski et al., 1997). Short reads of the T. fargesii cp genome were

sequenced using a genomic library with an insert size of 260 bp.
Frontiers in Plant Science 03
The products were prepared and sequenced on an Illumina HiSeq

2500 platform with approximately 436× coverage.
2.2 Chloroplast genome assembly
and annotation

The sequenced reads were filtered using the Trimmomatic

program (version 0.39) (Bolger et al., 2014). The filtered reads were

assembled into the cp genome using NOVOPlasty (version 4.3.1)

(Dierckxsens et al., 2017), and annotation was conducted using

GeSeq with 3rd Party Stand-Alone Annotators from Chloë (version

0.1.0) and tRNA annotation from tRNAscan-SE (version 2.0.7) (Tillich

et al., 2017). The annotation was followed by a manual check against

the information fromNCBI. Later, the sequences were deposited in the

NCBI database (GenBank accession No. ON868919.1). The T. fargesii

cp genome was visualized and plotted using Chloroplot (web-based

tool: https://irscope.shinyapps.io/Chloroplot/) (Zheng et al., 2020).
2.3 Comparison of the chloroplast genome
within Thalictrum

Eight relevant Thalictrum cp genome sequences were

downloaded from the GenBank database. Nine sequences,

including T. fargesii, were analyzed to determine the degree of

variation and sequence conservation within the same genus

(Supplementary Table 1). We compared the IR regions of all

species using the web-based tool IRplus (https://irscope.

shinyapps.io/IRplus/) to visualize the IR-SC boundaries and their

gene orientations (Dıéz Menéndez et al., 2023). Sequence alignment

was performed to identify the variation in sites between the nine

Thalictrum cp genome sequences on mVISTA using the alignment

program LAGAN (Mayor et al., 2000; Frazer et al., 2004). The sites

were checked manually using BioEdit version 7 (Hall, 1999). The

sites were subsequently analyzed, and the results are presented in

Supplementary Table 2.
2.4 Relative synonymous codon
usage analysis

Each amino acid has a minimum of one codon and a maximum

of six codons owing to the simplicity of the codons. MEGA11

software was used to calculate the relative synonymous codon usage

(RSCU) in the cpDNA of T. fargesii (Tamura et al., 2021).
2.5 Repeat analysis

SSR locus analysis was performed on the assembled T. fargesii cp

genome sequence using the MicroSarellite identification tool (MISA)

(Beier et al., 2017). The parameters were set as follows: 1–10, 2–5, 3–

4, 4–3, 5–3, and 6–3, and the minimum distance between the two

SSRs was set to 0 bp. The software package REPuter was used to

conduct a long-repeat analysis and a minimum repeat size of 30 bp
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was assigned along a Hamming distance of 3 bp (Kurtz et al., 2001).

The tandem repeat finder is an online program that detects tandem

repeats using the default parameter settings (Benson, 1999).
2.6 Predicting RNA editing sites

We predicted RNA editing sites in the cp genome of T. fargesii

using a convolutional neural network (CNN) model-based tool

called Deepred-mt (Edera et al., 2021). We extracted the PCGs of

this cp genome and inputted them into the Deepred-mt tool for

prediction, considering threshold probability values greater than 0.9

as reliable results.
2.7 Synonymous substitution and
selective pressure

The natural selection that drives molecular evolution was

analyzed for the Thalictrum chloroplast genome; thus, we

calculated the ratio of nonsynonymous (dn) to synonymous (ds)

substitutions called w (dn/ds). The w value is an indicator of natural

selection of PCGs. Values w > 1, w = 1, and w < 1 indicate positive,

neutral, and negative/purifying selection, respectively. The stop

codons of all 73 PCGs from these species were deleted and

subsequently aligned, and the dn, ds, and w values were

calculated using MEGA 11 (Tamura et al., 2021).
2.8 Phylogenetic analysis

To ascertain the phylogenetic position of T. fargesii within

Thalictrum, nine species were analyzed, and Aconitum delavayi

(NC_038097) was chosen as the outgroup. Sequence (full-length)

alignment was performed using the MAFFT v7 plugin integrated

into PhyloSuite v1.1.15 (Katoh and Standley, 2013). The dataset was

refined using the Gblocks program with stringent parameter

settings and then subjected to maximum likelihood (ML)

analyses. Substitutional saturation was assessed using DAMBE

version 7.0.68 (Xia, 2018) and phylogenetic trees were

constructed using ML algorithms. ML phylogenies were

conducted using RAxML v8.2.12, with 1,000 bootstrap replicates,

and the GTRGAMMA model (Stamatakis, 2014).
3 Results

3.1 Features of the chloroplast genome

After removing the adapter and low-quality reads, we found 9.4

Gb data for the T. fargesii cp genome. The cp genome was 155,929

bp in length, displayed a circular structure, and was divided into

typical quadripartite regions, similar to most land plants (Figure 1).

The cp genome includes two 26,479-bp inverted repeats (IRA and

IRB), and they separated the genome into a large single-copy (LSC)

region of 85,395 bp and a small single-copy (SSC) region of 17,576
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bp (Supplementary Table 1). The overall GC content of the cp

genome was 38%.

The size of the cp genomes of the Thalictrum ranged from

154,889 bp (T. thalictroides) to 156,103 bp (T. tenue). The cp

genome of T. fargesii (155,929 bp) was the fourth largest and most

similar to those of other species within the genus (Supplementary

Table 1). Moreover, we found the most extended LSC region (85,395

bp) in the T. fargesii cp genome, and the shortest LSC region (84,733

bp) in T. coreanum. In terms of count, the total number of genes

found ranged from 128 to 134, and for PCGs, it ranged from 83 to 89.

Nonetheless, except for T. viscosum (38 tRNAs), most species,

including T. fargesii, possess 37 tRNA genes.
3.2 Gene composition of the
chloroplast genome

Annotation of the cp genome revealed 133 genes, including 88

PCGs (including six duplicated genes), 37 tRNA genes (including

seven duplicated genes), and 8 ribosomal RNA genes. The identified

genes were categorized into four groups: photosynthesis-related genes

(n = 45), self-replicating genes (n = 58), other genes (n = 6), and

unknown genes (n = 6) (Table 1). Four pseudogenes have been

identified in the genome. The IR regions carried two copies of ndhB,

rps7, rps12, rpl2, rpl23, ycf2, trnI-CAU, trnL-CAA, trnV-GAC, trnI-

GAU, trnA-UGC, trnR-ACG, trnN-GUU, rrn16, rrn23, rrn4.5, and

rrn5. Of the genes identified, 21 contained introns and 16 (trnK-

UUU, trnG-UCC, petB, petD, rpl16, rpl2, ndhB, rps12, trnI-GAU,

trnA-UGC, rrn23, trnA-UGC, trnI-GAU, rps12, ndhB, and rpl2)

contained one intron. The other five genes (two copies of rps16,

trnV-UAC, and atpF) contained two introns (Supplementary

Table 3). Moreover, 10 genes were located in the LSC region, 10 in

the two IR regions, and 1 in the SSC region. The largest intron (2,532

bp) was observed in trnK-UUU, and the smallest intron (199 bp) was

found in rrn23. tRNA genes are distributed throughout the genome

and are encoded by 61 possible codons (excluding the stop codon).

As shown in Table 1, the PCG genes have different functions,

including one acetyl-CoA carboxylase, six ATP synthases, one ATP-

dependent CLP protease, five cytochrome b6, one cytochrome c

biogenesis protein, one cytochrome b/f, one envelope membrane

protein, two hypothetical chloroplast RF2, one megakaryocyte-

associated tyrosine kinase, 12 NADH dehydrogenases, one N-

terminal nucleophile amino hydrolase superfamily, seven

photosystem I, 14 photosystem II, 25 ribosomal proteins, one

ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit,

and four RNA polymerases. Each RNA had two copies and was

equally distributed within the IR region. Duplicated tRNAs were

not present in the LSC region. Moreover, rpl32, the rps19 fragment,

one copy of ycf1, and infA were pseudogenes.
3.3 The base composition of the
chloroplast genome

Base compositions of the LSC, SSC, and IR regions and codons

at various locations were examined in the cp genome. The
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percentages of GC content in LSC, SSC, and IRs were 40.57%,

32.53%, and 43.23%, respectively, indicating that the percentage in

the IR region was greater than that in the other regions. Moreover,

the frequencies of adenine (A), thymine (T), guanine (G), and

cytosine (C) contents were 30.46%, 31.12%, 18.84%, and 19.58%,

respectively. The single-copy regions, LSC (59.43%) and SSC

(67.48), had higher AT content than the repeat regions (56.77%)

(Table 2). The reduced AT content in the IR regions may be related

to the presence of rRNA, which contains fewer AT nucleotides,

contributing to genome stability and sequence complexity.

Similarly, the CSD (protein-coding region) was rich in AT

(61.24%), whereas the GC content was 38.73%. At the first,

second, and third codon positions, each had a length of 25,038 bp

and contained a range of 29.10%–31.44% A, 23.44%–37.25% T,

16.69%–27.35% G, and 14.61%–20.67% C contents, respectively.

These findings disclosed that the cp genome had a higher AT than

the GC content and that the codons preferred bases A and T.
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3.4 Codon usage

The ratio of the frequency of a codon observed to that

expected, termed “relative synonymous codon usage” (RSCU),

was determined, which indicates codon usage bias in coding

sequences. The protein-coding sequences (CDSs) of the T.

fargesii cp genome were used to calculate RSCU via MEGA 11,

and 64 codons were found. Three of these were stop codons and 61

encoded 20 amino acids. A single codon encodes methionine

(Met) and tryptophan (Try), whereas the other amino acids are

encoded by two to six codons (Figure 2). Among the 64 codons, 31

had RSCU > 1 in the CDS of the cp genome, indicating that they

were high-frequency and optimal codons. A or U was preferred as

the third base of the high-frequency codon, as evidenced by the

fact that 16 of these codons ended in U, 13 in A, 1 in G, and 1 in C.

The most preferred codon was GCU, which encodes alanine (Ala)

and has an RSCU value of 2. UUA, which encodes leucine (Leu)
FIGURE 1

Graphical representation of the features identified in the cp genome of T. fargesii. The species name, genome length, GC content, and number of
genes are represented in the center of the plot. Represented by arrows, transcripts for genes inside and outside the circle are generated in opposite
directions of the tetrad structure of the cp genome. Different colors are used to distinguish between genes that belong to specific functional
categories. At the lower left, the legend for the classification of the cp genes according to their function is shown. The darker shaded region inside
the inner circle indicates the GC content, while the light color indicates the AT content of the cp genome. The gradient GC content of the cp
genome is represented by the second circle, with a zero level based on the outer circle. The GC content of each gene is displayed as the proportion
of shaded areas. The boundaries of the small single-copy (SSC), large single-copy (LSC), and inverted repeat (IRA, IRB) regions are denoted in the
inner circle.
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and has an RSCU value of 1.86, was the second-most

preferred codon.
3.5 Simple sequence repeats

SSRs from cp genomes can be used to explore evolutionary

relationships and population genetics, owing to their high

polymorphism rates and consistent repetition (Xia et al., 2022).

Most SSRs are A or T units that contribute to the AT richness of

the chloroplast genome (Chew et al., 2023). Analysis of SSRs using

the MISA web-based tool (Beier et al., 2017) revealed that the T.

fargesii cp genome comprises 68 SSR loci. The most abundant were

mononucleotides (35, 51%), followed by dinucleotides (20, 30%),

trinucleotides (2, 3%), tetranucleotides (9, 13%), and

pentanucleotides (2, 3%) (Supplementary Table 4) (Figure 3A).

Hexanucleotide repeats were absent. Among these repeats, 43.33%,

23.33%, and 25% were present in the LSC, SSC, and IR region,

respectively (Figure 3B). In the cp genome of T. fargesii, the single-

base repeat unit A/T (51%) is the most prevalent, followed by AT/TA

(29%), AAAT/ATTT (7%), AATAT/ATATT (3%), and AAT/ATT

(2%). The forenamed repeat units accounted for 92% of the total

SSRs, whereas G/C repeat units accounted for only 8% of the total

SSRs (Figure 3C). Among the SSRs, 21 were located in the intergenic

region, 45 were within the CDS region, and the remaining 2

were miscellaneous.
3.6 Long repeats

Long repetitive sequences have proven to be valuable markers

for comparative genomics, phylogenetics, genomic recombination

studies, and plant evolution (Ivanova et al., 2017). According to our

analysis, T. fargesii consisted of major repetitive sequences between

30 and 40 bp in length, including 30–32 bp, 33–35 bp, 36–38 bp,

38–40 bp, and ≥40 bp, accounting for 15, 4, 2, 4, and 3 repeats,

respectively (Figure 4A). In total, the cp genome contained 27 long

repeats, namely, 17 palindromic repeats (P), 9 forward repeats (F), 1

reverse repeat (R), and no complementary repeats (Supplementary

Table 5) (Figure 4B). Among the total repeats, 66.66% were in the

LSC region, 29.62% were in the IR region, and only 3.70% were in

the SSC region (Figure 4C). Only six genes (pafI, psaB, trnS-GCU,

rpl16, ccsA, and ycf2) possessed long repeat elements, and ycf2

contained the highest number of repeat sites (n = 8, 29.62%). The

remaining repeats were located in intergenic regions.
3.7 Tandem repeat analysis

Centromeres are essential for chromosomal segregation and

contain megabase-scale arrays of tandem repeats. These tandem

repeats share common properties among species across different

phyla (Melters et al., 2013). In total, 21 tandem repeats were

identified in the cp genome of T. fargesii, 12 of which were
TABLE 1 Genes according to the categories within the T. fargesii
chloroplast genome.

Category Gene group Gene name*

Photosynthesis

Subunits of photosystem I
pafI, pafII, psaA, psaB,
psaC, psaI, psaJ

Subunits of photosystem II

psbA, psbB, psbC, psbD,
psbE, psbF, psbH, psbI, psbJ,
psbK, psbL, psbM,
psbT, psbZ

Subunits of
NADH dehydrogenase

ndhA, ndhBdi, ndhC, ndhD,
ndhE, ndhF, ndhG, ndhH,
ndhI, ndhJ, ndhK

Subunits of cytochrome b/
f complex

petA, petBi, petDi, petG,
petL, petN

Subunits of ATP synthase
atpA, atpB, atpEe, atpF,
atpH, atpI

Large subunit of rubisco rbcL

Self-replication

Proteins of large
ribosomal subunit

rpl14, rpl16i, rpl2di, rpl20,
rpl22, rpl23d, rpl33, rpl36

Proteins of small
ribosomal subunit

rps11, rps12di, rps14, rps15,
rps16e, rps18, rps19, rps2,
rps3, rps4, rps7d, rps8

Subunits of RNA polymerase rpoA, rpoB, rpoC1, rpoC2

Ribosomal RNAs
rrn16d, rrn23d,
rrn4.5d, rrn5d

Transfer RNAs

trnA-UGCdi, trnC-GCA,
trnD-GUC, trnE-UUC, trnF-
GAA, trnG-GCC, trnG-
UCCi, trnH-GUG, trnI-
CAUd, trnI-GAUdi, trnK-
UUUi, trnL-CAAd, trnL-
UAA, trnL-UAG, trnM-
CAU, trnN-GUUd, trnP-
UGG, trnQ-UUG, trnR-
ACGd, trnR-UCU, trnS-
GCU, trnS-GGA, trnS-UGA,
trnT-GGU, trnT-UGU,
trnV-GACd, trnV-UACe,
trnW-CCA, trnY-GUA,
trnfM-CAU

Other genes

Acetyl-CoA carboxylase accD

Megakaryocyte-associated
tyrosine kinase

matK

ATP-dependent
CLP protease

clpP1

N-terminal nucleophile
amino hydrolase superfamily

pbf1

Envelope membrane protein cemA

c-type cytochrome
synthesis gene

ccsA

Genes of
unknown
function

Conserved hypothetical
chloroplast ORF

ycf1, ycf2d

Pseudogene
rpl32, rps19-fragment,
ycf1, infA
*d, duplicate gene; i, genes with one intron; e, genes with two introns.
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dispersed in the gene spacer regions (rpoB/trnC-GCA, petN/psbM,

petN/psbM, petN/psbM, psbZ/trnG-GCC, psbZ/trnG-GCC, atpB/

rbcL, trnW-CCA/trnP-UGG, trnP-UGG/psaJ, trnP-UGG/psaJ,

rps12/trnV-GAC, and trnV-GAC/rps1), and the remaining nine

repeats were spread in the CDS region. One tandem repeat was

found in rpl16 and each ycf2 gene had four repeats

(Supplementary Table 6).
3.8 Prediction of RNA-editing sites

Using Deepred-Mt, 242 high-confidence C-to-U RNA editing

sites were successfully identified across 60 PCGs (Supplementary

Figure 1; Supplementary Table 7). Among these, ycf2 had the

highest number of RNA editing sites (24), followed by ycf1 and

rpoC2 (17 and 13, respectively), making them the top three genes

for RNA editing. Additionally, both ndhB and psaB contained 11

spots, and accD, atpA, matK, ndhF, psaA, and psbA carried seven

editing sites. In descending order, fewer editing sites were present in

the PCGs, including six (psbC and psbD), five (ndhA and rpoB), four

(atpI, ccsA, ndhD, ndhG, and ndhK), three (atpE, cemA, pafII, petB,

and psbB), and two (atpB, atpF, ndhC, ndhH, rbcL, rpl16, rpl2, rpl36,

and rpoC1). One editable site was detected in genes atpH, clpP1,

ndhI, pafI, petA, petD, petL, psaI, psdJ, psbK, psbL, psbT, psbZ, rpl20,

rpl23, rpoA, rps14, rps16, rps18, and rps7.
3.9 Comparison of IR boundaries within
Thalictrum chloroplast genomes

Significant contributions to variations within cp genomes

among different species were observed, owing to the contraction

and expansion of IR regions, which resulted in gene duplication,

deletion, and pseudogene generation (Song et al., 2022). The

locations of LSC/IR and SSC/IR junctions are regarded as indices

of cp genome evolution (Zhang et al., 2013a). Figure 5 shows that

the size of the cp genome within the Thalictrum was 154,889–

156,103 bp; the lengths of the LSC and SSC were 84,733–85,507 bp

and 17,470–17,657 bp, respectively; and the lengths of the IR

regions were 26,272–26,521 bp. The LSC/IRB border is located
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within rps19 and extends 53–119 bp into the IRB region. Notably,

the rps19 gene spanned 119 bp from the LSC to IRB in the cp

genome of T. coreanum, whereas it stretched by only 100 bp in the

same direction in the T. fargesii plastome. In T. thalictroides, the

LSC/IRB border is flanked by an intergenic region of 28 bp between

rps19 and the border, and the IRB/SSC border is between the partial

ycf1 and ndhF genes.

In the SSC region, the ndhF gene was larger in T. thalictroides

than in the other species. Moreover, T. foliolosum lacks ndhF. The

ycf1 fragment gene crosses the IRB/SSC border as a pseudogene in

T. viscosum, T. cirrhosum, T. balcalense, and T. fargesii. In contrast,

the SSC/IRA junction was positioned on the full-length ycf1 gene in

all the species. However, the size of the overlapping ycf1 gene at the

SSC/IRA junction varies among the Thalictrum species.

Remarkably, this gene enveloped 1,039–1,152 bp of the IRA

region in all species. In addition, the IRA/LSC border was pointed

between the rpl2 and trnH genes and 42–77 bp from the trnH region

toward the LSC region. Notably, exceptions were observed in T.

fargesii and T. coreanum, where the rps19 fragment was present at

the edge of the IRA/LSC. The rps19 fragment ended at the

termination of the IRA region in T. coreanum, whereas it was 2

bp extended toward the LSC in T. fargesii. These results

demonstrate that the IR and SC borders of the cp genomes within

the Thalictrum are primarily similar in terms of organization, gene

content, and gene order.
3.10 Divergence hotspot regions

Highly variable chloroplast genome sequences can be used to

ascertain phylogenetic relationships between species and genera

(Liu et al., 2018; Wu et al., 2018). To assess the degree of sequence

divergence, we computed nucleotide diversity values (pi) to locate

hotspots; hence, the results are presented for the entire T. fargesii cp

genome in a plot of pi values ranging from 0 to 0.033 (Figure 6). In

the plot, the IR regions were shown to have a lower variability than

the SSC and LSC regions. Remarkably, seven highly variable regions

(pi > 0.02) were detected: three in the LSC (psbM-trnD-GUC, trnF-

GAA-ndhj, and atpB), two in the SSC (ycf1 and trnR-ACG-rrn4.5),

and two in the IRA (ndhD-psaC and rpl16-rps3). These regions may
TABLE 2 Nucleotide composition in different regions of the chloroplast genome of T. fargesii.

Region Size (bp) A (%) T (%) G (%) C (%) GC (%)

Total genome 155,929 30.46 31.12 18.84 19.58 38.42

LSC 85,395 29.76 29.67 20.06 20.51 40.57

SSC 17,576 33.93 33.55 15.35 17.18 32.53

IRA 26,479 28.21 28.56 20.97 22.26 43.23

IRB 26,479 28.56 28.21 22.26 22.97 43.23

CDS 75,114 30.28 30.96 20.70 18.06 38.76

1st codon position 25,038 30.31 23.44 27.35 18.90 46.25

2nd codon position 25,038 29.10 32.18 18.06 20.67 38.73

3rd codon position 25,038 31.44 37.25 16.69 14.61 31.30
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also be employed as high-potential fragments to distinguish

between different Thalictrum species and may help in the

development of molecular markers.
3.11 Selection pressure on genes

In this study, we analyzed the rates of nonsynonymous (dn),

synonymous (ds), and dn/ds (w) ratios among 77 PCGs common to

Thalictrum, and the results are shown in Supplementary Table 8.

Among the 77 PCGs, the results of the statistical neutrality test

indicated that the genes were relatively stable during the

evolutionary process, and only 12 genes were found to have
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w values less than 1 (Supplementary Figure 2). To manifest, seven

genes (atpF, matK, petG, rpl22, rps2, ycf1, and pafI) were under

neutral selection (w = 1), and four genes (atpE, ccsA, ndhG, and

rpl20) had w values of precisely 0.5, indicating that the genes were

under purifying selection. The remaining gene, ndhF, had a w =

0.33, suggesting that it was also under purifying selection.
3.12 Phylogenetic analysis

The appearance of a complete T. fargesii cp genome provided us

with access to sequencing data that could be used to investigate the

phylogeny and, therefore, contribute to our understanding of
frontiersin.o
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FIGURE 3

Repeat type and number of analyzed SSRs in the cp genome of T. fargesii. (A) SSR-type distribution and their frequency in the complete cp genome.
(B) Distribution of SSRs in the LSC, SSC, and IR regions. (C) Type and frequency of each identified SSR.
FIGURE 2

Relative synonymous codon usage (RSCU) of 20 amino acids and stop codons in all protein-coding genes of the chloroplast genome of T. fargesii.
The colors of the histograms correspond to the colors of the codons.
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evolutionary relationships within the Thalictrum. In the present

study, nine species were analyzed to ascertain their phylogenetic

position, and Aconitum delavayi (NC_038097) was chosen as an

outgroup. ML analysis revealed a single phylogenetic tree with

higher bootstrap values, which resulted in constructing one cluster

from the complete cp genome of Thalictrum species divided into

two clades (Figure 7). Hence, Thalictrum was strongly supported as

a monophyletic group [bootstrap support (bs) = 100%]. This result

indicates that T. fargesii is closely related to T. tenue and

T. petaloideum.
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3.13 Variations in gene content
within Thalictrum

Regarding variation in gene content, we observed that pafI and

pafII were found only in the cp genomes of T. fargesii and T.

cirrhosum (Supplementary Table 9). Moreover, in the case of

pseudogenes, ycf1, infA, and rpl32 were identified in the T.

baicalense, T. coreanum, T. thalictroides, and T. fragesii cp

genomes, whereas the rps19 fragment (as a pseudogene) existed

only in T. coreanum and T. fargesii, indicating significant variations.
A B C

FIGURE 4

Distribution types and number of long repeats in the cp genome of T. fargesii. (A) Frequencies of different groups of repeats according to their
length in the cp genome. Different colors indicate repeats of various sizes in bp. (B) Frequencies of different types of repeats: forward (F), palindrome
(P), and reverse (R). (C) Distribution of the long repeats in the LSC, SSC, and IR regions. Different colors indicate the types of repeats.
FIGURE 5

Comparison of IR boundaries of chloroplast genomes within Thalictrum. The junctions are the LSC-IRB, IRB-SSC, SSC-IRA, and IRA-LSC. The length
inside the boxes indicates the distance between the end of the gene and the border sites. Arrows indicate the distance from the junction.
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The remaining species in the genus showed a relative absence of

pseudogenes in their cp genomes.
3.14 Hotspots of variant sites in the
chloroplast genome

Variant sites are the most useful for identifying genes with

significant variation and can facilitate the development of

molecular markers (Li and Cullis, 2023). The whole cp genomes of

the nine Thalictrum species were compared with those of T. fargesii,

which served as a reference to investigate variant sites. Our results

showed that 3.60% of the variant sites were present, and the

conserved sites accounted for 96.40%, suggesting that these

sequences were highly conserved within one genus (Supplementary

Table 2; Figure 8). Of the variant sites, 5,609 (3.60%) included 1.51%

extragenic variant sites and 2.08% intragenic variant sites, indicating

that the noncoding regions were highly conserved (Figure 8A).

Within the intragenic sites, there were 1,500 (48%), 951 (30%), 550

(18%), 111 (4%), and 11 (0%) variant loci in the genes related to

photosynthesis, self-replication, other, t-RNA, and unknown,

respectively (Figure 8B). Furthermore, we calculated the frequency

of variant sites within each category. Genes that contained more than

5% of the variant sites within each category included photosynthesis

(ndhD, ndhA, pafI, petA, psbB, and ndhK; Figure 8C), self-replication

(rpl32, rpl33, rps18, rps19, rpl16, rps16, rpl20, and rpl2; Figure 8D), t-

RNAs (trnQ-UUG, trnC-GCA, trnK-UUU, and trnG-UCC;

Figure 8E), unknown (ycf1 and yfc15; Figure 8F), and others

(cemA, matK, accD, clpP1, and ycf1; Figure 8G).
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4 Discussion

4.1 The conserved genome of Thalictrum

T. fargesii is of considerable importance in herbal medicine in

Asian countries; however, taxonomic controversies need to be

resolved, which may be possible from a detailed study of its

plastome genome (Li et al., 2020). Such a systemic investigation

and evolutionary analysis of T. fargesii has not been published

previously. Therefore, our study reports the first whole cp genome

composition of T. fargesii, which provides potential evidence via

phylogenomics. Previous studies on other angiosperm groups have

shown that chloroplast genomes are conserved or highly

polymorphic (Abdullah et al., 2020, Abdullah et al., 2021). In the

present study, the cp genome was highly conserved in terms of gene

order, gene content, and intron number, following the findings of

many other taxa, including Thalictrum (Tang et al., 2015; Yu et al.,

2018; Xiang et al., 2022). However, in some taxa, such as

Amorphophallus of Araceae, some genes were lost (Liu et al.,

2019), and in others, such as Pelargonium (Chumley et al., 2006),

the structure and gene order diverged from those reported here and

in most other angiosperms.

Overall, the structure and organization of the nine observed cp

genomes in Thalictrum, including T. fargesii, follow the typical

structure commonly found in angiosperms, except for a difference

in tRNA content in T. viscosum, which contains 38 tRNAs instead

of 37 (Park et al., 2015; Daniell et al., 2016; He et al., 2019;

Morales-Briones et al., 2019; He et al., 2021; Cai et al., 2022; Zhe

et al., 2023). The total length, GC content, and gene composition
FIGURE 6

Sliding window analysis of the complete T. fargesii cp genome. Nucleotide diversity analysis (p value) of the complete chloroplast genome of T.
fargesii. Window length: 600 bp; step size: 200 bp. X-axis: Position of the midpoint of the window. Y-axis: Nucleotide diversity of each window.
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were almost identical in the cp genomes of all studied species, and

these highly conserved features might be due to a typical

evolutionary passage in Thalictrum (Khan et al., 2020;

Villanueva-Corrales et al., 2021; Feng et al., 2022). Compared to

the LSC and SSC regions, the IR region was more conserved

among the cp genomes.

In addition, the ratio of nucleotide substitutions (dn/ds) and

their occurrence are frequently utilized as powerful tools to

elucidate the evolution of protein-encoding genes and species

adaptations (Kimura, 1989; Fay and Wu, 2003). It is noteworthy

that the chloroplast genome of T. fargesii only contains neutral

selection sites and purifying sites, suggesting that these genes have

conserved functions throughout their evolutionary history

(Khakhlova and Bock, 2006). These results offered further

evidence that the cp genomes of the Thalictrum are conserved.
4.2 Spotlights on significant molecular
variations within Thalictrum

Next-generation sequencing was used to sequence the cp

genomes of the ethnodrug species T. fargesii. The plastome of this

species varies in terms of genomic structure, nucleotide diversity,

structural alterations, and phylogeny with the plastomes of

Thalictrum species (Park et al., 2015; He et al., 2019; Morales-

Briones et al., 2019; He et al., 2021; Cai et al., 2022; Zhe et al., 2023).

For instance, there is an apparent difference between Thalictrum

plastomes in the IR-SC boundary areas, which causes variations in

genome size (Xiang et al., 2022). IR-SC contractions or expansions

into or out of neighboring single-copy regions are typically observed

in angiosperm plastomes, and this process is a primary mechanism

and an example of length variation in cp genomes (Kim and Lee,
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2004; Yang et al., 2016; Zhang et al., 2016; Ye et al., 2018). Indeed, in

our investigation, several genes, including ycf1, rps19, ndhF, ycf15,

and yrpl32, were worth examining more closely. For example, ycf1

is duplicated in the cp genomes of several members of the

Thalictrum, with a larger copy (ycf1, 5,616–5,658 bp) positioned

at the SSC-IRA boundary and a fragmented copy (yycf1, 1,144–
1,152 bp) located at the SSC-IRB boundaries, including T. fargesii

(Xiang et al., 2022). Other taxonomic groups also contain the

pseudogene ycf1 at the same junction (Henriquez et al., 2020;

Mehmood et al., 2020). According to our findings, the shortest

ycf1 gene was present in the cp genome of T. fargesii (5,520 bp),

with more than 5% of the variant sites within the genus. Thus, ycf1

has enormous potential for use in developing molecular markers

and has also been reported in Fritillaria and Pulsatilla (Bi et al.,

2018; Li et al., 2018, Li et al., 2020).

Among such variations in cp genomes, molecular evolutionary

phenomena including mutations, substitutions, selections, and

random genetic drifts play a significant role. One of the molecular

features known as “codon use bias” also helps unveil chloroplast

and nuclear genome relationships and has been influenced by the

GC content at codon locations in various organisms (Yang et al.,

2018). Moreover, it is a critical feature for studying the functions of

genes and contributes to its evolutionary relationship (Wang et al.,

2023; Yang et al., 2023). We disclosed the presence of AT-rich

intergenic regions in our present analysis, which is harmonized with

the phenomenon that the overall GC content in the cp genomes of

terrestrial plants is often low (Yang et al., 2017). Codon usage has a

strong relationship with GC content in the codon position, and it is

considered an important parameter in understanding evolutionary

processes and selection pressure on genes (Zhang et al., 2013b). Our

investigation revealed that of the 31 codons with RSCU values

higher than one, 16 ended in U and 13 ended in A, indicating
FIGURE 7

Phylogenetic relationships of Thalictrum inferred from maximum likelihood (ML) analysis based on whole chloroplast genomes. The numbers in each
node indicate ML bootstrap values. The scale bar shows 0.7 changes.
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natural selection and mutation (Necs ̧ulea and Lobry, 2007). This

finding suggests that T. fargesii prefers to employ synonymous

codons with a third base, A or U, which is comparable to that of

other Thalictrum species (Xiang et al., 2022; Zhe et al., 2023). This

may be attributed to the abundance of A/T nucleotides in the

angiosperm cp genomes (Abdullah et al., 2020). For instance,

alanine and leucine were the most common codons in the T.

fargesii chloroplast, which might be related to the abundance of A

or T in the IR region (Chen et al., 2015), and is consistent with

previous studies on the cp genomes of angiosperms (Oresǐč and

Shalloway, 1998). Lauraceae exhibited a similar trend (Cao et al.,

2023); however, the cp genome of Lespedeza showed comparable

results (Somaratne et al., 2019).

Repeat sequences, particularly SSRs, are widely distributed in cp

genomes, as microsatellite repeats play an essential role in gene

expression, transcription control, and chromosomal construction,

and display a high level of polymorphism (Qi et al., 2018; Huang

et al., 2022; Xia et al., 2022). Our results support the hypothesis that cp-

genome SSRs have substantial A/T bias, and this trend frequently

occurs in many plants (Vieira et al., 2014; Wang et al., 2018). Similar to

T. fargesii, mononucleotide repeats are the most abundant in Fritillaria,
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Lilium, and Epimedium (Rønsted et al., 2005; Zhang et al., 2016). Xiang

et al. (2022) have reported 39 to 60 SSRs among 11 Thalictrum species;

however, we have identified a total of 68 such repeats. In future genetic

studies, we may leverage that SSRs could be used as a source of

molecular markers and genomic barcodes for the T. fargesii cp genome.

Previous studies have demonstrated that improperly combined

repeating or sliding sequences can cause genomic rearrangements

(Lu et al., 2017). Long repeat sequences promote cp genome

rearrangement and increase the genetic diversity of a population

(Guo et al., 2017; Cui et al., 2019). For example, the ycf2 gene

provides a suitable resource for genomic studies in the cp genome of

T. fargesii, similar to those in other plant species (Cauz-Santos et al.,

2017; Shen et al., 2017; Liu et al., 2018). Owing to the presence of

different repeats in genes, such as ycf1, ycf2, and rpl32, resulting in a

pseudogenized gene or loss of functions, become a significant

molecular feature of cp genome in plant evolution and identification

(Santos and Pereira, 2018; Park et al., 2019; Miao et al., 2022).

In higher plants, RNA editing occurs as a codon-specific event

for converting cysteine (C) to uridine (U) during posttranslational

modification. Therefore, this molecular process is crucial for RNA

maturation to prevent unwanted mutations and to act as a signal for
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FIGURE 8

The ratio of chloroplast genome variant sites in Thalictrum species. (A) Distribution of the different variant sites. (B) The frequency of intragenic
variant loci in different gene categories. (C) Frequency of variant loci among photosynthesis genes. (D) Frequency of variant loci among genes
involved in self-replication. (E) Frequency of variant loci in the t-RNA genes. (F) Frequency of variant loci in the unknown genes. (G) Frequency of
variant loci in the other genes.
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adaptation (Chu and Wei, 2019; Somaratne et al., 2019). Numerous

plants, including Arabidopsis, tobacco, pea, and tomato, have RNA

editing sites (Wang et al., 2016). Thus, our findings on the

significant C-to-U editing mechanism in the plastid genome of T.

fargesii can aid in detecting missense mutations in its genes (Chen

et al., 2018; Small et al., 2020).

Divergent regions in cp genomes can help to identify closely

related species and reveal phylogenetic information (Dong et al., 2012;

Du et al., 2017). These regions have been adopted to generate barcodes

for plant identification in other families of plants, including woody

plants (Tan et al., 2018; Yan et al., 2023). According to our findings,

ndhD-psaC and rpl16-rps3 were found to be divergent hotspots in the

cp genome of T. fargesii, and have also been reported in other studies

on the plastome of Thalictrum (Xiang et al., 2022). The same

phenomenon has been witnessed for numerous other taxa such as

Lagerstroemia and Adrinandra (Cui et al., 2019; Dong et al., 2021;

Nguyen et al., 2021; Ren et al., 2022; Yang et al., 2022). In addition,

these mutational hotspots might aid researchers in studying

population genetics and identifying Thalictrum species.

To evaluate the selection pressure on genes and genomes, dn and

ds values are important markers in the cp genome. Selection pressure

plays a vital role in the adaptation to different environments (Yang

and Nielsen, 2000; Gao et al., 2019). Several genes in T. fargesii were

found to have a lower dn/ds ratio, suggesting that they are likely to

undergo disadvantageous non-synonymous substitutions and

purifying selections (Sheikh-Assadi et al., 2022). In T. coreanum, T.

foeniculaceum, T. foliolosum, and T. thalictroides, the ndhG gene was

significant under positive selection, with a lower codon bias index,

suggesting a lower expression level in vivo (Xiang et al., 2022).

Moreover, they reported that atpF, petG, rpl20, and rpl22 were

under positive selection. In contrast, in the present study, the ndhG

and rpl20 were observed under purifying selection, and atpF, petG,

and rpl22 were supported by neutral selection in T. fargessii. Thus,

purifying selection might be a result of an evolutionary process that

preserves the adaptive behavior of this species.

Interestingly, the pafI and rps19 genes in the plastome of T.

fargesii exhibited more than 5% variation within the Thalictrum,

which was consistent with the findings of Li et al. (2014). In addition,

the pafI gene contains two mono-type (10 bp each) SSR repeats and a

39-bp forward repeat at one of its introns, similar to the findings

elucidated by Kurt et al. (2023). With the meaningful characteristic

architecture of the IRA-LSC, the distance between the rpl2 and trnH

genes was markedly different from that of other species in the genus.

Moreover, similar to the phenomenon observed in Fritillaria, the

presence of the rps19 fragment at the IRA-LSC junction in the T.

fargesii cp genome and its distance from trnH make this region a

probable string for marker design (Li et al., 2014). Cumulatively, these

findings provide molecular evidence for differentiating the ethnodrug

plant T. fargesii from other species of Thalictrum.
4.3 Insights into the phylogeny
of Thalictrum

The phylogeny and classification of Thalictrum have long been

debated, and distinguishing T. fargesii plants from plants with similar
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morphological traits remains unclear (Xiang et al., 2022). Plastid

genome sequences have proven useful for phylogenetic investigations

of angiosperms (Jansen et al., 2007; Huang et al., 2014; Kim et al., 2015;

Li et al., 2019). This approach is valuable for classifying organisms at

lower taxonomic levels (He et al., 2012; Zhang et al., 2016). Previous

phylogenetic studies of the genus Thalictrum have used traditional

approaches to classify this genus that includes rpl16 intron and ndhC-

trnV-UAC by Soza et al., (2012, 2013), and ndhA intron, trnLUAA-

trnF-GAA, rpl32-trnL-UAG, and rbcL byWang et al. (2019). Moreover,

Xiang et al. (2022) found that 116 IGS regions had stronger support

than 114 gene sequences and revealed that the closest phylogenetic

relationship existed within T. minus and T. aquilegiifolium, and T.

coreanum and T. thalictroides. Several studies have uncovered that

close relationships were present between T. minus and T. tenue (He

et al., 2019; Lin et al., 2021; Pu et al., 2022), T. tenue and T. petaloideum

(He et al., 2019; Pu et al., 2022), T. minus and T. petaloideum (He et al.,

2019; Pu et al., 2022), T. minus and T. aquilegiifolium (Cai et al., 2022;

Michimoto et al., 2022; Xiang et al., 2022), T. viscosum and T.

cirrhosum (Cai et al., 2022; Michimoto et al., 2022), and T. coreanum

and T. thalictroides (He et al., 2021; Lin et al., 2021; Michimoto et al.,

2022; Xiang et al., 2022) based on all sequences and whole cp genome.

However, none of their circumscribed relationships have uncovered the

T. fargesii status within this genus. The availability of complete cp

genomes of T. fargesii, as investigated by the present authors, provides

sufficient information to establish phylogenetic relationships among

the same taxa. According to their results, T. fargesii is closely related to

T. tenue and T. petaloideum, supporting the conclusion of an earlier

study that T. baicalense is closely related to T. tenue, T. minus, and T.

petaloideum (He et al., 2021). Interestingly, T. viscosum has been

reported to be closely related to T. cirrhosum and T. foeniculaceum

(Cai et al., 2022). Conferring with more Thalictrum taxon samples, our

phylogenetic studies of cp genome sequences, reported for the first

time, revealed significantly enriched phylogenetic resolution and

provided robust inferences of intraspecific relationships. This finding

expands the scope of future research on the correlation between these

mutations in the cp genome in terms of genetic evolution and

speciation in this species. Further studies should entail selecting more

samples from wild populations based on their ecotypes and collecting

more extensive data from both the nuclear and cp genomes to establish

more detailed evidence of phylogenetics and species evolution.
5 Conclusion

Altogether, our findings revealed the complete cp genome of T.

fargesii using the Illumina HiSeq platform and a comparative analysis

with those of other Thalictrum species provides a fundamental

reference for phylogenetic studies. The chloroplast genomes of

Thalictrum were compared, and although they were found to be

highly conserved in terms of structure, organization, gene order, IR

boundaries, and gene content, we have reported distinguishable

features of T. fargesii. In particular, two features have clearly

demarcated the cp genome of T. fargesii within the genus, which is

the length of pseudogenes and their distance from IR/SC borders.

Moreover, pafI and rps19 had highly variable sites in the cp genome of

T. fargesii compared with other species in the genus. In addition, the
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divergent regions identified in the present study via nucleotide

divergence analysis could help design molecular markers to identify

this ethnodrug and its contaminants. Phylogenetic analysis revealed

close relationships among T. fargesii, T. tenue, and T. petaloidium. The

aforementioned analytical findings significantly contribute to the

understanding of the cp genome of T. fargesii and provide genomic

information to aid taxonomic identification and phylogenetic

relationships within the Thalictrum species. In conclusion, our study

provides powerful resources and valuable scientific references for

identifying T. fargesii plants for the safety and effectiveness of

ethnodrug use and contributes to the bioprospecting and

conservation of this species.
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