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Grain hardness (Gh) is important for wheat processing and end-product quality.

Puroindolines polymorphism explains over 60% of Gh variation and the novel

genetic factors remain to be exploited. In this study, a total of 153 quantitative

trait loci (QTLs), clustered into 12 genomic intervals (C1-C12), for 13 quality-

related traits were identified using a recombinant inbred line population derived

from the cross of Zhongkemai138 (ZKM138) and Chuanmai44 (CM44). Among

them, C7 (harboring eight QTLs for different quality-related traits) and C8 (mainly

harboringQGh.cib-5D.1 for Gh) were attributed to the famous genes, Rht-D1 and

Pina, respectively, indicating that the correlation of involved traits was supported

by the pleotropic or linked genes. Notably, a novel major stable QTL for Gh was

detected in the C12, QGh.cib-7D, with ZKM138-derived allele increasing grain

hardness, which was simultaneously mapped by the BSE-Seq method. The

geographic pattern and transmissibility of this locus revealed that the

increasing-Gh allele is highly frequently present in 85.79% of 373 worldwide

wheat varieties and presented 99.31% transmissibility in 144 ZKM138-derivatives,

indicating the non-negative effect on yield performance and that its indirect

passive selection has happened during the actual breeding process. Thus, the

contribution of this new Gh-related locus was highlighted in consideration of

improving the efficiency and accuracy of the soft/hard material selection in the

molecular marker-assisted process. Further, TraesCS7D02G099400,

TraesCS7D02G098000, and TraesCS7D02G099500 were initially deduced to

be the most potential candidate genes of QGh.cib-7D. Collectively, this study

provided valuable information of elucidating the genetic architecture of Gh for

wheat quality improvement.
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Introduction

Wheat (Triticum aestivum L.), one of the most widely planted

food crops, provides approximately 20% of the dietary calories in

food products consumed worldwide. Grain hardness (Gh) is a key

trait contributing to milling quality and the end-use qualities in

wheat, decided by the degrees of interaction between starch

granules and the protein matrix within the endosperm (Pasha

et al., 2010; Miki et al., 2020). According to Gh, wheat can be

classified into hard and soft types. Hard wheat exhibits high

crushing resistance due to strong adhesion between starch

granules and the protein matrix (Pasha et al., 2010). Its flour had

more damaged starch and higher water absorption than soft wheat

flour (Oury et al., 2015), thus usually suited for making bread and

noodles whereas soft wheat is better for cookies, cakes, and pastries

(Guttieri et al., 2001). Besides the common pasta quality

characteristics are greatly determined by grain hardness, in China,

the Gh is also a major determinant for Baijiu (the famous Chinese

liquor) flavor and quality, considering that wheat is the major raw

material for producing the Jiuqu (Baijiu starter) and thus severely

affect the final flavor and commercial value of Baijiu. Especially the

soft wheat has higher saccharigying efficiency for simultaneously

facilitating asccharification and fermentation, thus it is usually

thought to be more suited for starter production of Chinese

Baijiu (Wang et al., 2018). Therefore, exploring the genetic basis

of wheat Gh is of great significance for improving wheat quality and

commodity properties of wheat.

The most famous loci determining Gh is the Hardness (Ha) on

chromosome 5DS, including Pina-D1, Pinb-D1, and Gsp-1 genes

(Bhave and Morris, 2008). These three genes encode PINA, PINB,

and GSP-1, respectively, which are responsible for the texture of the

endosperm and form a friabilin fraction present on the surface of

water-washed starch granules (Gupta et al., 2008; Pasha et al., 2010;

Martin et al., 2017). The homoeologous loci on chromosomes 5A

and 5B lack both Puroindoline genes, which having been deleted

during durum evolution. In contrast, Gsp-1 is retained in durum

wheat and all three sub-genomes in common wheat (Turnbull et al.,

2003; Chantret et al., 2005). The wild-type genotypes (Pina-D1a

and Pinb-D1a) commonly represented the soft-textured grains,

whereas mutations in either Pina-D1a or Pinb-D1a usually lead

to hard-textured grains (Bhave and Morris, 2008). Previous studies

have reported thirteen allelic variants at the Pina-D1 locus (Pina-

D1b, f, k–n, and p -v) and sixteen allelic variants at the Pinb-D1

locus (Pinb-D1b-g, l, p-w, aa, and ab), including nucleotide

mutations, point mutations, and frameshift mutations in common

wheat (Bhave and Morris, 2008; Ikeda et al., 2010; Ramalingam

et al., 2012; Chen et al., 2013).

In addition to the Ha locus, the novel genetic factors other than

Pin genes remain to be exploited. Numerous grain hardness-

associated quantitative trait loci (QTLs) have been identified on

almost all chromosomes of wheat (Martin et al., 2001; Turner et al.,

2004; Boehm et al., 2018; Kumar et al., 2019; Tu and Li, 2020). For

instance, six QTLs were detected for grain hardness on 1B, 4B, 5B,

2D, 4D, and 5D chromosomes by a genome-wide association study

(GWAS), with phenotypic variation explanation of 3.7%-50.31%
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(Wang et al., 2012). Ibba et al. (2019) used 8537 markers to identify

two major significant regions related to Gh which were identified on

chromosomes 3AL and 6AS each responsible for an additive effect

of ~6 hardness index units. However, few QTLs were stably

expressed with high phenotypic (>10%) variation in multiple

environments, which mean most of them were moderate or

environment-special Gh-related QTL and hindered their possible

applications in wheat breeding programs.

Moreover, the traditional QTL mapping methods depending on

the genotyping all individuals in biparental mapping population,

which is time-consuming, laborious, and costly due to the

enormous size and complexity of the wheat genome (~ 17 Gb) of

which the exome constitutes less than 5% (International Wheat

Genome Sequencing Consortium, 2014). To resolve these issues,

targeted sequencing approaches, such as exome capture, were

developed and used to facilitate mapping major QTLs. Among

them, exome sequencing to major loci location restricts attention

only to the genomic fraction that encodes for mRNA and eventually

a phenotype (Kaur and Gaikwad, 2017). The technique has

advantage of being extraordinarily quick, simple, inexpensive, and

requires small amount of input DNA (<1–3 mg) (Mertes et al.,

2011). For example, by the exome capture sequencing of bulked

segregant analysis (BSE-Seq) method, Mo et al. (2018) quickly

identified a clear peak region on chromosome arm 4BS associated

with increased plant height. Yu et al. (2022) identified three major

stable locus controlling spike length and spike compactness on

chromosomes 2A and 2D. Martinez et al. (2020) fine-mapped the

ABA-hypersensitive mutant ERA8 in a wheat backcross population

to the TaMKK3-A locus of chromosome 4A. Therefore, BSE-Seq

provides other efficient approach to identify favorable alleles of

quantitative traits and accelerate the process of wheat breeding.

However, BSE-Seq commonly only target one specific trait, the

traditional QTL mapping can efficiently detect genome regions for

multiple traits, especially the correlated traits.

In present study, we developed a recombinant inbred line (RIL)

population derived from the cross of Zhongkemai138 (ZKM138)

and Chuanmai44 (CM44) for both QTL mapping and BSE-Seq. The

aims of this study were to (i) identify QTL controlling quality-

related traits, especially the Gh related trait, and evaluate effect of

major QTL; (ii) develop KASP markers linked to the detected major

QTL and analyze its potential breeding value; (iii) predict candidate

genes for the detected novel major QTL.
Materials and methods

Plant materials and field trials

A population of 170 recombinant inbred line (RIL) lines,

generated by the single seed descent method from a cross of

Zhongkemai138 (ZKM138) × Chuanmai44 (CM44) (indicated as

BC-RIL), was used in this study. ZKM138 and CM44 are both

widely adaptable varieties in Sichuan Province, released by Chinese

Academy of Sciences Chengdu Institute of Biology (CIBCAS) and

Sichuan Academy of Agricultural Sciences, respectively. The
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parents and BC-RILs were planted and evaluated in seven

environments (year × locations × treatments) as follows: 2018-

2019 in Shuangliu (SL, 103 ° 52’E 30°34’N) with high nitrogen (HN)

(1E); 2018-2019 in Shifang (SF, 104 ° 11’E, 31°6’N) with HN (2E)

and LN (3E); 2019-2020 in Shifang with HN (4E) and LN (5E);

2019-2020 in Shuangliu with HN (6E) and LN (7E). In the high

nitrogen (HN) plots, the organic fertilizer (300 kg ha-1), nitrogen

fertilizer (120 kg ha-1), phosphate fertilizer (50 kg ha-1), and potash

fertilizer (50 kg ha-1) as a base fertilizer were applied only before

sowing. In the low nitrogen (LN) plots, no nitrogen fertilizer was

applied during the growing period. Each RIL was single-seed

planted in two-row plot with a length of 1 m with 20 seeds per

row, at a row spacing of 0.25 m. Additionally, 144 derivatives of

ZKM138 also developed by CIBCAS were used to further validate

the target QTL and assess its application potential in our actual

breeding process. Three hundred and seventy-three worldwide

varieties (Supplementary Table 6) were employed to evaluate the

distribution of the target locus and its potential application value.

Field management and disease control were performed according to

the common practices for wheat production.
Phenotypic evaluation and
statistical analysis

At maturity, at least six representative plants of each line as the

repetitions were harvested randomly to measure the phenotype of

grain hardness (Gh) and the other 12 quality-related traits,

including grain water absorption (Abs), moisture content (Mc),

grain protein content (Gpc), grain starch content (Gsc), grain wet

gluten content (Wgc), sedimentation volume (Sv), test weight (Tw),

dough development time (Ddt), dough stability time (Dst), tensile

elongation (Te), tensile area (Ta), maximum tensile resistance

(Mtr). These traits were measured by near-infrared reflectance

spectroscopy (NIRS) on a Perten DA-7200 instrument (Perten

Instruments, Huddinge, Sweden) and expressed on a 14%

moisture basis. The correlation between NIRS and traditional

methods was confirmed by previous studies (Li et al., 2012; Asif

et al., 2015). Especially, the importance of NIRS on wheat grain

hardness has been proved (Sun et al., 2009) as a powerful method

for measuring grain hardness and other quality traits in wheat.

Basic statistical analyses, frequency distribution, and correlation

coefficients among traits were conducted using SPSS version 25.0

for Windows (IBM SPSS, Armonk, NY, United States). The best

linear unbiased estimator (BLUE) was calculated using QTL

IciMapping software. The broad-sense heritability (H2) was

estimated according to the method described by previous studies

(Smith et al., 1998; Muqaddasi et al., 2019).
SEM observation of grains

A transverse section of grain was observed by an Apre S

scanning electron microscope (ThermoFisher) after the grain was

snapped in the middle according to previous report (Moeko et al.,
Frontiers in Plant Science 03
2018). These conditions of SEM observation were similar to those

described in previous report (Moeko et al., 2018).
Genetic map construction and quantitative
trait loci detection

A genetic linkage map, using 993 bin markers from the Wheat

50K SNP array, previously constructed for the BC-RIL population

was adopted for QTL analysis in this study. This genetic map was

spanned 1936.59 cM across the 21 wheat chromosomes with an

average interval of 0.47 cM per marker (Liu et al., 2022). JoinMap

4.1 and IciMapping 4.2 (Meng et al., 2015) were used for genetic

construction. The function of ‘Population’ in JoinMap 4.1 was used

to create groups with a limit of detection (LOD) score values

ranging from 2 to 10. The Kosambi mapping function was used

to order the bin markers, with the parameters being set as LOD ≥ 7

and round = 3, in JoinMap 4.1. Detection of QTL was based on the

Biparental Populations (BIP) module for inclusive composite

interval mapping (ICIM), with a walking step = 0.001 cM and

PIN = 0.001, and a test with 1,000 permutations was used to identify

the LOD threshold. A LOD value ≥ 2.5 was used to detect putative

QTLs. Moreover, a QTL with a LOD value ≥ 3.5 and phenotypic

variation > 10% (on average) that was detected in more than three

environments was considered a major stable QTL (Li et al., 2022).

QTLs were named according to the International Rules of Genetic

Nomenclature, where “cib” represents Chengdu Institute of Biology

(Boden et al., 2023). If the confidence intervals of corresponding

QTLs overlapped, these QTLs were considered and named

one QTL.
Development of Kompetitive
Allele-Specific PCR markers

According to the candidate regions obtained by BSE-Seq

analysis, SNP/InDel between the parents and the extreme pools

were converted to Kompetitive Allele Specific PCR (KASP) markers

for QTL confirmation and linkage analyses. KASP primers were

developed following standard guidelines. The allele-specific primers

were designed to carry FAM and HEX tails at the 3’ end of the

targeted SNP. Common primers were designed using the online

primer design pipeline PrimerServer (http://202.194.139.32/

PrimerServer). According to the previous report (Li et al., 2022),

the reaction conditions and systems of the polymerase chain

reaction (PCR) system and the KASP arrays were conducted.
BSE-seq analysis

The genomic DNA of 40 extreme phenotype individuals from

14-day-old seedlings of the BC-RILs and parents was extracted by

CTAB method, and then the genomic DNA was bulked in an equal

ratio to generate the two DNA pools, including 20 individuals

(named MAX-7) with high grain hardness and 20 individuals
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(named MIN-7) with low grain hardness. The selected proportion

comprised 11% at each tail for extreme phenotypes, which was

presumed to provide a 95% probability of detecting QTLs with large

effects (Sun et al., 2009). Exome capture sequencing and analysis of

four DNA libraries (ZKM138, CM44, MAX-7, and MIN-7) were

carried out by OE Biotech Company (Shanghai, China).

Raw sequence reads were filtered using Fastp (v0.12.4) to

remove the low-quality reads and adapters used. The high-quality

reads were then aligned to IWGSC RefSeq v1.0 genome. After that,

raw cohort vcf was worked out with GATK (v4.0.10.1) (Mccormick

et al., 2015). The minimum-mapping quality parameter was set as

30 for only high-quality alignment reads used to call variants. SNP

calling and density analysis were carried out using sliding window

calculation based on the reference of Takagi et al. (2013). The data

filtering parameters were set as AF (Allele Frequence) <0.3 or >0.7.

The data of BSE-Seq was deposited in the NCBI repository,

accession number: PRJNA899434.
Prediction of candidate gene

The physical positions of major QTL were obtained by aligning

the sequences of flanking markers with the wheat reference genome

assembly constructed in the cv. Chinese Spring sequence (IWGSC

RefSeq v1.0) with a BLAST search. Afterward, genes within the

physical regions were extracted using Interval Tools of the Wheat

Omics and their annotated functional descriptions were retrieved

from UniPort (https://www.uniprot.org/). The expression data of

each gene in different tissues (roots, leaves/shoots, spike, and grain)

was retrieved from Wheat Expression Browser (http://www.wheat-

expression.com/). And the expression pattern analysis of these

genes was performed and presented in the HeatMap drawn by

TBtools software (Chen et al., 2020). Moreover, based on the whole

genome re-sequencing data of ZKM138 and CM44, SNPs and

Indels of these genes in the target region were obtained

and analyzed.
Results

Phenotypic evaluation and
correlation analysis

ZKM138 exhibited significant higher Gh and Abs than CM44 in

all environments (Supplementary Figure 1; Supplementary Table 1).

These measured traits exhibited a normal distribution in the BC-

RIL population, and the frequency distribution showed continuous

variation, indicating that these traits were determined by multiple

genes (Figure 1; Supplementary Table 1). Broad-sense heritability

ranged from 0.53 (Gsc) to 0.83 (Gh and Abs), indicating most of

them, especially Gh and Abs, were mainly controlled by genetic

factors (Supplementary Table 1).

Phenotypic correlations between the all detected quality-related

traits are showed in Figure 1. Gh was significantly positively

correlated with Abs (r = 0.94), and the significantly negative

correlation coefficients were observed for Gh-Tw (r = -0.36) and
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Gh-Gsc (r = -0.30), respectively. In addition, Gpc was significantly

negatively correlated with Gsc (r = -0.80), consistent with their well-

known trade-off (Fan et al., 2022).
QTL detection

A total of 153 QTLs for these thirteen traits were detected in

BC-RIL population and located on all the 21 chromosomes

accounting for 1.16%-18.2% of the phenotypic variation

(Supplementary Table 2). Among them, 24 QTLs were classified

as the major QTLs (PVE > 10%), of which 11 major stable QTLs

were detected in multiple environments and described in detail.

Two major QTL for Ta and Mtr (QTa.cib-4A and QMtr.cib-4A)

were located on chromosome 4A and stably detected in three

environments, explaining 12.12% and 10.72% of the phenotypic

variance, respectively. On chromosome 4D, QDdt.cib-4D for Ddt

was detected in three environments and the BLUE dataset with the

LOD values ranging from 3.93 to 6.47, explaining 7.80%-10.60% of

the phenotypic variance. One major QTL for Gh (QGh.cib-5D.1)

was discovered on chromosome 5D in six environments,

accounting for 12.22% of the phenotypic variation, and collocated

with two major stable QTLs for Mc and Abs (QMc.cib-5D and

QAbs.cib-5D). The major QTLQDst.cib-6D2 for Dst was detected in

three environments and explained 7.62%-12.62% of phenotypic

variance. On chromosome 7B, two major stable QTLs for Wgc and

Ddt (QWgc.cib-7B and QDdt.cib-7B) expressing in four and three

environments, respectively, were collocated with the LOD values of

5.02 and 5.48, explaining 10.39% and 10.13% of the phenotypic

variance, respectively, with the positive alleles of both loci

contributed by CM44.

On chromosome 7D, two major QTLs were detected in all

environments and the BLUE dataset, affecting Gh (QGh.cib-7D)

and Abs (QAbs.cib-7D), and explained 13.74% and 13.2% of the

phenotypic variance. At this location, a ZKM138-derived alleles

enhanced both Gh and Abs (Supplementary Table 2).
QTL clusters

In this study, 12 intervals clustering (C1-C12) three or more

additive QTLs were observed (Figure 2; Supplementary Table 3).

They were mainly mapped on 11 chromosomes. Seven of them

contained at least one major stable QTL that could be detected

repeatedly in more than three environments. C3 located at 703-755

Mb on chromosome 2A and contained a major QTL for Gh

(QGh.cib-2A.2). C6 contained two major stable QTLs for dough

rheological properties (QTa.cib-4A and QMtr.cib-4A) and two

moderate QTL for Gh and Te (QGh.cib-4A and QTe.cib-4A), with

positive allele derived from ZKM138. C7, involving the famous

semi-dwarfing gene Rht-D1, was clustered by nine QTLs affecting

quality traits, including QMc.cib-4D.1, QGpc.cib-4D, QGsc.cib-4D,

QWgc.cib-4D, QSv.cib-4D, QDdt.cib-4D, QDst.cib-4D.1, QTe.cib-

4D, and QTa.cib-4D. C8 had three major stable QTLs for Gh

(QGh.cib-5D.1), Abs (QAbs.cib-5D), and Mc (QMc.cib-5D), and

probably associated with the famous hardness Pin genes. C10
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https://www.uniprot.org/
http://www.wheat-expression.com/
http://www.wheat-expression.com/
https://doi.org/10.3389/fpls.2024.1356687
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Liu et al. 10.3389/fpls.2024.1356687
contained one major stable QTLs for Dst (QDst.cib-6D2) and eight

QTLs (QGpc.cib-6D2, QWgc.cib-6D2, QSv.cib-6D2, QGh.cib-6D2,

QAbs.cib-6D2, QDdt.cib-6D2, QTe.cib-6D2, QTa.cib-6D2), with the

ZKM138-derived allele increasing all these traits. Furthermore, C12

had two major stable QTLs for Gh and Abs (QGh.cib-7D and

QAbs.cib-7D) with high phenotypic variation, implying a strong

relation to wheat processing.
Additive effects of QGh.cib-5D.1 and
QGh.cib-7D on grain hardness

In this study, two major QTLs for grain hardness stably

expressed on chromosomes 5D and 7D in all environments,

which were two major stable QTLs for Gh in this study.

ZKM138-derived allele contributed the increasing Gh at both loci,

which might provide the major genetic basis to ZKM138 for its

higher Gh. The pyramiding effects of two QTLs on grain hardness

were analyzed (Figure 3A). The lines with a positive allele, ie.,

ZKM138-derived allele, at either of QHa.cib-5D.1 or QGh.cib-7D

significantly increased grain hardness by 5.07%-5.14% relative to
Frontiers in Plant Science 05
lines without any positive alleles; and the lines with ZKM138-

derived allele at both loci significantly increased grain hardness by

11.46%. These results indicated that these two loci had a pyramiding

effect on grain hardness, which could be applied together for grain

hardness selection and breeding.

Considering the physical location of QHa.cib-5D.1 was located

on chromosome 5DS and was overlapped with Pin genes.

According to functional markers genotyping reported in previous

studies (Giroux andMorris, 1997; Li et al., 2006), the results showed

that both ZKM138 and CM44 carried Pinb-D1b, while ZKM138

carried Pina-D1b and CM44 carried Pina-D1a, and proved that it

was the major contributor for increasing Gh at QHa.cib-5D.1

(Supplementary Figure 2).

Only for QGh.cib-7D, the lines with ZKM138-derived allele

had significantly higher Gh (P < 0.001) than the lines carrying

CM44-derived allele (Figure 3B). To further elucidate the separate

and effective effect of QGh.cib-7D other than Pina on grain

hardness, the population were divided into 2 groups, according

to the lines whether carrying Pina-D1a (Figures 3C, D). The

results showed that the lines harbored ZKM138-derived allele at

QGh.cib-7D increasing grain hardness 8.33% when Pinb and Pina
FIGURE 1

Phenotypic distributions and correlation coefficients of quality-related traits in the BC-RIL population based on BLUE data. *, **, and *** represent
significance at P < 0.05, P < 0.01, and P < 0.001, respectively. grain hardness (Gh), grain water absorption (Abs, %), moisture content (Mc, %), grain
protein content (Gpc, %), grain starch content (Gsc, %), grain wet gluten content (Wgc, %), sedimentation volume (Sv, mL), test weight (Tw, g L-1),
dough development time (Ddt, min), dough stability time (Dst, min), tensile elongation (Te), tensile area (Ta), and maximum tensile resistance (Mtr).
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loci were Pinb-D1b and Pina-D1b, respectively, i.e., under the

background with Pinb-D1b/Pina-D1b (Figure 3C); and under the

background with Pinb-D1b/Pina-D1a, the lines harbored

ZKM138-derived allele at QGh.cib-7D also increased grain

hardness 6.05% (Figure 3D). In summary, QGh.cib-7D had a

strong association with grain hardness, independent of the

famous Pina.
Frontiers in Plant Science 06
BSE-seq analysis for grain hardness

Exome capture and high-throughput sequencing of the four

bulked pools, MAX-7, MIN-7, and parents ZKM138 and CM44

were performed to identify the genomic regions associated with Gh,

and the results were compared with the Chinese Spring (CS)

reference genome v1.0 by IWGSC. The total number of clean
A B

DC

FIGURE 3

Additive effects of major QTL on grain hardness. (A) Pyramiding effect analysis of QGh.cib-5D.1 and QGh.cib-7D on grain hardness. Effects of
QGh.cib-7D on grain hardness based on BC-RILs (B), the lines with Pinb-D1b/Pina-D1b (C), and Pinb-D1b/Pina-D1a (D), respectively. Symbols + and
– represent lines with and without the positive alleles (ZKM138 allele) for the target QTL based on the flanking marker of the corresponding QTL,
respectively. ‘n’ denotes the number of lines in each panels. *, **, and *** represent significance at P < 0.05, P < 0.01, and P < 0.001, respectively.
FIGURE 2

Summary of QTL clustered detected in this study. The brackets after the QTL name follow additive effect and number of environments. The QTL in
red and blue represented the positive allele of QTL derived from ZKM138 and CM44, respectively. The QTLs in bold are major QTLs.
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reads after filtering was 714061024 and the number of clean bases

obtained from a total of six pools was 106.98 Gb, with clean reads

ranging from 176218966 to 202584102 for a single pool, which

indicated that the sequencing data were available for the subsequent

analysis. The coverage of the parents in the wheat genome was more

than 90%, and the average depth was more than 25×. Furthermore,

the average depth of the two pools of data (MAX-7, MIN-7) was

50.99× and 58.50×, with the coverage in the Chinese Spring genome

of 96.06% and 96.73%, respectively (Supplementary Table 4). These

results indicated that the BSE-Seq assays among the pools were

efficient in the present study.

The SNP/InDel index algorithm was used to determine the

candidate region for grain hardness. With the SNP-index algorithm,

a total of 1056 high-quality SNPs were identified between two pools,

of which 435 (41.19%) SNPs were concentrated in the 46.05-60.55

Mb of chromosome 7D (Supplementary Figure 3), consistent with

the traditional QTL mapping results (Supplementary Table 2).
Effects of QGh.cib-7D on grain hardness
and other quality traits

According to polymorphic SNPs in the target region of BSE-

Seq, 48 KASP markers were developed and genotyped in BC-RILs.

Finally, a new integrated genetic map for the candidate region of

QGh.cib-7D was reconstructed with ten KASP markers

(Supplementary Table 5). After remapping based on the new

map, the original candidate region was narrowed from 10.91 Mb

(54.59-65.50) to 2.71 Mb (58.64-61.35 Mb) (Figure 4A).

According to the narrowed map, the lines carrying ZKM138

allele had higher Gh than that of CM44 allele, with differences of

3.76%-10.72% (P < 0.01) under all the eight detected environments

(Figure 4), which was consistent with the SNP genotyping results,

using Kasp7D-1 as the diagnostic marker. In addition, the effects of

QGh.cib-7D on other quality traits were analyzed in the BC-RIL
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population. The results revealed that QGh.cib-7D significantly

increased grain water absorption (3.87%) while it did not

influence the grain starch content and protein content

(Supplementary Figure 4).
Distribution and transmissibility of the
positive allele of QGh.cib-7D

To further explore the potential application value of QGh.cib-

7D on wheat grain hardness selecting and improving, the genotypes

of 373 common wheat varieties from different countries were

analyzed. As shown in Figure 5A, the ZKM138-derived allele

existed with high-frequency presenting in 320 of 373 varieties

(85.79%), spreading in four continents, including Asia, Europe,

Oceania, and Africa (Figure 5A; Supplementary Table 6). In China,

164 (86.77%) varieties of these 189 Chinese varieties, containing this

ZKM138-derived allele, which significantly increased Gh by 4.09%

(Figure 5B). And only 25 varieties contained CM44-derived allele,

of which 18 varieties were from Southwestern Autumn-Sown

Spring Wheat Zone, a region in southern of China with famous

distillery (Figure 5C).

Moreover, besides QGh.cib-7D locus, considering that the effect

of Pina and Pinb, there were eight, one, and forty-nine varieties only

containing Pinb-D1b (group B), Pina-D1b (group C), or ZKM138-

derived allele (group D), respectively (Figure 5D). And there were

three, eighty-eight, and thirteen varieties harboring Pina-D1b/Pinb-

D1b (group E), ZKM138-derived allele/Pinb-D1b (group F), and

ZKM138-derived allele/Pina-D1b (group G), that significantly

increased grain hardness by 8.91%-15.53% (Figure 5D). Lastly,

thirteen varieties contained all the three alleles (group H) and

significantly increased grain hardness by 9.99%. It is noteworthy

that based on the background of positive allele of QGh.cib-7D, the

varieties with Pina-D1b (group G) had higher grain hardness

compared to the varieties with Pinb-D1b (group F) (Figure 5D).
A B

FIGURE 4

Genetic maps of QGh.cib-7D (A) and its effects on grain hardness (B) in BC-RIL populations. The developed 10 KASP markers for QGh.cib-7D were
integrated onto the genetic map. ZKM138 and CM44 indicate the lines with the alleles from ZKM138 and CM44, respectively. *, ** and *** represent
significance at P < 0.05, P < 0.01, and P < 0.001, respectively.
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Potential candidate genes analysis of
QGh.cib-7D

The candidate genes inQGh.cib-7D were finally mapped to a 2.71

Mb physical interval, which contained 53 high-confidence genes

(Supplementary Table 7). Analysis of the spatiotemporal expression

patterns showed that three genes (TraesCS7D02G099400,

TraesCS7D02G098000, and TraesCS7D02G099500) that were highly

and specifically expressed in grain, which might be probably involved

in grain development (Figure 6). TraesCS7D02G099400 encoded 30S

ribosomal protein S3, and TraesCS7D02G098000 encoded basic blue

protein while TraesCS7D02G099500 encoded putative oligopeptide

transporter. Based on re-sequencing results of parents, 13

synonymous SNPs and 5 nonsynonymous SNPs were detected in

the coding region of TraesCS7D02G099500.
Discussion

QGh.cib-7D might be a novel locus for
grain hardness

Grain hardness is one of the most important characteristics for

milling and baking quality of wheat (Pasha et al., 2010). In the

present study, almost all quality-related traits, except Mc and Gsc,

were significantly positively correlated with each other, with the

highest correlation coefficient between Gh and Abs (r = 0.94)

(Figure 1), consistent with previous studies (Cui et al., 2016; Fan

et al., 2022). Gh is not only controlled by the main effect genes (Ha)
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on chromosome 5DS but also through minor genes on other

chromosomes (Tu and Li, 2020), as well as the potential

unexcavated. In this study, twelve clusters for quality-related traits

were detected, but most of them were previously reported, except

C12 harboring QGh.cib-7D for Gh. For example, C1, located in the

interval of 363-415 Mb on chromosome 1D and harbored six QTLs

for Dst, Abs, Ta, Sv, Ddt, and Wgc, which was consistent with

reported QTLs for quality-related traits (Guo et al., 2020).

Comparative analysis indicated that it overlapped with Glu-1D

consisting of x-type and y-type, which form different cross-chains

and structures in the gluten, thus regulating the elasticity, ductility,

and viscosity of the dough (Kong et al., 2004). C3 contained a major

QTL (QGh.cib-2A.2) and 3 moderate QTLs (QAbs.cib-2A.2,

QTw.cib-2A.2, and QWgc.cib-2A.2), was physically overlapped

with Ppo-A1, a core gene regulating polyphenol oxidase and thus

influencing end-use quality (Beecher and Skinner, 2011). Waxy

(Chang et al., 2021) and BGC1 (Chia et al., 2020), associated with

starch synthesis, was located in the region of C6, which harbored

QTLs for QGh.cib-4A, QTe.cib-4A, QTa.cib-4A, and QMtr.cib-4A,

and thus might be the gene responsible for this QTL cluster. In the

C7 cluster associated with Rht-D1, multiple QTLs for quality-

related traits, such as QDdt.cib-4D, QMc.cib-4D.1, and QGpc.cib-

4D, were co-located in this region, indicating that Rht-D1may have

pleiotropic effects on plant height, yield, and quality (Pearce et al.,

2011). These results indicated that the cluster C3 could be used to

simultaneously improve several quality-related traits in molecular

module breeding. Moreover, C8, located at 1-6 Mb on chromosome

5D, simultaneously harbored three major stable QTL (QGh.cib-

5D.1,QAbs.cib-5D, and QMc.cib-5D). As Pin genes were reported to

regulate grain hardness (Bhave and Morris, 2008), we integrated the
A B

DC

FIGURE 5

Geographic patterns of the genotype of QGh.cib-7D in worldwide varieties (A) and Chinese varieties (B). (C, D) Additive effects of QGh.cib-7D, Pina,
and Pinb on grain hardness in Chinese varieties. AA and BB represent positive allele of QGh.cib-7D derived from ZKM138 and CM44, respectively.
Symbols + and – represent lines with and without the positive alleles for the target QTL based on the flanking marker of the corresponding QTL,
respectively. ‘n’ denotes the number of varieties in each panels. *, **, and *** represent significance at P < 0.05, P < 0.01, and P < 0.001, respectively.
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functional marker of Pina into our genetic map. The result showed

that this cluster was tightly linked to Pina (Supplementary Figure 2)

as expected. Consequently, the effect of C8 might be attributed by

Pina. However, QGh.cib-7D and QAbs.cib-7D in C12 were detected

in all environments with high phenotypic variation and co-located

with two stable QTLs (QDdt.cib-7D and QTe.cib-7D). Comparative

analysis revealed that no previously reported QTL or genes for grain

hardness were overlapped with or near to this region. Therefore,

this interval might be a novel locus for grain hardness.
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The potential breeding value of QGh.cib-
7D in wheat quality improvement

Manipulation of the level of grain hardness not only modifies

milling properties in common and durum wheat lines (Li et al.,

2014; Wang et al., 2019a), but also changes some parameters of the

end-use quality and storage protein interaction (Kiszonas and

Morris, 2018; Wang et al., 2019b). The previous studies reported

that Pin genes could only explain over 60% of the trait’s variation
FIGURE 6

Expression patterns of candidate genes in the physical interval of QGh.cib-7D in different tissues. Genes in red represents genes specifically
expressed in the spike and grain; the data of expression profiles were obtained from the public online database.
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and hinder the identification of other QTLs with minor effects in the

bi-parental mapping population (Sourdille et al., 1996; Campbell

et al., 1999). Identifying the key genomic region for Gh and

pyramiding the elite alleles through marker-assisted selection

could guide our breeding efficiency. In the present study, two

major QTLs, QGh.cib-5D.1 (the Ha locus) QGh.cib-7D, and 15

QTL regions for grain hardness were identified. This novel QTL,

QGh.cib-7D, could be simultaneously detected by QTL mapping

and BSE-seq, indicating its robust and reliable effect on Gh.

Pyramiding analysis revealed that the combination of two major

QTLs significantly increased grain hardness (Figure 3A). To

eliminate the major genetic effects of the Ha locus and to reveal

the individual effect of QGh.cib-7D on Gh, association analysis of

QGh.cib-7D with Gh revealed that the lines carried positive allele of

QGh.cib-7D (ZKM138-derived allele) significantly increased grain

hardness 6.05%-8.33% based on the BC-RIL background

(Figures 3C, D), indicating that QGh.cib-7D might be useful for

Gh selection improvement and breeding.

Converting the significant SNPs into KASP markers is

beneficial for marker assisted breeding (Liu et al., 2022). In this

study, ten KASP markers were developed and integrated in a new

genetic map based on the results of BSE-Seq (Figure 4A). Finally,

the genomic region of QGh.cib-7D was narrowed to a 58.64-61.35

Mb (2.71 Mb) region, and Kasp7D-1 was regarded as a diagnostic

marker, which was used to investigate the distribution (Liu et al.,

2022) and transmissibility (Fan et al., 2018). Pina and Pinbwere two

most famous and used widely loci for wheat grain hardness

selection and breeding (Pasha et al., 2010; Li et al., 2019). As

shown in Figure 5 and Supplementary Table 6, if the effect of

QGh.cib-7D were not taken into account, we could found that 66 of

200 (33%) varieties contained Pina-D1a as well as Pinb-D1a (Pina-

D1a/Pinb-D1a), which was almost consistent with the reported

frequency harboring Pina-D1a/Pinb-D1a (Li et al., 2019). For

example, Li et al. (2019) reported that 39.3% of 107 Chinese

accessions harbored both Pina-D1a and Pinb-D1a. Theoretically,

this loci combination (Pina-D1a/Pinb-D1a) could possibly confer

wheat soft grain performance. We indeed noticed that its average

Gh value was lower than most groups whose lines harbored only

one soft grain genotype at Pina or Pinb, such as group (B+F) and (C

+G). However, there still were numerous materials performing

relatively high Gh values in group D, where the increasing-Gh

allele existed at QGh.cib-7D locus. In other words, the potential

unexcavated novel locus also contributes greatly to Gh performance

besides Pina and Pinb. If we did not detect and notice the effect of

QGh.cib-7D on Gh, it is possible to decrease the efficiency and

accuracy of the soft/hard material selection in the MAS process.

However, when we calculated the effect of this novel locus for Gh

(QGh.cib-7D), only 13 of 200 (6.50%) varieties harbored soft Gh-

type genotypes at all three loci (Pina, Pinb, and QGh.cib-7D locus),

and this group (group A) indeed exhibited the lowest grain

hardness, further proving QGh.cib-7D might harbor the new gene

for Gh with important breeding value. In addition, we found that 11

of them were from the southwest zone in China (Figure 5B), which

may be related to local dietary and processing preferences and thus

presented a relatively higher frequency of soft wheat than other

areas. For example, Baijiu, Chinese liquor, has a high reputation and
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constitutes as an important part of the Chinese dietary profile. The

most well-known Baijiu, such as Moutai-jiu, wuliangye-jiu, and

luzhoulaojiao-jiu, etc., all produced in this zone. The most raw for

Baijiu Jiuqu (starter) were soft wheat (Zheng and Han, 2016). These

results also indicated that, with the detection of this new locus on

7D (QGh.cib-7D), much less soft wheat varieties with all noticeable

soft-Gh genotypes (only 13 materials, 6.5%) actually exist, rather

than 33% of 200 materials as we originally thought. It is urgent to

cultivate soft wheat to cater to market demand and ensure the

diversity of wheat quality. We, therefore, suggested that all these

three loci should be simultaneously considered and detected to

improve the breeding efficiency in the future soft wheat

breeding process.

The texture and smoothness of noodles are connected to grain

hardness, and a grain hardness index (HI) value of 60-70 is needed

to ensure high-quality noodles and steamed bread (Wang et al.,

2022). In this study, also 13 of 200 (6.50%) varieties (group H)

harbored the positive of QGh.cib-7D and Pina-D1b/Pinb-D1b,

which indeed show higher grain hardness. Interestingly, the

combination of any two loci of these three loci (Group E, F and

G) still could significantly improve grain hardness for efficient

selection of hard wheat varieties, which could save effort to

pyramid all the three hard-wheat alleles (QGh.cib-7D, Pina-D1b

and Pinb-D1b) when hard wheat MAS breeding.

The negative yield-quality correlation has long been a key

obstacle in wheat breeding programs designed to simultaneously

improve yield and quality. Consequently, QTLs involved in the

control of kernel quality that are also independent of negative effects

on grain yield should be identified to improve this characteristic.

The major stable QTL QGh.cib-7D was significantly associated with

grain hardness and had a significant effect on grain water

absorption, but no effect on the major nutritional traits, such as

protein and starch content, indicating its potential contribution to

processing and end-use quality. On the other hand, notably, 143 of

the 144 (99.31%) derivatives inherited the key genomic segment of

QGh.cib-7D from ZKM138 when we used this variety as the core

parent in our small-scale breeding process, in which we commonly

focus on the yield performance. As shown in Supplementary

Figure 5, though lines with positive allele of QGh.cib-7D increased

grain width and thousand-grain weight, but reduced grain per

spike. Finally, they showed no significant difference in grain yield

between the lines with two alleles, which implied that this locus had

no significant negative effect on final yield performance, which

explained the reason for the passive selection of QGh.cib-7D and

further proving the valuable breeding application potential for

directional improving and selecting grain hardness without the

effect on yield performance.
Potential candidate genes for QGh.cib-7D

Fifty-three high-confidence genes were identified in the QGh.cib-

7D interval in the CS genome (Supplementary Table 6). Based on

expression patterns, gene annotation, ortholog analysis, and

haplotype analysis, TraesCS7D02G099400, TraesCS7D02G098000,

and TraesCS7D02G099500, associated with grain development,
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were predicted as candidate genes. TraesCS7D02G099400 encodes

30S ribosomal protein S3, which may affect the grain hardness to

some extent by influencing protein synthesis and cell wall formation

(Bommer et al., 1991; Schäfer et al., 2006). TraesCS7D02G098000

encodes basic blue protein, a relatively small group of proteins known

as gliadins that interact with the macromolecular gluten subunit in

wheat to promote the formation of viscosity and elasticity in dough

(Metakovsky et al., 1997). Gliadins are responsible for giving wheat

flour its viscoelastic properties, which make it suitable for baking

(Wrigley, 1996). TraesCS7D02G099500 encodes the oligopeptide

transporter, which regulates the absorption and transport process

of oligopeptides and serves as a nitrogen source for wheat growth and

development (Kumar et al., 2019). The expression level and activity of

oligopeptide transporters may affect the nitrogen supply and protein

synthesis capacity of wheat, thus affecting wheat quality (Stacey et al.,

2006; Liu et al., 2012). Moreover, the re-sequencing data between

ZKM138 and CM44 revealed that 13 synonymous SNPs and 5

nonsynonymous SNPs existed in the exons. Thus, these three genes

could be considered as a focus for further work on fine mapping and

gene cloning.
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SUPPLEMENTARY FIGURE 1

Scanning electron micrographs of grains in the parents. SEM observation of

grain sections, Photos of transverse sections of mature grains are shown for

ZKM138 and CM44. LS, large starch granule; BS, broken large starch granule.
Bar: 1 cm.

SUPPLEMENTARY FIGURE 2

Identification of the known gene with QGh.cib-5D.1. The brackets after the
QTL name follow additive effect and the number of environments.

SUPPLEMENTARY FIGURE 3

BSE-Seq analysis using the SNP-index algorithm (A) and distribution of

polymorphic SNPs on each chromosome (B).

SUPPLEMENTARY FIGURE 4

Effects ofQGh.cib-7D on quality traits. *, ** and *** represent significance at P

< 0.05, P < 0.01 and P < 0.001, respectively.

SUPPLEMENTARY FIGURE 5

Additive effects of QGh.cib-7D on yield-related traits in BC-RIL. *, ** and ***
represent significance at P < 0.05, P < 0.01 and P < 0.001, respectively.
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