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Molecular characterization of diverse germplasm can contribute to breeding

programs by increasing genetic gain for sorghum [Sorghum bicolor (L.) Moench]

improvement. Identifying novel marker-trait associations and candidate genes

enriches the existing genomic resources and can improve bioenergy-related

traits using genomic-assisted breeding. In the current scenario, identifying the

genetic loci underlying biomass and carbon partitioning is vital for ongoing

efforts to maximize each carbon sink’s yield for bioenergy production. Here, we

have processed a high-density genomic marker (22 466 550) data based on

whole-genome sequencing (WGS) using a set of 365 accessions from the

bioenergy association panel (BAP), which includes ~19.7 million (19 744 726)

single nucleotide polymorphism (SNPs) and 2.7 million (~2 721 824) insertion

deletions (indels). A set of high-quality filtered SNP (~5.48 million) derived

markers facilitated the assessment of population structure, genetic diversity,

and genome-wide association studies (GWAS) for various traits related to

biomass and its composition using the BAP. The phenotypic traits for GWAS

included seed color (SC), plant height (PH), days to harvest (DTH), fresh weight

(FW), dry weight (DW), brix content % (BRX), neutral detergent fiber (NDF), acid

detergent fiber (ADF), non-fibrous carbohydrate (NFC), and lignin content.

Several novel loci and candidate genes were identified for bioenergy-related

traits, and some well-characterized genes for plant height (Dw1 and Dw2) and

the YELLOW SEED1 locus (Y1) were validated. We further performed a multi-

variate adaptive shrinkage analysis to identify pleiotropic QTL, which resulted in

several shared marker-trait associations among bioenergy and compositional

traits. Significant marker-trait associations with pleiotropic effects can be used to

develop molecular markers for trait improvement using a marker-assisted

breeding approach. Significant nucleotide diversity and heterozygosity were

observed between photoperiod-sensitive and insensitive individuals of the
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panel. This diverse bioenergy panel with genomic resources will provide an

excellent opportunity for further genetic studies, including selecting parental

lines for superior hybrid development to improve biomass-related traits

in sorghum.
KEYWORDS

bioenergy association panel, biomass and composition, structural and nonstructural
carbohydrates, whole-genome sequencing, high-throughput markers
Introduction

Sorghum [Sorghum bicolor (L.) Moench] is a multipurpose crop

used as a significant source of food, feed, and bioenergy production.

It is among the five most widely cultivated cereals worldwide,

including wheat (Triticum aestivum L.), maize (Zea mays L.), rice

(Oryza sativa L.), and barley (Hordeum vulgare L.) (FAOSTAT,

2021). Sorghum originated in the northeast of Africa circa 3000

B.C.E., most likely in the Sahel region, where it is one of the most

important cereal crops due to its drought tolerance (Kebede, 1991;

Ayana and Bekele, 1998). Moreover, sorghum is a versatile crop

adapted to diverse soil and climate conditions, making it a

promising alternative for energy production worldwide (Ahmad

Dar et al., 2018). Sorghum is grown in various environments

worldwide, including temperate and tropical regions. The

photoperiod-sensitivity has been extensively studied in sorghum,

which is regulated by at least six maturity genes,Ma1-Ma6 (Quinby,

1967; Major et al., 1990; Rooney and Aydin, 1999).

The established sorghum racial structure is essentially a product

of the broad geographic distribution, independent domestication

events, and years of selection for advantageous traits in sorghum

across those diverse atmospheres (Morris et al., 2013). These

processes have resulted in distinguishing five botanical races,

including bicolor, caudatum, durra, guinea, and kafir, which

collectively demonstrate broad genotypic and phenotypic

variation, particularly across panicle architecture and seed

characteristics. Sorghum is a C4 grass that exhibits significant

divergence in carbon partitioning across diverse subpopulations.

Among the other plant sources exploited as feedstocks, sorghum

efficiently accumulates high biomass with minimal inputs. The

phenotypic variation present across sorghum has also permitted

the classification of individual accessions based on differences in

carbon partitioning (Boatwright et al., 2021). The carbon

partitioning in sorghum contributes to four primary sink types:

(1) cellulosic, where carbon is accumulated as C5 sugars primarily in

the stem; (2) forage, where accumulation prioritizes the leaf volume;

(3) grain, which stores carbon as starch in the grain; and (4) sweet,

where carbon is stored in the stem as non-structural (C6) sugars

(i.e., fructose, glucose, and sucrose). Identifying the genetic loci

underlying carbon partitioning is vital for ongoing efforts to

maximize each carbon sink’s yield. As the maximization of
02
carbon accumulation is not a zero-sum process among the carbon

types, knowledge obtained concerning one carbon partitioning

process may improve the production in another.

Genome-wide association studies (GWAS) identify the

association between molecular markers and quantitative traits

(Zhu et al., 2008). Single nucleotide polymorphisms (SNPs)

associated with a variety of phenotypic traits have been identified

through GWAS using landraces, diverse accessions, or genetic

mapping populations of sorghum, including traits related to plant

architecture (Morris et al., 2013; Zhao et al., 2016; Hu et al., 2019;

Kumar et al., 2023), agronomy (Rhodes et al., 2014; Boyles et al.,

2017; Chopra et al., 2017; Li et al., 2018; Hu et al., 2019; Boatwright

et al., 2022a; Kumar et al., 2023), bioenergy (Murray et al., 2008a

and Murray et al., 2009; Brenton et al., 2016; Boyles et al., 2017,

2019; Souza et al., 2021), and biomass and its compositional traits

(Brenton et al., 2016; Boatwright et al., 2022b).

Despite existing research, genetic improvement of sorghum for

bioenergy is still challenging due to an incomplete understanding of

the genetic architecture of the most relevant bioenergy traits. The

selection for biomass and bioenergy-producing sorghum cultivars/

hybrids depends on the characterization of biomass-related traits

(e.g., plant height, fresh biomass yield, dry biomass yield, and sugar

content). Early studies of genetic diversity in sorghum were

conducted using association mapping panels and biparental

populations for various traits, including agronomic (Casa et al.,

2008) and bioenergy-feedstock (Murray et al., 2008a; Murray et al.,

2009). Later, a substantial genetic resource was constructed, which

was coined the bioenergy association panel (BAP), to study

biomass-related traits to capture most of the sorghum feedstock

sustainable to produce bioenergy and renewable chemicals

(Brenton et al., 2016). The BAP comprised 238 high-biomass

sorghum and 152 sweet sorghum accessions from the National

Plant Germplasm System (NPGS). Features of various accessions

within the BAP included high stalk height, photoperiod sensitivity,

late maturing, and anthracnose resistance (Brenton et al., 2016).

Plant height facilitates fresh and dry weight yield, essential breeding

targets for bioenergy feedstock, forage, and cellulosic traits. The

genetic characterization of the BAP was initially conducted using

marker sets (232,303 SNPs) derived using genotyping-by-

sequencing (GBS). This initial genetic study investigated the

genomic differences between the biomass and sweet sorghum
frontiersin.org
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types (Brenton et al., 2016). In addition, several studies were also

conducted based on GWAS using both the BAP and the sorghum

association panel (SAP) where several major loci were determined

to be associated with various important traits (Murray et al., 2008b;

Shiringani and Friedt, 2011; Morris et al., 2013; Hayes, 2015; Cuevas

et al., 2018; Li et al., 2018; Cuevas et al., 2019; Punnuri et al., 2022).

Recently, a multi-parent population was developed using diverse

parents from the BAP. This carbon-partitioning nested-association

mapping (CP-NAM) panel was characterized for agronomic,

biomass yield, and biomass-compositional traits (Boatwright

et al., 2022b). However, these studies dealt with either low marker

coverage or a few diverse lines compared to the current study, where

several million genome-wide markers were identified.

In the present study, we used whole-genome high-throughput

markers to characterize the bioenergy association panels for various

biomass and compositional traits. Our objectives were (i) to study

the genetic diversity, including nucleotide diversity, relative

heterozygosity, and linkage disequilibrium of the panel (ii) to

identify significant marker-trait associations for biomass yield and

biomass composi t ion (s tructura l and non-structura l

carbohydrates), (iii) to identify significant loci with pleiotropic

effects for multiple traits related to biomass yield (DTH, PH, FW,

and DW) and its composition (NDF, ADF, NFC, and lignin) (iv) to

develop genetic and genomic resources for sorghum

research community.
Materials and methods

Plant materials

The details of the whole bioenergy association panel (BAP) and

the plant introduction (PI) numbers are fully described by Brenton

et al. (2016). The seed can be requested via the USDA Germplasm

Repository Information Network (GRIN) using the PI number. The

BAP contains 390 accessions, and it includes all five major sorghum

races (bicolor, caudatum, durra, guinea, and kafir), which represent

the entire African continent, Asia, and the Americas (Supplementary

Table S1). The whole panel can be classified broadly into two major

sorghum types (sweet and biomass). In total, 152 accessions exhibit a

Brix (BRX) content over 10% at the development stage or

physiological maturity and are considered sweet lines, as previously

defined as the sweet sorghum association panel (Murray et al., 2009)

as well as the U.S. historic sweet sorghum panel (Wang et al., 2009).

The biomass lines were selected based on the diversity of worldwide

geographic distribution, racial categorization, and agronomic

characteristics (Brenton et al., 2016). As part of the TERRA-REF

project (http://terraref.org/), all the samples were shotgun sequenced

(150-bp paired-end) on an Illumina X10 instrument at the

HudsonAlpha Institute for Biotechnology (Songsomboon et al.,

2021). Each sample was multiplexed and ran on a total of 123

lanes, resulting in an average of 30X coverage per sample. The raw

sequencing reads are available through the TERRAREF project page

of the CyVerse repository (http://datacommons. cyverse.org/browse/

iplant/home/shared/terraref).
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Field evaluation and phenotypic analysis

Phenotypic data for all the traits used in the genome-wide

association analysis was derived from the previously published

dataset (Brenton et al., 2016). The field evaluation and trait

phenotyping are summarized in the following section. The

phenotypic data for the traits were also summarized in

Supplementary Table S1. The field experiment was conducted in

Florence, SC, at the Pee Dee Research and Education Center of

Clemson University during the summers of 2013 and 2014. Details

of seed preparations and seed treatment to control the weeds are

given by Brenton et al. (2016). The BAP panel (390 accessions) was

planted using the complete randomized block design (CRBD) with

yearly replications. The field trials were planted on 0.76 m rows at a

planting density of ~96,000 plants ha1 in loamy-sand soil on 16May

2013 and 6 May 2014. The trials were irrigated at the time of

planting and as needed. The field trials were not irrigated ~90 days

after planting because some BAP accessions were taller than the

irrigation pivot.

The measurements on plant height were taken at the stage of

physiological maturity, or a set harvest date of October 1 of each

year from the base of the stalk to the apex of the panicle or the apex

of the shoot apical meristem if the panicle was absent

(Supplementary Table S1). Fresh weight (FW) and dry weight

(DW) were recorded, excluding the panicles and leaves of a stalk.

FW was recorded based on the total weight of three harvested plants

(~0.5 m of row length) from the base at the physiological maturity

stage, excluding panicles. Most plots were harvested at the

physiological maturity stage except for genotypes that did not

flower, which were harvested at a single time. Before collecting

dry weight data, each fresh stalk was dried at 40°C until a constant

moisture content was obtained. The DW trait in tons ha1 was

extrapolated based on the planting density of ~96,000 plants ha1.

Each stalk sample was ground with a Retsch SM 300 cutting mill

to estimate the biomass compositional parameters using a

PerkinElmer DA7250TM NIR instrument (https://www.

perkinelmer.com). Four biomass compositional parameters were

measured, including acid detergent fiber (ADF), neutral detergent

fiber (NDF), nonfibrous carbohydrates (NFC), and lignin. The NIR

instrument uses the calibration curves for spectral measurements

built using wet chemistry values generated by Dairyland

Laboratories, Inc. (Arcadia, WI, USA), as described in Brenton

et al. (2016). All compositional data are presented as a percentage of

dry matter (DM). Mean values of each trait were used to perform all

the phenotypic data analysis (correlation coefficient) and GWAS.

Pearson’s correlation coefficient was estimated using the metan

package and the corr_plot and plot.corr_coef functions were used to

visualize correlation matrices for each trait in R software version

4.1.3 (Team RC, 2022).
Genomic data processing

In this study, the sequencing data of 365 accessions of BAP were

used. The accessions were sequenced using shotgun sequencing (150-
frontiersin.org
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bp paired-end) on an Illumina X10 instrument at the HudsonAlpha

Institute for Biotechnology as part of the TERRA-REF project (http://

terraref.org/) The individual samples were multiplexed and run on a

total of 123 lanes, resulting in an average of 30X coverage per sample

(Songsomboon et al., 2021). The genomic reads ~22 466 550 were

accessed from Songsomboon et al. (2021) before processing them

following the Genome Analysis Toolkit (GATK) best practices

pipeline version 4.1.7.0 (McKenna et al., 2010). Reads were filtered

using fastp (Chen et al., 2018) and aligned to the third version of the

sorghum BTx623 reference genome (McCormick et al., 2018) using

Burrows-Wheeler aligner (BWA) version 0.7.17 (Li and Durbin,

2010). The resulting sequence alignment and map (SAM) files were

sorted and converted to the binary alignment and map (BAM) using

samtools version 1.9 (Danecek et al., 2021) before marking duplicates

using the MarkDuplicates command in GATK version 4.2.6.1

(DePristo et al., 2011; Van der Auwera et al., 2013). BAM files

were then recalibrated using the BaseRecalibrator and ApplyBQSR

commands in GATK using the quality-filtered reads from the BAP

with MAF > 0.05 (http://terraref.org/). The GATK HaplotypeCaller

was then used to generate genome variant call format (gVCF) files

from individual samples before importing the genotypic data from

each chromosome into joint cal l ing databases using

GenomicsDBImport. Joint calling (GenotypeGVCFs in GATK) was

performed on chromosome halves (split on centromeres) to

parallelize better variant calling. SNPs were filtered stringently for

quality (QD < 2.0, InbreedingCoeff< 0.0, QUAL< 30.0, SOR > 3.0,

F S > 6 0 . 0 , MQ < 4 0 . 0 , MQR a n k S um< − 1 2 . 5 , a n d

ReadPosRankSum< −8.0), missing data (50%), and minor allele

frequency (MAF > 0.05) using both GATK and BCFtools (version

1.11), which are the programs for variant calling and manipulating

files in the Variant Call Format (VCF) in a binary manner before

performing GWAS (Danecek et al., 2021). Beagle (version 5.3) was

used to impute missing genotype data in the VCF file assembled from

the GATK pipeline (Browning et al., 2021).
Population diversity and structure

Population structure was estimated from the pruned SNPs

using ADMIXTURE version 1.3.0 (Alexander and Lange, 2011) to

identify subpopulations (K) in the BAP. ADMIXTURE is a highly

efficient tool and easy to use for ancestry estimation from SNP

datasets. Variants were filtered using a minor allele frequency

(MAF > 0.05) using the R package (version 4.1.3; Team RC,

2022). The filtered variants were used in ADMIXTURE to

estimate the population structure. Five-fold cross-validation was

used to determine the optimal number of ancestral populations, K,

by selecting the model with the lowest cross-validation error (K=8).

The Q matrix of the selected model – representing the ancestry

fractions of individuals was then sorted by ancestry coefficient for

each subpopulation such that individuals with coefficients > 50%

were assigned to the corresponding subpopulation. Subpopulations

were classified as K1-K8 as determined by the sorted ancestry

coefficient column. Principal component analysis (PCA) was

performed using the 5.48 million SNPs to determine the

optimum number of clusters using a complete BAP set and assess
Frontiers in Plant Science 04
the genomic variation captured by each PC. The filtered variants

(MAF > 0.05) were used for estimating principal components (PCs)

using the GAPIT package in R (version 4.1.3; Team RC, 2022). This

classification was used to represent the ancestral admixture of

individuals in PCA of the BAP. The inbreeding coefficient and

nucleotide diversity were calculated using VCFtools version 0.1.16

(Danecek et al., 2011). Genome-wide Fst were estimated using

bcftools (Danecek et al., 2021). A window size of 1 Mb with a

step size of 100 kb was used for calculation. Fst estimates were

calculated for each subpopulation against all other subpopulations,

and the mean Fst for a subpopulation at a genomic window was

computed as the average Fst of a subpopulation against all other

subpopulations for that genomic window. We also computed Fst
between accessions derived from the sorghum photoperiod-

sensitive and photoperiod-insensitive accessions within the BAP

using the same parameters mentioned above (Supplementary Table

S2). Tajima’s D for the whole panel was calculated for 1-Mb non-

overlapping windows using the vcftools function –TajD.
Genome-wide association studies

The phenotypic data collected on BAP were used by Brenton

et al. (2016) for performing GWAS. We performed GWAS to

identify significant marker-trait associations using a Memory-

efficient, Visualization-enhanced, and Parallel-accelerated (rMVP)

program (Yin et al., 2021) installed in the R version 4.1.3.

programming language (Team RC, 2022). The program ‘rMVP’

was designed to perform GWAS more efficiently for large datasets.

The rMVP is an efficient program for evaluating the population

structure and implementing parallel-accelerated association tests to

improve overall computation time dramatically. This study used

two popular models; the mixed linear model (MLM; Zhang et al.,

2010a) and the fixed and random model circulating probability

unification (FarmCPU; Liu et al., 2016). The MLM warrants a

single-locus analysis, where individuals are included as random

effects, and the degree of correlation among individuals is

determined using a kinship (K) matrix. The use of the MLM

further provides shrinkage to the model such that potential false

positives due to shared ancestry are no longer significant. An MLM

can be described using Henderson’s matrix notation (Kumar et al.,

2023) as follows:

Y = Xb + Zu + e (1)

where Y is the vector of observed phenotypes; b is an unknown

vector containing fixed effects, including the genetic marker,

population structure (Q), and the intercept; u is an unknown

vector of random additive genetic effects for individuals; X and Z

are the known design matrices for fixed and random effects,

respectively; and e is the unobserved vector of residuals. The u

and e vectors are assumed to be normally distributed with zero

mean and unit variance.

FarmCPU is a multi-locus model that uses recurrent fixed and

random effect models to generate sets of pseudo-quantitative trait

nucleotides (QTNs) to use as covariates and controls for false
frontiersin.org

http://terraref.org/
http://terraref.org/
http://terraref.org/
https://doi.org/10.3389/fpls.2024.1356619
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Kumar et al. 10.3389/fpls.2024.1356619
positives during analysis (Liu et al., 2016). Comparatively,

FarmCPU is a more efficient model as it removes confounding

between kinship and the testing marker. By iterating a fixed effect

model to identify significant pseudo-QTNs to use as covariates in a

random effect model using a restricted kinship matrix like the

SUPER algorithm (Wang et al., 2014) to further refine the set of

included covariates by maximizing the likelihood of the random

effects model. Iterations cease when no change occurs in the

estimated set of pseudo-QTNs. The criterion for each significant

marker-trait association corresponding to putative SNPs was based

on the Bonferroni-corrected p-value threshold 9.1e-9. The above

threshold was calculated using 0.05/m, with m being the number of

markers at 5.48 million SNPs.
Pleiotropic effects

To assess the significant pleiotropic effects of loci on the set of

BAP traits (SC, DTH, PH, FW, DW, BRX, ADF, NDF, NFC, and

lignin), a multivariate adaptive shrinkage approach was used

following the mashr model in R (Urbut et al., 2019). The effect

sizes and standard errors for every SNP marker in the MLM and

FarmCPU for the above traits were filtered using a local false sign

rate (LFSR)< 0.1 based on a condition-by-condition analysis using

mashr in R (Stephens, 2017). Here, LFSR represents the probability

of incorrectly assigning the direction of an effect. The LFSR provides

a superior measure of significance over traditional multiple-testing

corrections such as Bonferroni or False Discovery Rate (Benjamini

and Hochberg, 1995) due to its robust estimation process (Stephens,

2017). A control set of estimated effects and standard errors was also

randomly selected from the 5.3 million markers to estimate the

covariance between the markers for each phenotype. Using this

control set, a correlation matrix was estimated using mashr (Urbut

et al., 2019) to control for any confounding effects arising from

correlated traits. The pleiotropic effects across traits were tested

using canonical and data-driven covariance matrices. The posterior

probabilities were estimated for each SNP by fitting a mash model

on all tests. Bayes factors were extracted, and a Manhattan plot was

generated from mash results using the CDBN genomics R package

(MacQueen et al., 2020). The variants exhibiting Bayes Factors > 3

represented significant pleiotropic effects.
Results

Phenotypic trait relationship
and heritability

Previously, the phenotypic diversity, heritabilities, and

correlations among the traits have been reported by Brenton et al.

(2016). The relationship between phenotypic traits and heritabilities

is summarized to recall these features (Supplementary Table S3).

PH was positively correlated with DTH, FW, DW, ADF, NDF, and

lignin but did not show a correlation with NFC and BRX. Similarly,

DTH was also positively correlated with all the traits except NFC

and BRX. FW showed a positive correlation with DW and a
Frontiers in Plant Science 05
moderate to poor correlation with lignin, ADF, and NFC but no

correlation was exhibited with NDF and BRX. However, DW

showed a moderate correlation with BRX, NFC, and lignin, but

no relationship was observed with ADF and NDF. The ADF and

NDF showed a strong positive relationship but exhibited a negative

correlation with NFC and BRX. Lignin was negatively correlated

with NFC and BRX. However, the NFC showed a negative

relationship with all the traits except BRX (Supplementary Table

S3). The heritability estimates of broad sense were highest for PH

and moderate for ADF, NDF, NFC, and lignin, though they were

lowest for DW.
Sequencing, population structure and
linkage disequilibrium

As mentioned, the BAP was initially developed as a sorghum

diversity panel and characterized using a set of GBS markers

(232,303 SNPs) by Brenton et al. (2016). In this study, we used

whole genome sequencing (WGS) data with 22 466 550 sequences,

which include SNPs (~19 744 726) and ~2 721 824 insertions and

deletions (indels) identified using the GATK analysis pipeline. Of

these 19 744 726 SNPs, 5 485 810 (~5.48 million) high-quality

filtered SNPs were identified and subsequently used for association

mapping analysis after filtering for missing data (> 0.3) and minor

allele frequency (MAF)< 0.05 (Zhou and Stephens, 2014). As for

indels, a significant proportion (2.6 million) were small, and 44,459

were large with sizes ≥ 50 bp. The sequencing data showed higher

SNP density on chromosome arms, specifically in telomeric regions

instead of centromeric regions of the genome (Supplementary

Figure S1). We observed a larger number of transitions (~13

million) compared to transversions (> 6 million) (Supplementary

Table S5).

The linkage disequilibrium (LD) impacts the haplotype

construction and genetic mapping resolution. In this study, LD

analysis was performed to assess the distances and pattern of LD

decay for individual chromosomes and genome-wide in the BAP.

The coefficient of determination (r2) between markers on each

chromosome was also measured to estimate the LD relationship

between genomic loci. The LD decay plots for each chromosome

and genome-wide were created by plotting r2 on the y-axis and

physical distances in kilobase (kb) on the x-axis. The genome-wide

average LD for the BAP fell around r2< 0.2 after 40 kb, and the LD

decay leveled out around 160 kb (Figure 1). The average LD decay

for individual chromosomes ranged (~ 30-80 kb). This panel

exhibited lower LD throughout the chromosomes and genome-

wide compared to the grain sorghum panel (SAP) of grain sorghum

(Boatwright et al., 2022a). However, chromosome 6 of the BAP

exhibited a slightly higher LD that fell around r2< 0.2 after ~80 kb,

slightly higher than the overall genome-wide LD (Figure 1).

The results of genomic variations explained through PCA using

the BAP and the SNP data (5.48 million) are demonstrated in

Figure 2A. The PCA results assist in the estimating and visualizing

of genetic relatedness across the accessions and further describes the

population stratification in the BAP. First two PCs accounted for

19.79% (PC1: 11.63%, PC2: 8.16%), a significant proportion of the
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genomic variation. The optimal K value was confirmed using 365

accessions of BAP with lower Bayesian information criterion (BIC)

following ADMIXTURE analysis (Figure 2B). The subpopulation

grouping in the population structure analysis led to six clusters,

including three that correspond to the three botanical races of

sorghum (kafir, guinea, and caudate). The smallest group was

guinea (31 accessions), kafir (57 accessions) and caudatum (69

accessions). The fourth and fifth subpopulations comprised guinea-

caudatum (57) and Ethiopian-durra (66). Last, the sixth

subpopulation comprised the most prominent group (85

accessions) of the Ethiopian-mixed race. The fifth and sixth sub-

populations mainly comprised a group of mixed-racial and

Ethiopian-mixed, and the accessions were not classified as bicolor.

Eight genomic regions showed selection sweeps between

photoperiod-sensitive and insensitive accessions using Fst
estimates (Supplementary Figure S2A). Of these eight, six

genomic regions showed strong selection sweeps on six different

chromosomes (Chr1, Chr2, Chr3, Chr5, Chr6, and Chr8), including

two minor peaks on Chr4 and Chr10 (Supplementary Figure S2A).

The most substantial sweeps were observed around 67-68 Mb on

Chr1 and 40-43 Mb on Chr6 (Supplementary Figure S2A). The

genomic region on Chr1 harbors the yellow seed color locus (Y1:

Sobic.001G398100). However, a genomic region of Chr6 contains a

plant height locus (Dw2: Sobic.006G067700). Additional peaks were

observed on Chr2 (~ 2 Mb), Chr3 (17-20 Mb), Chr5 (35 and 59

Mb), and Chr8 (5-6 Mb). We also calculated the expected

heterozygosity (2pq) on a per-site basis using allele frequencies (p

and q) for the photoperiod-sensitive and insensitive group of

accessions (Supplementary Figure S2B). Genetic variation in

relative heterozygosity between the two groups (photoperiod-

sensitive and insensitive accessions) was consistent and in

agreement with the distribution of Fst peaks between the two

groups. Tajima’s D test assessed the nucleotide diversity between

the BAP groups (Supplementary Figure S2C). The whole genome

average value for Tajima’s D was 3.01, indicating the small number

of rare alleles because of extensive inbreeding. Most of the genomic
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regions showed Tajima’s D above the mean value, indicating

balancing selection, while some regions, particularly at Chr4,

Chr7, and Chr9, showed bottlenecks indicative of purifying

selection (Supplementary Figure S2C). Some regions in the

middle of Chr2 and Chr7 showed a substantial bottleneck in

Tajima’s D and expected heterozygosity for photoperiod-sensitive

lines compared to the insensitive lines (Supplementary Figure S2B).
GWAS and candidate gene identification
for biomass-related traits

Seed color is a highly heritable and well-characterized trait in

sorghum. We performed GWAS analysis for seed color to validate

our genomic data in BAP (Table 1; Supplementary Table S7;

Figure 3A-GWAS; Supplementary Figure S3). In total, nine

significant loci associated with seed color phenotypes were

identified on seven chromosomes (Chr1, Chr2, Chr4, Chr6, Chr7,

Chr8, and Chr10). A highly significant locus was identified on Chr1

(Chr01: 68,401,502), which corresponded to Sobic.001G398100 was

recently confirmed the location of YELLOW SEED1 (Y1) locus

(Nida et al., 2019; Boatwright et al., 2022a). The Y1 gene was also

confirmed by a previous study by Brenton et al. (2016) using the

BAP. Another highly significant locus was identified on Chr6 (~42

Mb) near the Dw2 locus. Two significant loci associated with seed

color were identified on Chr4 (54,654,878 and 58,220,148 bp).

Several novel loci were identified on Chr2 (53 and 62 Mb), Chr4

(54 and 58 Mb), Chr7 (62 Mb), Chr8 (13 Mb), and Chr10 (60 Mb).

We performed GWAS for PH, which is an important trait in

sorghum, irrespective of end-use. Nine loci were identified for PH

on seven different chromosomes (Chr1, Chr4, Chr6, Chr7, Chr8,

Chr9, and Chr10). A highly significant locus was identified on Chr9

(57,040,002 bp) corresponding to Sobic.009G229800. The

functional annotation analysis confirmed that Sobic.009G229800

corresponded to Dw1 (Brown et al., 2008; Klein et al., 2008). Two

loci associated with PH were identified on Chr6 (12 and 43 Mb)
FIGURE 1

Linkage disequilibrium (LD) decay (Pearson’s correlation coefficient squared) of the bioenergy association panel (BAP) population plotted against the
distance in kilobase (kb) chromosome-wise and across the genome.
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TABLE 1 A summary of highly significant associations identified for various traits using BAP.

Trait* Chromosome Position (bp) Effect SE Probability

SC Chr01 68,401,502 0.20 0.03 9.3E-11

Chr02 62,085,143 0.20 0.02 7.7E-18

PH Chr06 42,867,057 -88.98 14.67 8.6E-10

Chr07 2,812,493 17.92 3.62 8.5E-09

Chr09 57,040,002 69.69 11.73 7.4E-09

DTH Chr01 17,500,538 3.59 0.49 9.1E-16

Chr04 27,725,942 -5.27 0.96 9.1E-13

Chr06 41,098,789 -10.78 1.83 9.0E-09

Chr06 1,837,917 4.43 0.53 7.85E-10

Chr09 58,757,856 3.49 0.65 7.6E-10

FW Chr02 77,472,104 0.89 0.14 9.8E-10

Chr05 52,717,775 0.99 0.16 7.2E-10

Chr06 48,272,492 -0.43 0.07 6.5E-12

(Continued)
F
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FIGURE 2

Population structure within the bioenergy association panel (BAP) using principal component analysis (PCA) and an admixture model (K = 6).
Subpopulations were labeled with corresponding botanical races or sorghum types that predominated for a given subpopulation. Subplots represent
the (A) projection of BAP accessions by the principal component (PC1) and PC2. (B) the degree of admixture across the subpopulations using
consistent subpopulation colors across all subplots. The color represents the racial grouping of BAP; red = Guinea-Caudatum, blue = Kafir, green =
Guinea, purple = Caudatum, orange = Ethiopian-Durra, and yellow = Ethiopian-mixed.
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TABLE 1 Continued

Trait* Chromosome Position (bp) Effect SE Probability

Chr08 40,365,266 -0.68 0.11 8.3E-09

DW Chr01 32,303,678 0.35 0.05 9.3E-11

Chr01 48,608,225 -0.25 0.04 8.7E-10

Chr02 2,178,092 0.18 0.03 8.1E-10

Chr02 77,472,104 0.89 0.14 9.8E-10

Chr04 8,971,818 0.31 0.05 9.1E-09

Chr05 6,633,276 0.19 0.03 7.5E-09

Chr05 52,831,342 0.19 0.03 8.6E-09

Chr05 59,785,398 0.17 0.03 9.1E-09

Chr07 179967 0.33 0.06 8.4E-09

Chr07 60,434,191 0.08 0.01 9.0E-14

Chr08 8698 0.16 0.03 7.7E-09

Chr10 25,056,054 0.20 0.03 8.1E-09

Chr10 39,186,221 0.28 0.05 9.0E-09

BRX Chr06 43,928,936 1.63 0.27 9.4E-10

ADF Chr01 56,251,699 -5.66 0.94 7.4E-10

Chr03 7,385,645 -6.09 0.96 9.4E-10

Chr06 878481 -6.03 0.96 9.8E-10

Chr08 630891 -5.30 0.90 9.0E-09

NDF Chr01 24,419,224 -26.80 4.41 6.0E-10

Chr01 67,432,697 -8.66 1.47 9.0E-09

Chr02 8,215,290 -11.09 1.76 9.8E-10

Chr02 5,362,3849 -8.45 1.44 9.0E-11

Chr04 56,527,960 -12.77 2.16 8.0E-09

Chr05 2,240,342 -15.54 2.44 6.0E-10

Chr06 60,028,378 -11.97 1.99 4.6E-09

Chr08 10,794,424 12.54 1.99 9.1E-10

Chr08 17,452,222 -16.67 2.24 8.6E-13

Chr08 18,159,519 -16.67 2.24 8.6E-13

Chr08 31,808,548 -14.48 2.30 9.4E-10

Chr08 38,151,176 -16.57 2.23 1.0E-12

Chr08 40,563,245 -14.48 2.30 9.4E-10

Chr08 44,335,003 -16.11 2.28 9.8E-12

Chr08 45,221,686 -15.99 2.26 9.9E-12

Chr08 49,395,916 -14.39 2.14 8.6E-11

Chr08 50,533,766 -13.43 2.25 6.2E-09

Chr09 58,569,152 -18.67 2.34 8.5E-19

Chr10 10,656,212 -9.89 1.61 2.5E-09

NFC Chr03 12,740,909 -2.20 0.44 7.6E-09

(Continued)
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were identified involving a locus at 43 Mb that corresponded to

Sobic.006G071628, which was located within 60 kb of the Dw2

(Sobic.006G067700; Higgins et al., 2014; Burrell et al., 2015). Two

significant genetic loci were identified on Chr10 (1.8 and 12 Mb),

including SNP (Chr10:1,841,997) located within 100 kb of the waxy

locus (Sobic.010G022600), though seemingly unrelated to biomass.

The rest of the four relatively minor genomic regions associated

with PH were identified on Chr1 (20,134,329 bp), Chr4 (5,182,079),

Chr7 (2,812,493 bp), and Chr8 (888,245 bp).

Eight loci were identified for DTH on five different

chromosomes (Chr1, Chr4, Chr6, Chr9, and Chr10). Of these

eight loci, a highly significant locus (14 SNPs) was detected on

Chr6, within a 60 kb region to the Dw2 gene (Sobic.006G067700),

that showed shared associations for PH and DTH. Another

significant locus was detected on Chr9, near another important

dwarfing gene, Dw1 (Sobic.009G229800). A significant locus was

also identified on the Chr6 at 1.8 Mb, close to a known maturity

geneMa6 (Murphy et al., 2014). Two additional loci were identified

on Chr10 (~49 Mb and ~54 Mb) for the first time and thus were

considered novel.

In total, 11 loci (19 SNPs) were significantly associated with

FW, located on seven different chromosomes (Chr1, Chr2, Chr5,

Chr6, Chr7, Chr8, and Chr9). Of these seven associations, four loci

showed highly significant associations located on Chr2, Chr5, Chr6,

and Chr8. A single locus was identified on Chr2 (77 Mb), Chr6 (48

Mb), Chr7 (1.4 Mb), and Chr9 (59 Mb). Of these 11, two loci were

identified on Chr 1 (32 and 65 Mb) and Chr5 (19 and 52 Mb). For

FW, three loci were detected on Chr8 (0.6, 40, and 61 Mb). For DW,

43 loci (107 SNPs) were identified, located on all the ten sorghum

chromosomes except Chr3. Of these 43 associations, 12 genomic

loci were considered highly significant. Of these 12, three significant

loci were detected on Chr5 (6, 52 and 59-60 Mb), Chr7 (0.1 and 60

Mb), and Chr10 (25 and 39 Mb). Additional associations were

detected, which included two loci on Chr2 (21 and 71 Mb) and a

single locus on Chr1 (48 Mb), Chr4 (~9 Mb), and Chr8 (8 Mb). The

remaining loci, including a locus on Chr6 and three loci on Chr9)

were minor. A highly significant locus on Chr2 (Chr2: 71718582)

corresponding to a candidate gene (Sobic.002G353800), which

encodes the homeodomain-leucine zipper (HD-Zip) transcription

factor family that plays a vital role in plant development and

morphogenesis as well as responses to biotic and abiotic stresses
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(Prom et al., 2021). Interestingly, only a single genomic region on

Chr5 (52 Mb) was co-localized between these traits (FW and DW).

Altogether, GWAS identified (3 SNPs) significantly associated with

BRX, which were located on Chr3 (~62 Mb), Chr6 (~ 43 Mb), and

Chr8 (~18 Mb). A sole SNP (Chr6: 43,928,936) overlapped with a

dwarfing locus (Dw2) of these three associations. This genomic

region at ~43 Mb was within 0.9 Mb of the dwarfing gene

Dw2 (Sobic.006G067700).
GWAS and candidate gene identification
for biomass compositions

GWAS identified several genomic regions strongly associated

with phenotypic traits related to biomass composition, including

structural (ADF, NDF, and lignin) and non-structural

carbohydrates (NFC) using the BAP (Table 1; Supplementary

Table S4, S7; Figure 3B; Supplementary Figure S3). GWAS

identified 11 significant loci (74 SNPs) for ADF on six different

chromosomes (Chr1, Chr3, Chr6, Chr8, and Chr10). Of these 11

loci, eight were considered highly significant. Of these eight, two

loci on each chromosome were located on Chr1 (8 Mb and 56 Mb),

Chr6 (8.7 Mb and 43 Mb), and Chr8 (0.6 and 18 Mb). A significant

locus associated with ADF was located on Chr3 (73 Mb) and Chr10

(~11 Mb).

For NDF, at least 67 highly significant loci (80 SNPs) were

identified, located on all ten sorghum chromosomes except Chr3.

Maximum significant associations (65 SNPs) were detected on Chr8

(5 to 49 Mb). A significant locus was identified on Chr1

(Chr01:67432697) corresponding to Sobic.001G386700, related to

homeobox (WOX) genes from a large gene family expressed

explicitly in plants. The WOX genes are known to play essential

roles in regulating the development of plant tissues and organs by

determining cell fate (Zhang et al., 2010b). A locus was identified on

Chr5 (Chr5:2240342), corresponding to Sobic.005G024800, that

encoded the zinc-induced facilitator-like 1 (ZIFL) transporter

proteins. The ZIFL proteins are known to play an important role

in mobilizing essential micronutrients in rice (Ricachenevsky et al.,

2011). A significant SNP on Chr9 (Chr09:58569186) was identified,

corresponding to Sobic.009G250600 that encodes an F-box protein,

and its role might, therefore, be related to protein degradation via
TABLE 1 Continued

Trait* Chromosome Position (bp) Effect SE Probability

Chr03 18,556,009 6.74 1.13 6.3E-09

Chr03 20,130,207 7.27 1.15 8.6E-10

Chr05 35,131,508 13.07 2.19 6.6E-09

Chr06 43,346,363 6.74 1.14 8.5E-09

Chr06 48,838,810 9.21 1.37 9.8E-11

Chr06 50,242,536 -1.51 0.28 7.5E-10

Chr08 5,603,293 7.60 1.29 9.1E-09
SC, seed color, PH, plant height, DTH, days to harvest, FW, fresh weight, DW, dry weight, BRX, brix %, ADF, acid detergent fiber, NDF, neutral detergent fiber, NFC, non-fibrous carbohydrate.
SE, standard error.
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the ubiquitin-proteasome pathway, with a wide variety of possible

physiological and developmental effects in plants (Zhang et al.,

2019). Another significant locus on Chr9 (Chr09: 57597290)

corresponded to a candidate gene (Sobic.009G237900) that

encoded a putative plastocyanin (b-sheet proteins) that plays a

significant role in photosynthesis, which impacts the dry biomass

yield (Habyarimana et al., 2020). Additional loci associated with

NDF were identified, which included a locus on Chr1 (24 Mb), two

loci on Chr2 (~8 Mb and 53 Mb), and a single locus each on Chr4

(55-63 Mb), Chr5 (2.2 Mb), Chr6 (~60 Mb), and Chr10 (~10 Mb).

Of these associations, a locus each on Chr1 (24 Mb), Chr2 (~53 Mb)

and Chr4 (55-63 Mb), was detected for the first time, which were

considered novel. However, the rest of the loci were corroborated

with earlier studies.

For NFC, GWAS identified 15 significant associations (88

SNPs) located on Chr1, Chr3, Chr5, Chr6, Chr8, and Chr9. The

most prominent genomic region (~ 65 kb) showed significant

associations (75 SNPs) for NFC on Chr8 (5-6 Mb) and displayed

a broad peak. Another highly significant locus was identified

each on Chr1 (4 Mb) and Chr9 (0.5 Mb). Additionally, three

genetic loci were identified each on Chr3 (12, 17, and 20 Mb),

Chr5 (4, 35, and 60 Mb), and Chr6 (43, 48, and 50 Mb).

The genomic region on Chr6 (Chr06: 48,838,810) associated

with NFC had a gene coding for cel lu lase enzymes,
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Sobic.006G122200. This gene hydrolyzes glycosidic bonds in

complex carbohydrates, such as cellulose, a significant

component of NDF (Brenton et al., 2016). Some shared

associations were also observed on Chr8 (~5.5 Mb) between

NDF and NFC, possibly due to inverse relations between these

traits. Surprisingly, GWAS identified only a sole QTL (1 SNP) at

~62 Mb on Chr8 associated with lignin content.
Pleiotropic analysis

In this analysis, all the SNP effects estimated by GWAS models

were used to estimate pleiotropic effects. Approximately 0.61%

(122,000) markers exhibited significant pleiotropic effects across

the genome (Supplementary Figure S5; Supplementary Table S6).

Significant associations with pleiotropic effects were identified on all

ten sorghum chromosomes, with several novel genetic associations

for biomass and its compositional traits identified in addition to

well-known genetic loci (Y1, Dw1, Dw2, and Ma6). A highly

significant locus with pleiotropic effect was identified on Chr5

(~52 Mb) for FW and DW. Another genomic region on Chr6

(~43 Mb) showed a shared association with PH, DTH, ADF, and

NFC. Similarly, a genomic region on Chr9 (~57 Mb) exhibited a

shared association with PH, DTH, and NDF.
B

A

FIGURE 3

Manhattan plots of genome-wide association using MLM model with highly significant genes or loci of various traits. Vertical dotted bars show genes
and loci (A) related to agronomic and biomass yield-related traits and (B) biomass compositional traits. (a) Seed color (b–d, h) Dry weight (e, g) for
PH (f) Fresh weight (I, k, p) for NDF (j, m, n) for ADF (o) for NFC. The -log10 (p) values (y-axis) are plotted against the position on each chromosome
(x-axis). Each solid circle represents a SNP, and the red dashed line represents the Bonferroni-corrected threshold (p ≤ 0.05).
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Discussion

Population structure and divergence

BAP lines (biomass and sweet sorghum) are usually tall,

produce high biomass, and flower later than other sorghum lines

due to a significant proportion of photoperiod sensitivity (Brenton

et al., 2016). Limited efforts have been made in the genetic and

phenotypic characterization of available NPGS collection of

bioenergy accessions, particularly for bioenergy-related traits. The

BAP is among the most essential genetic resources that now

possesses WGS data to advance the breeding of bioenergy

sorghums. Characterizing and identifying suitable germplasm

lines (i.e., high-biomass, sweet, forage, and grain) will expedite

the developmental process of new hybrids and cultivars carrying

superior bioenergy-related traits. In this study, we processed the

BAP WGS data for the high-throughput assessment of genetic

diversity and marker-trait associations underlying complex traits

related to biomass yield and vegetative composition. In addition, we

used an adaptive shrinkage analysis and identified several genomic

regions associated with significant effects on multiple phenotypic

traits related to biomass yield and biomass composition in the BAP,

which supports the hypothesis that several traits are influenced by

the pleiotropic effects of a few major loci.

ADMIXTURE analysis has been widely applied earlier to assess

the population structure using diverse panels of sorghum, including

the SAP (Casa et al., 2008; Brown et al., 2011; Boatwright et al.,

2022a) as well as the BAP (Brenton et al., 2016). Consistent with our

earlier observation based on the population structure of the BAP

(Brenton et al., 2016), we recognized six groups (K = 6) in the

ADMIXTURE analysis, including three straightforward sorghum

races (kafir, guinea, and caudatum), though the fourth group

comprised of guinea-caudatum. As Ethiopia is considered a

probable center of origin and diversity for sorghum, the fifth and

sixth groups consisted of Ethiopian-durra and Ethiopian-mixed,

respectively. The bicolor race represents a minor group in the BAP,

and it was considered an early domesticated race that was not

separated as an independent group (Harlan and Stemler, 1976;

Brown et al., 2011; Wang et al., 2013; Sapkota et al., 2020;

Boatwright et al., 2022a). As we know, the LD patterns are critical

for designing association mapping experiments and preparing

breeding strategies (Flint-Garcia et al., 2003). The whole-genome

average LD decay distance was approximately 40 kb (r2< 0.2),

though it varied across the chromosomes (Hamblin et al., 2004;

Boatwright et al., 2022a). We observed a slightly higher LD for

chromosome 6 of the BAP, consistent with the previous results that

found limited recombination on Chr6 (Wang et al., 2013; Hu et al.,

2019; Boatwright et al., 2022a).
Genetic associations for biomass-
related traits

Plant height (PH) is an integral part of plant architecture that

significantly correlates with biomass production in bioenergy
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sorghum (Calviño and Messing, 2012; Brenton et al., 2016; Guden

et al., 2023). PH is genetically controlled by multiple genes

in sorghum, including three predominant loci (Dw1 :

Sobic.009G229800, Dw2 : Sobic.006G067700, and Dw3 :

Sobic.007G163800). PH showed a highly positive correlation with

DTH, FW, DW, and lignin in BAP (Brenton et al., 2016;

Supplementary Table S1). This study confirmed two dwarfing

genes (Dw1 and Dw2) controlling plant height. The genomic

region on Chr6 (~42-43 Mb) showed shared associations with

other traits (SC, DTH, DW, BRX, ADF, and NFC). However, no

QTL appeared on Chr7 or near the location of another dwarfing

locus (Dw3). The additional shared associations were observed on

Chr8 within a 0.7 Mb region for PH and FW and on Chr9 (57-59

Mb) for DTH, FW, and NDF, which were not detected in a previous

study using the same panel (Brenton et al., 2016). Another

significant locus at Chr10 (1.8 Mb) may correspond to the waxy

(Sobic.010G022600) locus, which encodes a glycosyl-transferase

orthologous to Arabidopsis granule-bound starch synthase 1

(Boatwright et al., 2022a). The genetic loci associated with plant

height and biomass have been previously co-localized (Brown et al.,

2008; Boatwright et al., 2022b). Plant breeders strategically target

taller genotypes for biomass improvement (Guden et al., 2023).

Approximately 60% of the BAP accessions are photoperiod-

sensitive; therefore, data scoring on physiological maturity

involving a whole set of lines was impossible. However,

phenotypic observations were recorded on days to harvest (DTH),

representing biomass maturity (Brenton et al., 2016). In addition to

the two shared associations between DTH and PH on Chr6 and

Chr9, a significant locus was identified on Chr6 (1.8 Mb) close to a

known maturity (Ma6) locus, which has been previously reported

(Mace and Jordan, 2010).

In bioenergy sorghum, overall biomass yield (fresh and dry weight)

is influenced by several growth and developmental parameters such as

flowering duration, plant height, stem diameter, juice, and lignin

content, in addition to the environmental factors, and thus are

considered complex traits. However, the previous study did not

emphasize the genetic characterization of FW and DW (Brenton

et al., 2016). Two of the 11 loci identified in this study on Chr1 (65

Mb) and Chr6 (48 Mb) were overlapped with loci previously reported

(Mace et al., 2013; Boatwright et al., 2022b; Souza et al., 2023).

Similarly, additional loci identified on the Chr5 for FW were also

reported earlier in the overlapping regions (Fiedler et al., 2014), and

Chr9 (Mocoeur et al., 2015;Wang et al., 2016). However, the rest of the

genomic regions identified in this study were considered novel,

including Chr1 (32 Mb), Chr2 (77 Mb), Chr7 (1.4 Mb), and Chr8

(0.6 and 40 Mb).

Overall, 43 QTL were identified for DW, spread on nine of the

ten sorghum chromosomes with the exclusion of Chr3. Three

significant loci identified in our study were previously reported in

the overlapping regions on Chr2 (Kapanigowda et al., 2014), Chr4

(Felderhoff et al., 2012), and Chr6 (Ritter et al., 2008) for total dry

biomass. Similarly, two genomic regions coincided with Chr5 (11

and 52 Mb) was reported earlier for dry matter growth rate (Fiedler

et al., 2014). Additional two genetic loci identified in the current

study were also reported in earlier studies in the overlapping

regions, each located on the Chr7 (Somegowda et al., 2022) for
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PH, and another locus on Chr10 (Fiedler et al., 2014) for dry matter

growth rate, and sucrose content using a diverse germplasm of

sorghum. Several genomic regions associated with DW were novel,

located on Chr1, Chr8, and Chr9. Brix is commonly used in

bioenergy sorghum as a reliable indicator of sugar content

(Murray et al., 2008; Kawahigashi et al., 2013). For BRX, GWAS

identified only three associations in this study, each on Chr3, Chr6,

and Chr8. Previous studies overlapped two loci (Chr3 and Chr6)

(Souza et al., 2023). A locus on Chr8 (~62 Mb) was identified for the

first time and thus considered novel. The QTL identified on Chr6

was also colocalized with a known dwarfing locus (Dw2) in

sorghum (Higgins et al., 2014; Burrell et al., 2015; Boatwright

et al., 2022a) because maturity significantly impacts the brix (%)

due to sugar remobilization during the shift from vegetative stage

to reproductive.
Genetic associations for structural and
non-structural carbohydrates

Overall, GWAS identified several genomic regions strongly

associated with phenotypic traits related to biomass composition,

including structural (ADF and NDF) and non-structural

carbohydrates (NFC). The genomic loci associated with ADF

identified on Chr3, Chr6, and Chr8 overlapped with a previous

study conducted by Boatwright et al. (2022b) using the CP-NAM

population, which was developed especially for carbon-partitioning

traits from the cross between the parental lines selected from the

BAP. A highly significant locus identified on Chr6 (~43 Mb) was

co-localized with the plant height locus Dw2 locus. This is

unsurprising because ADF showed a positive relationship with

PH in the BAP. The remaining two associations, including two

loci on Chr1 and a locus on Chr10, were detected for the first time

and thus considered novel (Supplementary Table S4).

NDF is a major component of the biomass composition and

plays a significant role in forage quality. Based on the LD decay

observations, the most significant associations (67 loci) were

identified for NDF (Supplementary Figure S1; Table 1), including

some candidate genes described in the results section. A locus was

detected on Chr1 at 24 Mb, which overlapped with an earlier study

(Boatwright et al., 2022b). Genetic loci located on Chr2 (~9 Mb),

Chr9 (~58 Mb), and Chr10 (~10 Mb) overlapped with previous

studies (Li et al., 2018; Boatwright et al., 2022). Similarly, a highly

significant locus detected on Chr6 (~60 Mb) overlapped with an

earlier study (Shiringani and Friedt, 2011). However, a locus

detected in this study on Chr5 (~5 Mb) was associated with

bioenergy-related traits like stem hydrolysis yield potential and

stem sugar release (Van der Auwera et al., 2013).

Several significant loci were identified for NFC in the present

study, corroborated with earlier studies for various biomass-related

traits, days to flowering, plant height, tiller number, shoot cylinder

height, cellulose content, and hemicellulose content. A genomic

region associated with NFC on Chr6 (43 Mb) was overlapped in

previous studies with various traits, including brix %, days to

flowering, and total dry biomass (Ritter et al., 2008; Felderhoff
Frontiers in Plant Science 12
et al., 2012), shoot dry biomass (Zhang et al., 2015), and plant height

(Burrell et al., 2015; Gelli et al., 2016; McCormick et al., 2018).

Another genomic region on Chr6 (Chr06: 48,838,810) overlapped

with the locus associated with juice yield (Mace and Jordan, 2010;

Mocoeur et al., 2015) and fresh biomass (Wang et al., 2014). There

were multiple genomic regions significantly associated with NFC on

Chr8 (5-6 Mb) were overlapped in previous studies for other traits,

including the NDF (Li et al., 2018), cellulose, hemicellulose content

(Murray et al., 2008), stem circumference (Zhao et al., 2016), and

plant height (Girma et al., 2019).
Conclusion

We genetically characterized a bioenergy association panel based

on whole-genome sequencing data. Significant nucleotide diversity and

heterozygosity were observed between the photoperiod-sensitive and

insensitive individuals of the panel. Six genomic regions showed strong

selection sweeps on different chromosomes (Chr1, Chr2, Chr3, Chr5,

Chr6, and Chr8) based on the Fst estimates. In addition, we used a set of

high-quality SNP markers (~ 5.48 million) for genome-wide marker-

trait associations for various traits related to biomass (DTH, PH, FW,

and DW) and its composition (ADF, NDF, NFC, and lignin). For FW

and DW, several significant genomic regions were identified on the

Chr1, Chr2, Chr 5, Chr 6, and Chr8. Similarly, highly significant

genomic regions were identified on the Chr1, Chr3, Chr5, Chr6, and

Chr8 for biomass compositional traits (ADF, NDF and NFC). We also

identified several significant genomic loci with pleiotropic effects across

the genome in addition to some well-characterized genes for plant

height (Dw1 and Dw2) and the YELLOW SEED1 locus (Y1) for seed

color. Identified marker-trait associations can be used to select superior

parental lines for developing mapping populations for high-resolution

mapping studies for a specific set of bioenergy-related traits. In

addition, we identified several significant SNPs corresponding to the

putative candidate genes that can be used for functional

characterization using genome-editing technology to know their

precise role in regulating specific bioenergy-related traits.
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