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An advanced three-dimensional
phenotypic measurement
approach for extracting Ginkgo
root structural parameters based
on terrestrial laser scanning
Yinyin Liang †, Kai Zhou † and Lin Cao*

Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University,
Nanjing, China
The phenotyping of plant roots is essential for improving plant productivity and

adaptation. However, traditional techniques for assembling root phenotyping

information are limited and often labor-intensive, especially for woody plants. In

this study, an advanced approach called accurate and detailed quantitative

structure model-based (AdQSM-based) root phenotypic measurement (ARPM)

was developed to automatically extract phenotypes from Ginkgo tree root

systems. The approach involves three-dimensional (3D) reconstruction of the

point cloud obtained from terrestrial laser scanning (TLS) to extract key

phenotypic parameters, including root diameter (RD), length, surface area, and

volume. To evaluate the proposed method, two approaches [minimum spanning

tree (MST)-based and triangulated irregular network (TIN)-based] were used to

reconstruct the Ginkgo root systems from point clouds, and the number of

lateral roots along with RD were extracted and compared with traditional

methods. The results indicated that the RD extracted directly from point

clouds [coefficient of determination (R2) = 0.99, root-mean-square error

(RMSE) = 0.41 cm] outperformed the results of 3D models (MST-based:

R2 = 0.71, RMSE = 2.20 cm; TIN-based: R2 = 0.54, RMSE = 2.80 cm).

Additionally, the MST-based model (F1 = 0.81) outperformed the TIN-based

model (F1 = 0.80) in detecting the number of first-order and second-order lateral

roots. Each phenotyping trait fluctuated with a different cloud parameter (CP),

and the CP value of 0.002 (r = 0.94, p < 0.01) was found to be advantageous for

better extraction of structural phenotypes. This study has helped with the

extraction and quantitative analysis of root phenotypes and enhanced our

understanding of the relationship between architectural parameters and

corresponding physiological functions of tree roots.
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1 Introduction

Roots play a key role in supporting trees and the global carbon

cycle, and they can also regulate ecosystem processes via plant–soil–

microbe interactions by driving plants to obtain water and nutrients

(Lynch, 1995; Rajendra et al., 2014; Villordon et al., 2014; Freschet

et al., 2021b). Root system architecture (RSA) has become the

“second green revolution” for global food security (Lynch, 2007).

Structural and morphological characteristics, such as root diameter

(RD), number, and lateral root isometry, are vital to understanding

plant physiological functions (Gu et al., 2014; Wang, 2017;

Seethepalli et al., 2021). Root phenotyping can track these

structural and morphological characteristics and, thus, has great

potential for bioenergy agroecosystems (York et al., 2022). Because

of the challenge of directly gathering information on the roots

underground, there are currently limited studies focusing on root

phenotyping (Wilhelm et al., 2022).

Since the 1990s, innovative techniques and devices have been

applied to root measurement, including non-destructive, manual, or

automatic two-dimensional (2D) and three-dimensional (3D)

digitizing techniques (Danjon and Reubens, 2008). Current research

on root phenotyping primarily focuses on the cultivation of crops (e.g.,

rice, corn, and wheat), with higher yields, higher quality, and more

excellent resistance to stress in the combination with genomic data (de

Dorlodot et al., 2007; Kuijken et al., 2015; Topp et al., 2016; Tracy et al.,

2020). Themost extensively usedmethod for root phenotyping is based

on 2D images (Chen et al., 2018). However, 2D measurements are

limited by the fact that pictures are typically taken from just one or two

perspectives, where information can be lost as a result of roots

overlapping (Shao et al., 2021). Traditional techniques for assembling

root phenotyping information include minirhizotron techniques

(Volkmar, 1993) and the agar gel culture method (Iyer-Pascuzzi

et al., 2010). These methods are not only time-consuming and

laborious, but also unable to describe the actual 3D structure of the

root system (Delory et al., 2022). To further understand trait–function

interactions, standardized and high-throughput approaches for

acquiring root phenotypes are required (Wen et al., 2015; Delory

et al., 2022). However, to the best of our knowledge, research on the 3D

root structure of woody plants is still in its infancy (Li et al., 2015). In

particular, there needs a systemic approach to accessing the

architecture of tree roots (Zanetti et al., 2015). Although it is

challenging to collect phenotypic information on the tree root

system, evaluating the 3D root structure of woody perennials is

crucial for understanding ecology (Liu, 1998), physiology and

biochemistry (Steingrobe, 2001), morphology (Xi, 2019),

biomechanics (Song et al., 2008), and bioenergy (York et al., 2022).

More importantly, extracting tree root phenotyping traits is also critical

in cultivating tree species with higher economic and ecological merits.

Structure from motion (SfM) has recently emerged as a digital

tool for studying root structures (Koeser et al., 2016). This

technique involves the acquisition of target point cloud data

through photography, which is then used to perform 3D

reconstruction (Lu et al., 2021). However, the performance of this

method is influenced by the size of the object and the distance of

measurement, and the process of dealing with background noise

can be time-consuming (Okamoto et al., 2022). Computed
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tomography (CT) (Shao et al., 2021) and magnetic resonance

imaging (MRI) (van Dusschoten et al., 2016) are currently

popular techniques for the determination of 3D phenotypic

information of roots, but less frequently to large woody root

systems (Wu et al., 2021b). By digging up Quercus petraea and

Pinus pinaster, Danjon et al. (1999) manually measured the

diameter and topology of the root system and then reconstructed

the 3D structure of the roots. However, manual measurements

occupied an average of 2 to 3 h for each root. Danjon et al. (2005)

adopted a 3D digitizer to measure the root structure of P. pinaster,

reconstructing the 3D model of the roots and coloring the roots

hierarchically, to link the structural properties of the roots with the

stability of against wind. Yang (2021) used SketchUp software to

simulate the 3D visualization of the root system of slope protection

plants. The root configuration parameters, topological indexes, and

fractal dimensions were extracted, which provided an important

basis for the planting method and species selection of slope

protection plants. However, owing to the time-consuming and

laborious recording of coordinates, diameter, angle, and other

parameters, the 3D structure of the root system cannot be directly

obtained. Zhang et al. (2020) applied time-consuming 3D printing

to simulate the 3D structure of roots with a physical model. This

model utilized four fixed-sized RDs to represent the entire root

system, which hardly capture the real RSA and morphology of

roots. Spanos et al. (2008) obtained root structure information by

uprooting Abies cephalonica Loudon with a 3D digitizer, which was

limited to the lab analysis. Zhang et al. (2021) utilized ground-

penetrating radar (GPR) to detect the roots of Pinus sylvestris var.

mongolica, by connecting the root system’s coordinate to determine

its spatial distribution. Because of the influence of soil water content

and resolution, as an emerging nondestructive detection technique,

GPR cannot detect fine roots (RD less than 2 mm) and cannot

directly obtain the 3D structure of roots. Quantitatively obtaining

multidimensional information on plant roots, for constructing 3D

models with a high efficiency, has become a challenging problem in

root visualization research (Wu et al., 2021a).

Light detection and ranging (LiDAR) is a fast, non-destructive,

and accurate remote sensing sensor for monitoring plant

information (Cao et al., 2014; Lin, 2015; Zhou and Cao, 2021).

Terrestrial laser scanning (TLS), a near-ground active remote

sensing technique (Raumonen et al., 2013), can efficiently and

accurately gather information about 3D point clouds of trees

(Wang et al., 2021). It can also quantitatively extract the

parameters and skeleton of trees for creating 3D models (Liu,

2016). Previous studies focused primarily on the aboveground

components (e.g., branches, leaves, and trunks) (Liu et al., 2016;

Disney, 2019), but only a few on roots underground with different

typical root phenotyping acquisition methods and sensors

(Table 1). Smith et al. (2014) and Todo et al. (2021)

demonstrated that TLS point clouds are capable of accurately

representing tree root architecture, thereby providing a robust

technical foundation for 3D models to characterize root variables.

Ginkgo (Ginkgo biloba L.) is a deep-rooted tree species (Fu and

Zhang, 2019) and an essential economic tree species in China, with

various valuable characteristics, namely, medicinal, edible, and

ecological, and it can also be used in landscaping (Shen et al.,
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2020). Research on Ginkgo now focuses on the aboveground part,

and it is uncommon to find studies on its root systems (Men, 1986).

Studies on the morphology and structure of the Ginkgo root system,

as well as the establishment of 3D models, can contribute to

understanding its physiological activities and mechanisms.

Additionally, genetic data can also be combined with root

phenotyping to create more tolerant and productive plants. A

sound and organized system of plant research is made possible by

quantitative descriptions of the root structural parameters.

However, to date, limited comparable investigations utilizing

LiDAR have been carried out on the root systems of woody plants.

It would be of high potential value for parameterizing 3D models of

tree root systems to quantify the relationship between RD and other

root phenotyping traits. Therefore, in this study, we utilized TLS to

scan the Ginkgo root systems for obtaining its 3D structure, while

establishing 3D models of the root system and automatically

extracting several phenotyping traits. Specifically, the objectives of

this study were (1) to develop an advanced approach of accurate

and detailed quantitative structure model-based (AdQSM-based)

root phenotypic measurement (ARPM) for extracting 3D

phenotypic parameters of tree roots, (2) to evaluate the ability of

the developed approach for extracting structural parameters of

Ginkgo roots, and (3) to analyze the variations of the Ginkgo root

structural parameters automatically extracted based on the

developed approach by considering different parameters.
2 Materials and methods

Figure 1 shows the overall framework for measuring Ginkgo

root phenotypes, which includes the operation of the developed

ARPM approach (A), as well as the specific workflow of the study
Frontiers in Plant Science 03
(B). The ARPM is divided into four modules: data acquisition,

operator-assisted processing, 3D visualization and modeling, and

phenotyping extraction. Specifically, LiDAR data were collected by

setting up site scans, followed by preprocessing such as stitching,

denoising, cropping, and coordinate conversion. Secondly, two

approaches were further used to reconstruct the root: minimum

spanning tree (MST)-based and triangulated irregular network

(TIN)-based models. Accordingly, we employed various metrics

to assess the models’ performance. The coefficient of determination

(R2), root-mean-square error (RMSE), and mean absolute error

(MAE), for example, are used to assess the RD; Recall, Precision, F1-

score, and Accuracy are used to assess the number of roots. Thirdly,

we used the AdQSM algorithm to automatically extract essential

root traits and the Pearson correlation coefficient to assess the

relationship between aspiration rate and RD.
2.1 Data acquisition

The information was gathered on 27 December 2021 at the

Xiashu Experimental Forestry Site of Nanjing Forestry University,

Jiangsu Province (119°22′E, 32°12′N). The climate of the study

area is northern subtropical monsoon climate, with an average

annual temperature of 15.5°C, an average annual precipitation of

1,099.1 mm, and a landscape of hilly areas. The plot size is 20 m ×

20 m with a tree density of 1,475 trees/ha. The Ginkgo trees in the

sample plot are planted artificially, and the average age of the trees

is 22 years old. Before selecting the sample trees, we considered the

tree height, diameter at breast height (DBH), and uprightness of

the trees in the plot. We selected six trees with good growth and

upright trunks, labeled a, b, c, d, e, and f, based on a combination

of three sizes of DBH (>12 cm, 9–12 cm, and 6–9 cm). The roots of
TABLE 1 Comparison of root phenotyping acquisition methods with different sensors.

Data type Sensor Species Advantages of techniques Disadvantages
of techniques

References

2-D

RGB camera Crops, herbs High throughput, low cost Large amount of data,
incomplete root system
image information

(Yin et al., 2009);
(Wilhelm
et al., 2022)

Electrical
resistance
tomography
(ERT)

Trees Non-destructive Multiple sources of error, highly
influenced by soil moisture

(Amato et al., 2008);
(Zhao et al., 2019)

3-D

3-D digitizer Trees, crops High precision, semi-automatic Time-consuming,
complicated operation

(Danjon et al., 1999);
(Spanos et al., 2008)

X-ray computed
tomography (CT)

Crops Non-destructive, high precision Costly, unable to detect coarse
roots, indoor operation

(Perret et al., 2007);
(Shao et al., 2021)

Laser
scanning
(LiDAR)

Trees Wide range of detection, high precision Costly, uneven point
cloud density

(Smith et al., 2014);
(Todo et al., 2021)

Magnetic
resonance
imaging (MRI)

Crops Non-destructive, high precision Costly, unable to detect coarse
roots, indoor operation

(van Dusschoten
et al., 2016)

Ground-
penetrating
radar (GPR)

Trees Non-destructive, in situ detection Low resolution, unable to detect
fine roots, highly influenced by
soil and water

(Zhang et al., 2020);
(Alani and
Lantini, 2020)
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the trees were cleaned and manicured before being raised entirely

by an excavator and marked with red paint precisely for pointing

the south direction of the trunk. The 22-year-old Ginkgo tree has a

deep root system (root depth approximately 2 m), which causes its

roots to be buried deep underground for a very long period. Given

this fact, the surface of the roots is tangled up with soil and fine

roots, making it challenging to determine the topological structure

of the roots. The fine roots were cut back to highlight the RSA.
Frontiers in Plant Science 04
Coarse roots with a base diameter larger than 0.5 cm

were measured.

The TLS, which combines LiDAR and a digital camera, is one of

the more crucial pieces of hardware in the ARPM. The fixed Ginkgo

trees’ roots were scanned using the RIEGL VZ-400i Terrestrial

Laser Scanning (RIEGL Laser Measurement Systems, Inc., Horn,

Austria) and integrated with a Nikon D810 camera (resolution:

7,380 × 4,928 pixels) to produce true color images and high-density
A

B

D

C

FIGURE 1

The overall process framework of the study. (A) The proposed ARPM approach for phenotypic measurement and extraction of tree roots, which
includes four steps: data collection, operator-assisted processing, 3D visualization modeling, and phenotyping extraction. (B) Data collection and
processing steps. (C) Methods of 3D reconstruction modeling. (D) Parameter extraction and performance evaluation.
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3D point clouds. The device has a measurement accuracy of ≤5 mm,

a range of 800 m, a field of view of 100° × 360° (vertical ×

horizontal), and a maximum laser pulse repetition rate of up to

1.2 MHz. The angular resolution was set to 0.0007°C and 0.0005°C

for the vertical and horizontal angles, respectively. Five different

scanning positions were evenly distributed around the target in the

center, with an interval angle of approximately 70°C.
2.2 Data processing

2.2.1 Preprocessing
In this study, the ARPM approach provided the first attempt to

use TLS as a sensor to obtain 3D point clouds of the roots. To

achieve automatic site data stitching, the raw data from TLS

scanning are fed into the accompanying RiSCAN PRO software

(http://www.riegl.com/products/software-packages/riscan-pro/),

with a registration error of less than 2 mm (Henning and Radtke,

2008). ICP (iterative closest point) is the foundation of the point

clouds stitching algorithm. If the automatic stitching effect is

inadequate, fine-tune manually to get each site point cloud as

tightly fitted as possible. The TLS is equipped with a digital

camera with a fixed focal length to acquire texture information

from the target object’s surface. The stitched point clouds were

imported into LiDAR360 software (Beijing Green Valley

Technology. Co., Ltd., China, https://www.lidar360.com), and the

root point clouds were cropped out separately and then denoised.

Usually, modeling is bottom-up; in terms of morphology, it is from

the apical side to the basal side. Aboveground branches and

underground roots are similar in morphology that they are

classified as trunk or taproot, first-order lateral, second-order

lateral, etc. Furthermore, given underground roots do not have

leaves, the noise source and shielding area are reduced as compared

to aboveground modeling. Hence, we proposed and tested a

hypothesis for conducting bottom-up branch separation to root

reconstruction and extraction. Since the root system is oriented

from the root base to the root tip, the typical upright root systems

need to be inverted for further modeling.

2.2.2 3D reconstruction
Three-dimensional quantitative structural modeling (3D QSM)

can contribute to the knowledge of spatial distribution characteristics,
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traits, and growth of the root system (Smith et al., 2014). 3D

reconstruction is a critical step in the developed ARPM. The

developed ARPM takes 10 min to capture point clouds of one

entire root system, and the visualization is done on the computer

side by reading the data. The pipeline of the 3D reconstruction

approaches is shown in Figure 1. For the plant reconstruction, there

are mainly two approaches based on segmentation and skeleton

(Raumonen et al., 2013). In this study, we primarily employ two

different approaches to extract the skeleton and then generate the

root model automatically. The first approach is MST-based, and the

second is TIN-based. AdQSM is a method developed by improving

on AdTree (Du et al., 2019) and TreeQSM (Raumonen et al., 2013).

The workflow of AdQSM is shown in Figure 2. Figure 3 shows the

front view of the processed TLS 3D point clouds of the Ginkgo root

system. The key algorithm is to construct the MST using Dijkstra’s

shortest path algorithm (Dijkstra, 1959) to obtain the skeleton of a

tree (Figure 4). The branches are then reconstructed based on K-

means clustering and nonlinear least squares optimized cylinder

fitting with the aim of obtaining a more refined geometric structure

model (Fan, 2021). Tree roots can be divided into tap roots, first-

order lateral roots, second-order lateral roots, etc (Ingram and

Malamy, 2010; Wang, 2017). To grade the roots and assign them a

specific color, the process is recreated from the bottom up by

computing each branch node and its order (Figure 5). The

algorithm is robust to issues like missing or insufficient regional

point clouds.

The Point Cloud Automata Viewer (PCAV) (Tianhong Jiye

Technology Development Co., Ltd., China, http://www.thjymap.

com/pca) filters point clouds based on the Multi-Primitive TIN

Progressive Densification (MPTPD) algorithm of object primitives

to automate modeling by generating a triangular mesh tree skeleton

(Lin and Zhang, 2014; Lin et al., 2016). It is a commercial software,

and its interface is developed based on the opensource project

CloudCompare (https://www.cloudcompare.org) (Rajendra et al.,

2014) the root model reconstructed by PCAV is shown in Figure 6.

The TIN representation uses the discrete data obtained from all

sampling points and connects these discrete points (vertices of

triangles) into continuous triangular surfaces according to the

principle of optimized combination. When constructing a TIN

from the point cloud, the normal vector and centroid of each

triangle in the TIN are calculated as follows (Equations 1, 2)

(Wu et al., 2021c). Assume the vertices of triangle Qi are
FIGURE 2

Flowchart of the MST-based approach by AdQSM for phenotypes measurement of Ginkgo roots. The point cloud data underwent initial Delaunay
triangulation, followed by simplification using specific algorithms aimed at streamlining the skeleton. Subsequently, the simplified skeleton was
molded to resemble cylinders to obtain a 3D model. Finally, the model was assessed through the extraction of root system parameters.
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A B

D E F

C

FIGURE 3

The 3D point clouds’ front view of root systems. (A–F) correspond to six sample trees, with those labeled (A–C) indicating trees exhibiting vertical
root growth, and those labeled (D–F) indicating trees with horizontal root growth. On the coordinate axis, N represents north, E stands for east, and
Z indicates the direction of root growth. The root systems were scanned using TLS to generate point clouds, which were displayed after
preprocessing steps like stitching, cropping, and denoising.
A B

D E F

C

FIGURE 4

The root skeletons of six Ginkgo trees obtained by MST-based algorithm in AdQSM. (A–F) correspond to six sample trees. On the coordinate axis, N
represents north, E stands for east, and Z indicates the direction of root growth.
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G1 (X1, Y1, Z1), G2 (X2, Y2, Z2), and G3 (X3, Y3, Z3), in that order.

The normal vector is N = (A, B, C), which can be expressed as the

result of the cross-product between G1G2 and G1G3. The center of

mass of triangle Qi is Ck. Calculate the vectors between G1 and G2,

and between G1 and G3, as G1G2 = (X2 − X1, Y2 − Y1, Z2 − Z1) and

G1G3 = (X3 − X1, Y3 − Y1, Z3 −Z1), respectively.

A   =   (Y2   −  Y1)(Z3   −  Z1)  −   (Z2  −  Z1)(Y  3 −  Y1)

B   =   (Z2  −  Z1)(X3  −  X1)  −   (X2  −  X1)(Z3 −  Z1) (1)

C   =   (X2  −  X1)(Y3  −  Y1)  −   (Y2  −  Y1)(X3 −  X1)

The centroid Ck is calculated as follows:

Ck   = (
X1 + X2 +  X3

3
,
Y1 + Y2 +  Y3

3
,  
Z1 + Z2 +  Z3

3
) (2)
2.2.3 Automatic extraction of
phenotyping information

A quantitative understanding of the phenotyping traits of roots

facilitates the understanding of the environmental–functional

mechanisms of root action. In this study, multiple phenotyping

traits (diameter, surface area, volume, and length) were extracted

automatically using AdQSM v1.7 (open access: https://github.com/

GuangpengFan/AdQSM) (Fan et al., 2020). The algorithms are

modeled in a bottom-up manner to calculate the order and the

number of bifurcation points of each grade of branches, which

correspond to the grading number and the number of different

grades of roots, respectively (Dong et al., 2021) (Ajmera et al., 2022).

The branching order and basal diameter of the branches correspond

to the grading order of the root system and the RD (Fan, 2021).
2.3 Model evaluation methods

2.3.1 Root diameter accuracy evaluation method
based on point clouds and models

To evaluate the accuracy of the model, the basal diameters of

approximately 2–4 RDs were randomly selected for each sample

tree (19 RDs in total) and compared with the diameters extracted

from the point cloud and the model, respectively. RDs were

measured with vernier calipers serving as the true values, while

those extracted from point clouds and models are considered as

extracted values. The point clouds of roots are first segmented in

LiDAR360. To make the upper end of the root morphology vertical,

the projection and coordinate transformation were applied to the

segmented individual roots. The least squares circle fitting

algorithm was used to measure its basal diameter, with the

average of several measurements adopted to determine the

diameter. Likewise, CloudCompare was used to crop the point

clouds of the root bases of the reconstructed models, and then

importing it into LiDAR360 to obtain the model extracted values of

RD. The R2, RMSE, relative root-mean-square error (rRMSE), and

MAE were calculated to estimate the level of consistency between

the point clouds, 3D models’ measurement data, and the raw data
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collected in the field (Equations 3–6). The metrics were calculated as

follows:

R2 = 1 −o
n
i=1(xi − x̂ i)

2

on
i=1(xi − �x)2

(3)

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
no

n
i=1(xi − x̂ i)

2

r
(4)

rRMSE =
RMSE

�x
� 100% (5)

MAE =
1
no

n
i=1 x̂ i − xij j (6)

where xi is the measured root diameter; �x   is the mean of the

measured root diameter; x̂ i is the estimated value of the root

diameter model; n is the number of samples.

2.3.2 Accuracy evaluation methods for models to
identify different levels of roots

The main traits to describe the root architecture are the number,

diameter, and grade of the taproots and lateral roots (Xiao et al.,

2014). From the 3D laser point clouds of Ginkgo, it can be found

that its root type belongs to the horizontal or vertical root system

(Zanetti et al., 2015; Xi, 2019), and the taproots are thick or not

prominent. In this study, the number of first-order lateral roots

(including the taproot) and second-order lateral roots was counted

separately. To quantitatively distinguish taproots, first-order lateral

roots, and second-order lateral roots, a computerized 3D

visualization was utilized, combined with the visual interpretation

of root point clouds or models. The accuracy of the models was

evaluated by comparing it with the measured number of lateral

roots measured by TLS. The performance of the model is evaluated

using Recall, Precision, F1-score (F1), and Accuracy, all of which

vary from 0 to 1 (Equations 7–10). The formulas are shown below,

respectively.

Recall =
TP

TP + FN
(7)

Precision =
TP

TP + FP
(8)

F1 = 2� Recall � Precision
Recall + Precision

(9)

Accuracy =
TP + TN

TP + TN + FP + FN
(10)

where TP, TN, FN, and FP refer to true positives, true negatives,

false negatives, and false positives, respectively. F1-score is basically

a harmonic mean of precision and recall.

2.3.3 Evaluation for the automatically
extracted parameters

The correlation between the automatically extracted parameters

and the true values is calculated by the Pearson correlation
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A B

D E F

C

FIGURE 5

The front view of vertical-type (A–C) and horizontal-type (D–F) Ginkgo root systems, which were constructed by an AdQSM-based approach. The
method reconstructed the roots in a bottom-up manner according to its growth rules, and calculated each branch node and order to grade the
roots. Different orders of roots are colored by various colors. The tap roots, the first-order (1st) lateral roots, the second-order (2nd) lateral roots, the
third-order (3rd) lateral roots, and the fourth-order (4th) lateral roots are colored brown, green, cyan, red, and blue, respectively. On the coordinate
axis, N represents north, E stands for east, and Z indicates the direction of root growth.
A B

D E F

C

FIGURE 6

3D front view of six Ginkgo root systems, modeled by the TIN-based algorithm in PCAV, and CloudCompare presents the final model. (A–F)
correspond to six sample trees, with those labeled (A–C) indicating trees exhibiting vertical root growth, and those labeled (D–F) indicating trees
with horizontal root growth. On the coordinate axis, N represents north, E stands for east, and Z indicates the direction of root growth.
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coefficient (r) (Equation 11). The calculation formula of r is:

r = on
i=1(xi − �x)(yi − �y)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

on
i=1(xi − �x)2on

i=1(yi − �y)2
q (11)

where xi is the extracted parameter for the ith samples; �x  is the

mean of xi; yi is the true value (typically measured manually) for

the ith samples; �y  is the mean of yi; n is the number of samples. The

coefficient r ranges from −1 to 1. If the absolute value of r is close to

1, the linear correlation between the extracted values and the real

value is stronger; if it is 0, there is no correlation between them.
3 Results

3.1 Accuracy assessment of the
root diameter

In this study, two root models were selected to extract 19 RDs

from six Ginkgo trees. A linear regression was fitted between the

measured diameter (manually measured with a vernier caliper) and

the values extracted from the point cloud and models, and a scatter

plot was drawn (Figures 7A–C). For extracted diameters, the root

point clouds acquired by TLS (R2 = 0.99, MAE = 0.35 cm, RMSE =

0.47 cm, rRMSE = 8.21%) are highly consistent with the manually

measured values, which are more accurate than the rebuilt root

models. For the reconstructed MST-based (R2 = 0.71, MAE =

1.79 cm, RMSE = 2.20 cm, rRMSE = 38.57%) and TIN-based

(R2 = 0.54, MAE = 5.62 cm, RMSE = 2.80 cm, rRMSE = 48.94%) 3D

models, the former fits better and has higher accuracy when it is

compared with manual measurement values. The RMSE of the two

models ranged from 2 to 3 cm. There is a point with a large

deviation (Figure 7C). Given the fact that the tree labeled c has more

fine roots, this large deviation is mostly caused by the

underestimation of this high-diameter root, as well as some root

scans are not of good enough quality for the point cloud, resulting

in a biased reconstructed model. This value reflects the variation in
Frontiers in Plant Science 09
RD extracted by different models, with higher values in the TIN-

based model tending to become saturated.
3.2 Accuracy evaluation of the model to
identify different orders of roots

Table 2 demonstrates the accuracy of the two models for

identifying different classes of root systems. In terms of the

models’ detection of the number of roots, the MST-based model

(F1 = 0.81, Accuracy = 0.83) possesses slightly higher overall

accuracy than the TIN-based model (F1 = 0.80, Accuracy = 0.82),

and both Recall and Precision are roughly comparable, with mean

values of approximately 0.8. In particular, the second-order lateral

roots (F1 = 0.83) were somewhat better than the first-order lateral

roots (F1 = 0.78), in terms of the root number for model detection.

Although the accuracy of the first-order lateral roots is higher than

that of second-order lateral roots, this is due to the fact that the

number of second-order roots is typically more than that of

the first-order roots, and an imbalanced distribution will impair

the accuracy outcomes. Additionally, Figure 8 visualizes the

comparison between Recall, Precision, F1, and Accuracy for the

MST-based and TIN-based models, and the first- and second-order

lateral roots.
3.3 Results of automatic
phenotype extraction

Specific algorithms were implemented in AdQSM to

quantitatively extract phenotypic parameters (e.g., volume, surface

area, diameter, and length) while generating models (Table 3). The

AdQSM algorithms were optimized by adjusting the height

segmentation (HS) value and the cloud parameter (CP). The

traits are extracted from the default values; i.e., the HS and

the CP are set to 0.5 and 0.003, respectively. The CP represents

the degree of point cloud thinning, i.e., down-sampling. Figure 9
A B C

FIGURE 7

Linear fit of the root diameter (RD) extracted from point clouds (A) and the MST-based (B) and TIN-based (C) model to the measured values,
respectively. The six symbols “□⋄△+○×” represent roots from A, B, C, D, E, and F, respectively. The solid line represents the 1:1 line, and the dashed
line indicates the regression equation.
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reveals the variation of branch volume, branch surface area, the

average RD, and branch length with different CPs (range from 0.001

to 0.004). The figure indicates that the RD generally increases with

the increase of CP values, while the root length decreases. The

diameter and length of the roots showed opposite trends, resulting

in an irregular variation of area and volume obtained by the

balanced calculation of these two. Figure 10 shows the correlation

analysis between the extracted RD at different CP values and the

manually measured values. The extracted diameter values were

significantly correlated with the measured values at CP values of

0.002 (r = 0.94, p < 0.01) and 0.003 (r = 0.87, p < 0.05). Therefore, it

can be judged that 0.002 is the optimal CP value in this study. The

CP values were directly related to the final extraction accuracy of the

RD. Careful point cloud thinning is essential for reducing data

redundancy and facilitating the accurate extraction of structural

parameters. It is important to note that, given that only the diameter

has been measured and other extracted characteristics were

unavailable to be verified, the optimal value of CP should be

considered purely as a reference point. The approach needs the

coordinate file of the input point clouds to generate the model and

finishes extracting phenotypes automatically. According to Table 3,

it can be seen that the model’s extracted diameters are smaller than

those measured ones.
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4 Discussion

The 3D point clouds from TLS show that the spatial distribution

of the Ginkgo root system extends further horizontally than

vertically, which is consistent with the results of Men (1986).

Although the Ginkgo ’s taproot was demonstrated to be

distinguishable, certain sample trees lost their taproot dominance,

possibly as a result of environmental factors such soil depth or water

table, which, in turn, altered the root system’s hierarchical structure

(Freschet et al., 2021a). Liu et al. (2007) established a 3D static

model of the root system of Pinus tabuliformis Carr. based on fractal

theory. It concluded that there is a strong correlation between the

RD and the root length, which can be used to predict the RD.

However, this requires much more time and labor to measure the

relevant parameters to establish the relationship model, which is

complicated for tree species with more root branches. Guo et al.

(2008) revealed a strong correlation between the RD and the root

branch order. According to Li et al. (2016), the RD can be used to

infer root biomass, while its variation is driven by soil, water, and

nutrients. Conventional measurements of root system

morphological and structural parameters are typically labor-

intensive and time-consuming. Quantitative description of the

link between phenotyping traits and the function of roots has
TABLE 2 Overall accuracy assessment of the two models for identifying different orders of root systems.

Evaluation
index

The first-order root The second-order root Overall evaluation

MST-based TIN-based MST-based TIN-based MST-based TIN-based

Recall 0.76 0.75 0.87 0.87 0.82 0.81

Precision 0.83 0.83 0.80 0.81 0.81 0.82

F1-score 0.79 0.77 0.83 0.83 0.81 0.80

Accuracy 0.86 0.84 0.81 0.80 0.83 0.82
FIGURE 8

Comparison of the detection effect of the number of lateral roots from the two models regarding different evaluation metrics. The MST-based
model (F1 = 0.81) surpassed the MST-based model (F1 = 0.80). The better performance of the second (2nd) order (F1 = 0.83) than the first (1st) order
(F1 = 0.78) lateral roots is explained by the larger number of the former and their wider distribution, which makes them easier to be identified.
Conversely, the 1st-order lateral roots are often misidentified (false negative) due to noise or occlusion.
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been the endeavor of many scholars. van Dusschoten et al. (2016)

estimated root length in different RD classes for maize based on

MRI images and established linear regression relationships with an

R2 and RMSE of 0.66 and 0.68 cm, respectively. In this study, the R2

and RMSE of the RD of Ginkgo derived from TLS were 0.99 and

0.47 cm, respectively, which were highly consistent with the

measured values and can substitute manual measurement. MRI is

usually performed indoors, and the TLS is relatively flexible in the

sites of use and less labor-intensive.
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Zhu et al. (2014) employed GPR to obtain 3D images of pine

root systems and indirectly estimate the underground biomass by

establishing the model of RD. It took 2 to 3 h for GPR to scan a root

system and could vaguely distinguish the root distribution position

from an image with a low resolution. The results demonstrated that

the RD error was between 13% and 16%, when the best RD

estimation model was tested against the measured data. The

electromagnetic waves emitted by GPR are affected by the

dielectric constant. The resolution of the medium is mainly
TABLE 3 The phenotypic parameters of roots automatically extracted by the AdQSM method.

Tree
ID

Number of
roots ± SE

Measured diameter ±
SE (cm)

Parameters for automatic extraction

Extracted diameter ±
SE (cm)

Root
volume (m3)

Root surface
area (m2)

Root
length (m)

a 30 ± 3 4.37 ± 0.57 3.73 ± 0.62 0.01 ± 0.00 2.06 ± 0.35 108.11 ± 10.21

b 52 ± 5 4.07 ± 0.37 2.77 ± 0.86 0.02 ± 0.00 3.36 ± 0.36 281.25 ± 16.58

c 28 ± 2 7.75 ± 0.88 5.44 ± 1.02 0.05 ± 0.01 6.59 ± 0.77 248.29 ± 13.57

d 32 ± 4 3.60 ± 0.82 2.50 ± 0.97 0.02 ± 0.00 2.44 ± 0.28 175.88 ± 14.23

e 55 ± 3 4.66 ± 0.35 4.51 ± 0.69 0.05 ± 0.01 7.39 ± 1.04 365.02 ± 18.69

f 19 ± 2 5.21 ± 1.15 3.70 ± 1.54 0.04 ± 0.01 4.57 ± 0.83 234.83 ± 15.47
SE refers to standard error. Each data value denotes the mean ± SE. The number of roots here represents only the number of the taproot and the first- and second-order lateral roots.
FIGURE 9

The variation of automatically extracted parameters (e.g., root diameter, branch volume, branch surface area, and branch length) at different cloud
parameter (CP) coefficients. The CP represents the dilution rate during point cloud processing.
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adopted to detect coarse roots and their distribution. Miao et al.

(2022) utilized TLS to scan maize, convert point clouds into images,

and assess stem thickness using elliptical fitting. The results

achieved high accuracy, allowing for the quick determination of

crop phenotypic traits. However, when 3D point clouds are turned

into 2D images for measurement, it not only increases the source of

error and decreases measurement accuracy, but also lengthens the

data processing time. Furthermore, because there were more sites to

scan, it took longer and increased the risk of error (Disney, 2019). In

this study, the root system can be scanned by TLS to directly acquire

the millimeter-level accurate 3D morphological structure and

realistic texture information of the root system. The five-station

scanning method takes approximately 20 min to obtain the object’s

high-density point clouds. In addition, the TLS point cloud-based

measurements in this study improved at least 30% in terms of

efficiency and achieved a higher level of accuracy. The 3D

visualization of root systems and model reconstruction is essential

for understanding the morphology, structure, and function of plant

root systems (Wu et al., 2021a). Despite the fact that there are

various ways for modeling roots, we still require a systematic

approach as most have limitations and are not very universal.

Studies on 3D model visualization of roots mostly focus on

studying monocotyledons (Delory et al., 2022). Han and Kuo

(2018) constructed a 3D image of the rice root system and

quantified phenotypic traits, such as lateral root number and

surface area.

To explore the dynamic growth process of the rice root system,

Yang et al. (2020) proposed a 3D growth model based on a

differential L-system. The model fitted the total root length and

surface area to the measured values with an accuracy of more than

95%. In this study, woody plant roots were investigated. The results

of this study indicated that the software for single-tree modeling

could be implemented to root modeling, through the coordinate

transformation to represent the complex architecture of roots

completely. Regarding the RD extraction, the RMSE of the
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diameter was controlled within 2 to 3 cm for both models, and

the models were well-performed. The model value of the RD is

generally higher than the measured value. The overestimation may

be caused by the misalignment of the point clouds, the incorrect

recognition during modeling, and the mistaking noise as a

component. By improving the registration accuracy and precise

denoising, these issues can be alleviated and the model accuracy can

be increased. In terms of root detection results, the MST-based and

TIN-based models could correctly detect most first-order and

second-order lateral roots. The results showed that the overall

accuracy of the MST-based model (F1 = 0.81, Accuracy = 0.83)

was slightly higher than that of the TIN-based model (F1 = 0.80,

Accuracy = 0.82). The F1-score values of second-order lateral roots

were higher than those of the first-order ones. Specifically, the

sample tree labeled e (total number of roots is 55) had the highest

accuracy, while the sample d (total number of roots is 32) had the

lowest accuracy. These may be because the larger the number of

roots, the wider the spatial distribution area, and the easier to be

scanned by the laser, thereby weakening the influence of

environmental factors and improving the detection accuracy.

Yang (2021) utilized SketchUp for 3D modeling of slope

protection plants, and the three root architecture parameters

extracted by the model were highly linearly correlated with the

true values. The study required manual measurement of RDs and

coordinates, which was relatively time-consuming and laborious. In

this study, root scanning using TLS can obtain not only the 3D

structure of the root system, but also the true color image as well as

the coordinates. This can reduce the error of human measurement.

Though the two models in this study performed worse than

SketchUp, automatic modeling makes modeling reasonably

straightforward (only takes 3–15 min) and enhances the efficiency

of digitization processing. The possible reasons for the lower

accuracy are that the model algorithm is developed mainly for the

aboveground part of the plant and is prone to systematic errors.

Alternatively, this was caused by the influence of environmental
FIGURE 10

Correlations between automatically extracted root diameters at different sampling rates (cloud parameter, CP) of point clouds from AdQSM and
manually measured values. **p < 0.01; *p < 0.05.
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factors in scanning the root system, which resulted in point cloud

noise. Hui et al. (2022) extracted the number of first-order lateral

roots by segmenting and scanning the image. However, this method

is time-consuming and cannot directly capture the true 3D spatial

distribution structure of the root system, as it is based on 2D images.

Compared with other methods, the millimeter resolution and high

penetration of TLS can accurately capture the structure and texture

of the root system. Specific algorithms can also be implemented for

the 3D reconstruction of the entire root system to quantify more

traits quickly, efficiently, and with high throughput. The 3D

reconstruction of root systems based on point clouds overcomes

the limitation of traditional 2D image-based modeling with a

single perspective.

Nevertheless, this study also has some limitations. The

number of samples should be expanded, and differences in age,

tree species, site conditions, and culture methods (cuttings and

seedlings) of the samples should be taken into account. Currently,

this paper is based on a semi-automated method for extracting the

parameters of a 3D root model. The approaches primarily focus on

separating and reconstructing branches and leaves aboveground.

However, it is recommended that future research focuses on

developing specialized algorithms for the separation and

reconstruction of 3D root systems to enable automatic

extraction of root parameters. The lack of measured data on

root length in this study made it unavailable to validate the

automated extraction of phenotypic traits, such as surface area

and volume. In this study, fine roots less than 5 cm in diameter

were clipped, due to their potential to introduce noise into the

point cloud data. Consequently, this exclusion led to the loss of

characterization of the fine roots and obscured their contribution

to traits, such as surface area and the total root length. Owing to

the presence of noise caused by fine roots in the point cloud, the

accuracy analysis presented in this study has been restricted to the

first-order lateral roots (including the tap root) and the second-

order lateral roots. This study serves as an initial application of

tree modeling methods for the extraction of phenotypic

parameters of roots. We aim to validate further levels of roots

using this approach in the future, thus optimizing the model and

enhancing its robustness. This study provides a technical reference

for the extraction of 3D root structure parameters of other trees.

Refined extraction of root phenotypes can help improve our

understanding of carbon and nitrogen allocation in tree organs

and potentially improve future forest genetic gains. Based on TLS,

it is hoped that future researchers will continue to develop

methodological techniques to reconstruct tree root systems and

be able to automatically extract phenotyping traits. That would be

crucial for evaluating the analysis of spatial distribution structure,

forest biomass, and growth structure for trees. This will facilitate

improved understanding of precise plant cultivation, integration

of phenotypes and genotypes, exploration of physiological and

biochemical plant properties, and enhanced mechanical anchor of

root systems.
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5 Conclusion

There is still a lack of high-throughput data collection and

modeling approach for root systems of trees. In this study, a new

approach for quantifying root phenotyping based on ARPM was

developed. This approach provides a potential avenue for

improving 3D modeling algorithms and offers a new impetus for

root phenotyping measurements. High-precision TLS point clouds

can access sophisticated 3D structures of the root system.

Compared to existing methods, the developed ARPM approach

offers numerous advantages, including wider site applicability,

reduced time and labor costs, and increased data collection and

analysis efficiency and accuracy. Fitting of the diameter and the

number of lateral roots showed that TLS is a reliable means to

obtain root information effectively with high accuracies. The

reconstructed models based on point clouds can not only present

the spatial distribution and topology of the root system but also

quantitatively extract the corresponding phenotyping traits.
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