
Frontiers in Plant Science

OPEN ACCESS

EDITED BY

Chellappan Padmanabhan,
USDA APHIS PPQ Science and Technology,
United States

REVIEWED BY

Nagaraju Yalavarthi,
Central Silk Board, India
Jonathan Shao,
United States Department of Agriculture,
United States

*CORRESPONDENCE

Eman Abdullah Aldakheel

eaaldakheel@pnu.edu.sa

RECEIVED 14 December 2023

ACCEPTED 27 March 2024
PUBLISHED 22 April 2024

CITATION

Aldakheel EA, Zakariah M and Alabdalall AH
(2024) Detection and identification of plant
leaf diseases using YOLOv4.
Front. Plant Sci. 15:1355941.
doi: 10.3389/fpls.2024.1355941

COPYRIGHT

© 2024 Aldakheel, Zakariah and Alabdalall. This
is an open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

TYPE Original Research

PUBLISHED 22 April 2024

DOI 10.3389/fpls.2024.1355941
Detection and identification of
plant leaf diseases using YOLOv4
Eman Abdullah Aldakheel1*, Mohammed Zakariah2

and Amira H. Alabdalall3

1Department of Computer Sciences, College of Computer and Information Sciences, Princess Nourah
bint Abdulrahman University, Riyadh, Saudi Arabia, 2Department of Computer Science, College of
Computer and Information Science, King Saud University, Riyadh, Saudi Arabia, 3Department of
Biology, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
Detecting plant leaf diseases accurately and promptly is essential for reducing

economic consequences and maximizing crop yield. However, farmers’

dependence on conventional manual techniques presents a difficulty in

accurately pinpointing particular diseases. This research investigates the

utilization of the YOLOv4 algorithm for detecting and identifying plant leaf

diseases. This study uses the comprehensive Plant Village Dataset, which

includes over fifty thousand photos of healthy and diseased plant leaves from

fourteen different species, to develop advanced disease prediction systems in

agriculture. Data augmentation techniques including histogram equalization and

horizontal flip were used to improve the dataset and strengthen the model’s

resilience. A comprehensive assessment of the YOLOv4 algorithm was

conducted, which involved comparing its performance with established target

identification methods including Densenet, Alexanet, and neural networks. When

YOLOv4 was used on the Plant Village dataset, it achieved an impressive

accuracy of 99.99%. The evaluation criteria, including accuracy, precision,

recall, and f1-score, consistently showed high performance with a value of

0.99, confirming the effectiveness of the proposed methodology. This study’s

results demonstrate substantial advancements in plant disease detection and

underscore the capabilities of YOLOv4 as a sophisticated tool for accurate

disease prediction. These developments have significant significance for

everyone involved in agriculture, researchers, and farmers, providing improved

capacities for disease control and crop protection.
KEYWORDS
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1 Introduction

Plant diseases present a crucial obstacle to the growth of agriculture

in every country, resulting in significant yearly financial losses (Mitra,

2021). Plant disease detection has developed into a substantial area of

study in pattern recognition and contemporary agricultural

development due to developments in machine learning technology

(Roy and Bhaduri, 2021; Albattah et al., 2022; Sanida et al., 2023). Early

plant disease identification approaches used a support vector machine

(SVM) (Rahman et al., 2023; Thangavel et al., 2023), artificial neural

network (ANN) (Attallah, 2023), and SVM method for disease

diagnosis under segmented plant disease spots. These techniques are

used to manually isolate the affected area of an image, after which the

K-means clustering method is implemented (Javidan et al., 2023).

With the advancement of AI technology, agricultural detection

based on AI is now widely utilized for tasks including predicting

crop production, processing weed identification, and finding plant

diseases (Albattah et al., 2022). Moreover, the process of machine

learning-based disease detection involves several steps. Firstly, the

dataset undergoes preprocessing to ensure its suitability for analysis.

Following this, feature extraction algorithms are employed to

identify and extract relevant features from regions of interest in

the images, specifically focusing on disease-affected areas of plant

leaves. Subsequently, the extracted feature information is

transmitted to the classifier, where model parameters are derived.

Finally, the system accepts the identified categories of diseases,

along with their respective severity levels, integrating this crucial

information into the output for further analysis or action.

Moreover, leveraging image recognition through machine

learning methodologies holds significant promise for enhancing

the generalization ability of models. Specifically, in the domain of

detecting and identifying plant leaf diseases using YOLOv4, the

term “model generalization ability” pertains to the model’s

proficiency in accurately identifying and categorizing diseases in

plant leaves across a broad spectrum of scenarios, including

instances not encountered during training. This capability enables

the model to effectively discern subtle patterns and characteristics

indicative of various leaf diseases, thereby contributing to more

reliable and robust disease detection systems (Singh et al., 2017).

When there are fewer classes, it is easier to distinguish between their

characteristics. Moreover, the categories can only be identified

within minimal visual settings. Researching a fast, end-to-end

plant disease detection system is vital since it will be necessary to

meet the demands of large-scale planting.

Further, early identification and management of plant diseases

is an essential part of crop harvesting, since it helps to minimize

development problems and lowers the need for pesticides. As a

result, the environmental damage brought on by pesticide use is

reduced, supporting sustainable agricultural practices (Perveen

et al., 2023). Many ML techniques have been used for plant and

disease categorization and detection.Where such approaches,

however, perform less well and more slowly when detecting

diseases in real time (Peng and Wang, 2022), likely due to the

problematic image preprocessing and feature extraction stages. The

fact that classic ML methods are unsuitable for real-world detection

scenarios with complex backgrounds and non-uniform surfaces is
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another major disadvantage of these methods. With several

applications, deep learning has lately achieved a substantial

breakthrough in this area of computer vision (Wang et al., 2021).

Additionally, it has been used for picture segmentation, crop

recognition, and automated agriculture technology, including the

classification of crops and fruits (Dhinesh et al., 2019). Models

based on convolutional neural networks (CNNs) have gained

popularity due to their improved accuracy in object detection

(Sangeetha et al., 2022). CNNs can save time on preprocessing

because they automatically extract features from the input images.

The ability to identify crop diseases has made great strides in

recent years (Dhinesh et al., 2019; Sangeetha et al., 2022). There

are now two distinct kinds of CNN-based object detectors: those

with a single detection stage and those with two. One of the most

popular two-stage detectors is the region convolution neural

network (RCNN), which consists of the fast/faster RCNN and

the mask-RCNN (Sangeetha et al., 2022). These models have had

significant effects on automated agriculture management (Chen

et al., 2022), crop and fruit detection (Eunice et al., 2022), and

yield and growth assessment (Hassan et al., 2021). Although these

models cannot recognize high-resolution images in real-time,

faster R-CNN, consisting of region proposal networks (RPN)

(Chen and Wu, 2023) and classification networks, considerably

decrease detection time. By combining target categorization and

localization into a regression problem, the recently suggested You

Only Look Once (YOLO) (Soeb et al., 2023) method simplifies the

problem. Due to its lack of RPN, YOLO employs regression to

directly locate targets in the image, significantly improving its

detection speed. High precision, accuracy, and detection speed are

hallmarks of modern object detection technologies like YOLOv4

(Xinming and Tang, 2023), which can perform several real-time

object recognition applications.

This work (Chuanlei et al., 2017) concentrates on rust and scab

detection in apple leaves, which are susceptible to two dangerous

and prevalent fungal infections. Real-time early disease

identification of apple leaves is challenging due to factors such as

the fine-grained multi-scale distribution, the similarity of colour

texture between illnesses and background, the diversity of diseases’

morphology, and the occurrence of many diseases on the same leaf.

A significant gap exists between the current model and real-time

illness diagnosis on mobile computing devices since existing disease

detection algorithms pay off accuracy for real-time detection speed

(Arathi and Dulhare, 2023).

Plant leaves have many different features, such as differences in

size, shape, color, and growth conditions, but effectively identifying

and categorizing diseases is still quite difficult. Brightness

fluctuations that occur during the process of capturing leaf image

aggravate this issue and challenge detection strategies. This paper

presents a novel approach that leverages the YOLOv4 architecture

to achieve remarkable accuracy on the Plant Village dataset. It is

shown that the used methodology is robust against a range of input

sample distortions, including noise, blurring, rotation, contrast

changes, lighting adjustments, color inconsistencies, and

brightness swings. The outcomes highlight how well the

recommended approach works to improve plant leaf disease

identification and detection.
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To create a framework for plant disease detection and

classification, the following processes must be completed: data

collection, model training, and multiple-class categorization of

plant leaf disease. Figure 1 provides an overview of the proposed

framework. Leaf disease items can be found and identified with the

Yolov4 method.

The following are the primary contributions of this

research paper:
Fron
• This study applies YOLOv4, a cutting-edge object detection

framework, to plant pathology. The work improves plant

leaf disease identification accuracy and efficiency by

seamlessly incorporating YOLOv4, providing a fresh

method to address agricultural concerns.

• The study achieves high precision in recognizing and

classifying various plant leaf diseases through thorough

image annotation and data preprocessing. The suggested

methodology’s robustness provides accurate disease

diagnosis, assisting farmers and researchers in timely

intervention and crop management.

• The study uses the widely accepted Plant Village dataset,

which helps validate and benchmark the proposed model.

This dataset selection improves the generalizability of the

findings, allowing for more excellent applications in plant

pathology research.

• The research provides valuable insights into the practical

implementation of the YOLOv4 architecture for detecting

plant leaf disease. The precise methodology can help

researchers and practitioners implement and adapt this

technology in real-world agricultural contexts.
The fundamental structure of this paper is as follows: An

overview of the topic is given in the first part. The literature on

diagnosing leaf diseases is reviewed in the section 2. The dataset

structure and the evaluation criteria for the experiments are

presented in the 3 section. The methodology portion is covered in
tiers in Plant Science 03
section 4, and a comparison of the findings is covered in section 5.

The discussion portion is covered under Section 6. Finally, a

summary concludes in section 7, where the paper is closed up.
2 Literature review

In the context of precision agriculture, there is a strong need for

sophisticated techniques that improve detection efficiency because

plant diseases pose significant risks to crop health and the field

(Attallah, 2023; Rahman et al., 2023; Thangavel et al., 2023). In

computer vision for plant disease identification, deep learning—

specifically, the YOLOv4 architecture—has proven to be a potent

tool. Deep learning holds great potential to overcome obstacles

associated with various illness kinds and environmental variables

(Javidan et al., 2023). Previous research has demonstrated the

drawbacks of standard approaches. The release of YOLOv4

improves object identification speed and accuracy, which makes it

an excellent option for applications in plant pathology (Singh et al.,

2017). An in-depth analysis of the current research environment is

provided by this literature review, which sets the stage for a later

investigation into the use of YOLOv4 in identifying and detecting

plant leaf diseases (Perveen et al., 2023).

By addressing the fundamental restrictions that are present in the

approaches that are currently in use, Peng et al (Peng and Wang,

2022). have made great achievements in the advancement of plant

disease identification. Predefined recognition categories and the

significant demand for image annotation are two examples of these

restrictions that are particularly difficult to overcome. The authors

have methodically separated the PlantVillage dataset into two sub-

datasets, which they have referred to as PlantVillage-A and

PlantVillage-B. This allowed them to use the PlantVillage dataset as

a solid foundation for training and evaluation. Remarkable accuracy

rates of 98% for YOLOv5 and 97.84% for ResNet were achieved by

their proposed strategy, which indicates a significant change from the

standard approaches that have been historically utilized. Not only

does this achievement serve as a testimonial to the effectiveness of the
FIGURE 1

Implementing the Yolov4 disease detection and identification framework in plant leaves.
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technique in minimizing the inadequacies of previous methodologies,

but it also serves to enhance the precision and adaptability of leaf

disease identification. A full re-evaluation of recognition categories

and an improved method to picture annotation are both components

of the strategy that has been presented.

Further, Chen et al. (2022) introduced an improved model based

on the YOLOv5 network to precisely identify diseases in the difficult

conditions of various natural habitats, significantly contributing to

plant disease recognition and using the PlantVillage dataset—

especially the rubber tree disease database with 2375 images—the

suggested model targets anthracnose and powdery mildew. The

model achieves an impressive 86.5% accuracy rate, highlighting its

usefulness in improving methods for identifying plant diseases.

Moreover, Eunice et al. (2022) address the critical imperative of

early plant disease diagnosis for optimizing food production and

reducing economic losses. Leveraging the advancements in deep

learning, the study introduces a robust leaf disease detection model

for agricultural applications. The focus lies on utilizing CNN-based

pre-trained models, specifically DenseNet-121 and VGG-16, with

meticulous hyperparameter fine-tuning. The PlantVillage dataset,

comprising 54,305 samples, serves as the comprehensive foundation

partitioned for training, validation, and testing. Impressively, the

proposed model achieves an exceptional accuracy of 99.81%,

underscoring its effectiveness in enhancing plant disease

identification accuracy and its potential for substantial impact on

agricultural practices and crop management strategies (Hassan et al.,

2021; Chen andWu, 2023; Soeb et al., 2023; Xinming andTang, 2023).

Likewise, Chuanlei et al. (2017) contributed to the critical

domain of apple leaf disease identification within computer

vision, addressing the challenge of adequate representation of

diseased leaf images. Leveraging the PlantVillage dataset,

comprising ninety images, the study employs a methodology

centred on a Support Vector Machine (SVM) classifier.

Impressively, the proposed model achieves an accuracy surpassing

95% on the PlantVillage dataset, showcasing the efficacy of the

developed apple leaf disease recognition method (Arathi and

Dulhare, 2023; Bin Naeem et al., 2023; Xu et al., 2023). This work

holds substantial promise for advancing computer vision

applications in precision agriculture and plant health monitoring

(Vengaiah and Konda, 2023; Terentev et al., 2023; Liu et al., 2023).

Further, Kaur et al. (2022) contributed significantly to the

imperative task of plant disease identification for sustainable

agriculture. Acknowledging the challenges of manual monitoring,

the research focuses on grapevines, targeting four prevalent

diseases: Leaf blight, Black rot, stable, and Black measles (Taheri-

Garavand et al., 2021; Sharma et al., 2023). With the overarching

need for automated disease characterization in agriculture, the

study utilizes the PlantVillage dataset, emphasizing grapevine

health with 2115 images. The proposed Hybrid Convolutional

Neural Network emerges as a robust solution, achieving a

remarkable accuracy of 98.7%. This work stands at the forefront

of precision agriculture, offering a comprehensive approach to

automatic and accurate leaf disease recognition in grape plants

(Mustafa et al., 2020).

Moreover, Jasim et al (Jasim and Al-Tuwaijari, 2020).

contributed to precision agriculture with their research using
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Image Processing and Deep Learning Techniques. The study

leverages the comprehensive Plant Village dataset comprising

20,636 images to address the critical task of detecting and

classifying plant leaf diseases. Further, it Employs deep-learning

techniques, particularly Convolutional Neural Networks (CNN),

where the research advances the state-of-the-art in disease

identification (Liu and Wang, 2021). Using CNN allowed for the

classification of 15 distinct classes, encompassing various diseases

such as bacteria and fungi, along with a category for healthy leaves.

The proposed model attained an accuracy of 90.029%, underscoring

its efficacy in the automated detection and classification of plant leaf

diseases, thereby contributing significantly to advancing precision

agriculture methodologies.

To sum up, this study has advanced plant pathology

significantly. The study effectively solves the crucial need for

precise and effective plant leaf disease detection and classification

using the YOLOv4 architecture. The research shows that picture

annotation, data preparation, and model training, that is used to

diagnose various diseases through creative integration and rigorous

methods reliably. High precision is achieved with the help of the

YOLOv4 model, demonstrating the model’s potential for practical

application in agriculture. This approach facilitates prompt

interventions and sustainable crop management practices,

contributing to the evolving field of precision agriculture.

Table 1 contains a list of previous references along with plant

types, techniques, limitations and outcomes.

The review concludes by highlighting the development of plant

disease identification approaches and highlighting the usefulness

and accessibility of YOLOv4 in addressing the drawbacks of

conventional methods. Molecular techniques, hyperspectral

imaging, and traditional computer vision have all been necessary.

However, YOLOv4 presents a viable path toward precise and

effective illness detection. Its versatility and intuitive interface

offer prospects for broad implementation in farming

environments. With the advancement of technology, crop health

monitoring can be improved by incorporating YOLOv4 into plant

disease control strategies, which will increase agricultural output

and sustainability.
3 Data collection

Over 50,000 images of healthy and diseased plant leaves from 14

distinct plant species are included in the publicly accessible image

resource called “Plant Village.” The dataset was produced to help

develop computer vision algorithms for plant disease identification

on an automated basis.

Each image in the dataset is annotated with the corresponding

plant species and whether a disease is present. The pictures in the

collection were taken using a smartphone camera, and they come in

various lighting, backgrounds, and orientations.

The Plant Village dataset, compiled by scholars at Pennsylvania

State University, is accessible for download on the official website.

Utilized in a number of programs and studies to identify plant

diseases, the dataset has contributed to the advancement of research

in this field.
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Datasets for strawberries, tomatoes, and potatoes are gathered

from the plant village dataset. The datasets for mango and bean

were collected from the website.
3.1 Data description

Each dataset is divided into two primary categories: healthy and

diseased. As shown in Table 2, additional categories exist in the

disease dataset for each Plant leaf.

This collection includes five groups of images, and the disease is

catalogued in 20 volumes. The leaf disease datasets of some fruit and

vegetable plants are more comprehensive than those of others,

which are only healthy or diseased. Figure 2 shows how the

distribution of the dataset is represented visually:
3.2 Data visualization

Visualising the image of each fruit is an essential pre-data

preparation phase in this process. The integration of widely

recognized and popular datasets is simplified by the torch-

vision.datasets class, which also simplifies the process for unique

datasets. Making use of the torch-vision.datasets subclass.
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ImageFolder enhances the efficiency of image data importing by

organizing the data beforehand. After the data has been imported, it

is crucial to normalize the data in order to improve its suitability for

neural networks. Normalization is the process of transforming pixel

values from the range (0,255) to (0,1) for each image. By dividing

each value by 255, this normalization procedure generates a torch

tensor from the entire array of pixel values. The underlying

reasoning for normalizing inputs is illustrated in Figure 3, which

utilizes a plant leaf to demonstrate how this methodology improves

the performance of neural networks.
3.3 Images annotation

To characterize an image’s contents or qualities, metadata or

labels are typically added to the image. It is frequently done to teach

computer vision algorithms to recognize particular objects,

characteristics, or properties inside an image.

Various Information can be added to an image by image

annotation, including text descriptions, polygons, points, and

bounding boxes around objects. In contrast, polygons can be

used to define an object’s shape and bounding boxes are

frequently used to identify and pinpoint the locations of objects

within an image.
TABLE 1 List of past references with datasets, methodology, and results.

References Datasets Methodology Limitations Results

(Peng and
Wang, 2022)

- The Plant Village dataset is used.
- It consists of around thirty-eight
thousand and thirty-five images for Plant
Village-A dataset and sixteen thousand
two-hundred and seventy images for Plant
Village-B.

YOLO V5,
ResNet-50

The research paper’s limitation is its potential for
generalizability, as the performance of the proposed
picture retrieval system may vary across different datasets
and environments.

The resNet model
has an accuracy of
97.84% for the
Plant
Village dataset.

(Wang
et al., 2021)

PlantVillage dataset consists of images of
14 plants with around 3000 images.

Squeeze-and-
excitation SSD
(Se_SSD), deep
block
SSD (DB_SSD).

The research needs to improve in generalizability, as the
algorithm’s performance may vary across diverse plant
diseases or datasets beyond the specific conditions of the
PlantVillage dataset.

This model has an
accuracy of
92.20% using the
same Plant
Village dataset.

(Chen
et al., 2022)

The Plant Village dataset consists of
around two thousand three-hundred
seventy-five images.

YOLOv5
network model

The research may need to be revised in assessing the
model’s robustness across diverse plant diseases and
datasets beyond the rubber tree disease database,
impacting its generalizability.

The accuracy of
this model
is 86.5%.

(Eunice
et al., 2022)

The Plant Village dataset consists of fifty
thousand three hundred and five images.

DenseNet-121,
VGG-16

The research’s limitations may hinder its ability to extend
its deep learning-based leaf disease detection model
across diverse crops and environmental conditions.

This model has an
accuracy
of 99.81%

(Chuanlei
et al., 2017)

The Plant Village dataset consists of
90 images

SVM Classifier The research may need to be revised in generalizability,
as the proposed genetic algorithm and correlation-based
feature selection method may not seamlessly extend to
diverse plant diseases or datasets beyond apple
leaf diseases.

This model has an
accuracy
of 94.22%

(Kaur
et al., 2022)

The Plant Village dataset consists of one
hundred 1,500 healthy images.

Hybrid
Convolutional
Neural Network

The research’s focus on grapevines may limit its
generalizability, and the hybrid convolutional neural
network may need to be more easily adapted to detect a
broader range of plant illnesses.

This model has an
accuracy of 98.7%

(Jasim and Al-
Tuwaijari, 2020)

The Plant Village dataset consists of
twenty thousand six-hundred thirty-
six images.

Deep-Learning
Techniques, CNN

The paper’s limitations include potential issues extending
the proposed system to other plant species and diseases
beyond tomatoes, peppers, and potatoes.

This model has an
accuracy
of 90.029%
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Image annotation is crucial in many ML applications, including

object identification, image classification, and image segmentation.

Developers can train ML models to spot image patterns by annotating

a dataset. This technology can be applied to various tasks, such as

facial recognition, self-driving cars, medical imaging, etc.
3.3.1 Process for detecting plant diseases
from images
3.3.1.1 Bounding box
Fron
o Rectangular bounding boxes are employed to enclose

targeted portions of the plant, with particular emphasis on

affected areas like leaves.

o The green hue for these bounding boxes accentuates the

segmentation of leaves and facilitates the visual differentiation

of annotated regions.
3.3.1.2 Segmentation and disease identification
o Segmentation entails dividing the image into smaller pieces

and assigning labels to indicate the existence or non-

existence of illness.
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o The presence of green colour-bounding boxes on leaves aids

in the segmentation process, enabling accurate detection of

disease-affected regions on the plant.
3.3.1.3 Plant feature annotation for landmarks
o Landmark annotation entails identifying and labelling

significant points on the plant, such as the lowermost part

of the stem, the leaves’ ends, or the fruits’ placements.

o The presence of green-coloured bounding boxes aids in

precisely identifying these landmarks on leaves, hence

offering intricate details about distinct plant characteristics.
3.3.1.4 Annotation of attributes for detailed information
o Attribute annotation involves assigning labels to photos

that provide Supplementary Information about the plant,

such as its species, the specific illness, and the degree

of severity.

o By employing green color-bounding boxes, the annotations

effectively capture distinct characteristics on leaves, hence

augmenting the dataset’s informational depth.
3.3.1.5 Image tagging for categorization
o Image tagging is assigning descriptive tags to photos to

classify them according to attributes such as illness type,

location, or plant species.

o Green colour-coded bounding boxes enhance the precision

of picture tagging, streamline the classification of images,

and optimize the organization of the dataset.
3.3.1.6 Training of machine learning (ML) algorithms
o Precise picture annotation, which involves the application

of green colour-bounding boxes on leaves, allows machine

learning algorithms to acquire knowledge about specific

symptoms and patterns linked to different plant illnesses.

o The acquired expertise enables ML models, like the

YOLOv4 model, to accurately categorize novel photos for

disease diagnosis.
Employing the OpenCV bounding box method, including

green-coloured bounding boxes specifically on leaves, guarantees

a targeted and visually discernible marking of areas impacted by

illness. The rigorous procedure of annotating significantly

enhances the efficacy of training models for plant disease

identification. As seen in Figure 4, which also displays the image

number, disease kind, and output images, the output images are

as follows.
TABLE 2 Plants images classification.

Index Images Label Number
of Images

1 Bean angular leaf spot 345

2 Bean healthy 342

3 Bean rust 348

4 Mango diseased 251

5 Mango healthy 161

6 Potato early blight 1939

7 Potato healthy 1824

8 Potato late blight 1939

9 Strawberry healthy 1824

10 Strawberry leaf scorch 1774

11 Tomato bacterial spot 1702

12 Tomato early blight 1920

13 Tomato healthy 1926

14 Tomato late blight 1851

15 Tomato leaf mold 1882

16 Tomato Septoria_leaf_spot 1745

17 Tomato:_Spider_mites
Two-spotted_spider_mite

1741

18 Tomato:_Target_Spot 1827

19 Tomato:_Tomato_mosaic_virus 1790

20 Tomato:
_Tomato_Yellow_Leaf_Curl_Virus

1961
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4 Model design

4.1 Yolo v4

Modern real-time object identification technology is used by

YOLOv4 (You Only Look Once, Version 4). It was created by a

research team at the University of Washington under the direction of

Alexey Bochkovskiy and is an upgrade over its forerunner, YOLOv3.

With single-pass image processing and real-time prediction of

bounding boxes and class probabilities for several objects, YOLOv4

uses DNN architecture. To do this, the image is divided into a grid of

cells, and each cell’s likelihood of containing an item, its bounding

box coordinates, and class probabilities are predicted. To increase the

precision and speed of object recognition, YOLOv4 employs some

cutting-edge approaches, including weighted residual connections,

mish activation functions, and spatial pyramid pooling.

On some object detection benchmarks, including COCO and

KITTI, YOLOv4 has achieved cutting-edge performance. It is

widely employed in many applications, such as robots, self-

driving cars, and surveillance. Since the YOLOv4 code is open-

source and accessible on GitHub, developers can use and alter it for

their projects.
4.2 Yolo V4 custom training

The critical steps in developing a bespoke YOLOv4 model

include the preparation of the dataset, the determination of

training parameters, and the implementation of model training. A

concise overview of these methodologies is provided below:
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4.2.1 Prepare the dataset
Creating a dataset with labeled photos is the initial stage.

Bounding boxes, class labels, and images of the items that one

wants to detect must all be included in the dataset. Applications

such as VoTT, LabelImg, and YOLOv4 Label can be utilized to

annotate the data.
4.2.1 Generate the YOLOv4 configuration file
Constructing a YOLOv4 configuration file that specifies the

model architecture, hyperparameters, and training settings is the

following step. The default configuration file from the YOLOv4

repository may be modified to meet specific requirements.
4.2.3 Download pre-trained weights
One potential method for streamlining the training process is to

utilize pre-trained weights designed for the YOLOv4 architecture.

The Darknet framework, which YOLOv4 employs, possesses pre-

trained weights.

4.2.4 Train the model
After obtaining the configuration file and the dataset, the model

can start to be trained. The YOLOv4 model can be introduced on a

special dataset using the Darknet framework. Throughout training,

the model will improve its recognition of the objects in the dataset.

4.2.5 Evaluate the model
After training on a validation dataset, the model’s performance

is evaluated. Metrics like accuracy, precision, recall, and F1-score is

used to assess the model’s performance.
FIGURE 2

Image size distribution.
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4.2.6 Test the model
It can then be tested on a test dataset to evaluate its performance

with brand-new, untested data. Moreover, our research utilized a data

splitting scheme of 90% for training and 10% for testing. Specifically,

90% of the training set was designated for training purposes, while the

remaining 10% was employed for validation. These proportions

guarantee rigorous training and evaluation of the model.

Moreover, due to the heavy computational tasks involved,

training a GPU model takes a lot of resilience. During training,

the GPU does a huge number of complicated calculations over and

over again, going through huge datasets to find the best settings for

the model. For each epoch, the GPU has to constantly process and

update millions of factors, making changes to them to make the
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model more accurate. The need for endurance comes from the fact

that training sessions can last for hours, days, or even weeks, based

on the size and complexity of the dataset. Keeping a steady level of

steadiness and computational performance over long periods of

time is therefore necessary to make sure that a high-quality

YOLOv4 model is trained well Figure 5.
4.3 Revolutionizing plant disease detection
with YOLOv4

This multidisciplinary method of disease prediction, especially

with reference to plant leaf diseases utilizing YOLOv4, integrates
FIGURE 3

Plants leaf visualization.
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remote sensing and statistical regression approaches through the

use of breakthroughs in computer vision, agriculture, and data

science. The data that remote sensing instruments, such as satellite

and drone imagery, give for monitoring crop health and spotting

disease outbreaks can be beneficial to large-scale agricultural areas.

With the use of these approaches, high-resolution pictures can be

obtained in order to detect any minute changes in a plant’s

characteristics that might point to a disease.

Statistical regression techniques are critical for data analysis,

trend identification, and the establishment of links between various

environmental factors and sickness prevalence. Regression models

can be used to quantify the impact of temperature, humidity, and

soil conditions on the spread of plant diseases. Scientists have a

comprehensive understanding of the complex interaction between

environmental factors and the dynamics of sickness through the

combination of multiple methodologies.

YOLOv4, a state-of-the-art object recognition method in

computer vision, is being used to identify plant leaf disease.

YOLOv4 is a fantastic real-time image processing program that

locates and recognizes objects in pictures with exceptional accuracy.

Its accuracy, quickness, and ability to recognize multiple items at

once make it a dependable choice for plant disease diagnosis in

agricultural contexts.

Compared to earlier methods, YOLOv4 offers improved

efficiency and accuracy in identifying plant leaves afflicted with

disease. Its ability to recognize objects allows it to identify areas
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impacted by disease, which makes it possible to implement more

targeted intervention strategies. The real-time processing

capabilities of YOLOv4 enable prompt action to halt the spread

of illnesses and enhance disease detection speed.

A complete and novel approach to plant leaf disease detection is

provided by combining YOLOv4, statistical regression, and remote

sensing. The benefits of these methods can be connected to

improving disease prediction and control in agriculture in terms

of timeliness, accuracy, and efficiency.
4.4 Yolo V4 for plant disease detection

4.4.1 Image annotation
The first step is to annotate images by the disease of the

particular leaf. Annotated images are as follows in Figure 6:

Image labeling is a laborious and time-consuming undertaking

that demands undivided attention in order to individually label

each image. This procedure is accelerated through the use of a

Python iteration, which facilitates the management of numerous

images simultaneously. A thorough examination of the images

enabled the accurate determination of bounding box ratios.

Despite sincere endeavors, it is widely recognized that accurate

annotations are crucial for preserving the integrity and

dependability of the dataset in preparation for subsequent

scientific investigations and research. Ensuring accurate
FIGURE 4

Images annotation.
FIGURE 5

Flowchart for Training a Yolo V4 custom model.
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annotation of images are crucial for preserving the practicality and

integrity of academic projects.

4.4.2 Images labels
It is critical to bear in mind that labels must be created for the

images. The name of the folder should specify the type of malady or

food contained within. The Python code executing the procedure is

displayed in Table 3.
4.5 Object data preparation

The next step is to store the number of classes, train and test text

file path, and backup folder training in the text file, which will be

used to generate image paths and train those images in Yolov4

custom training.
Fron
• classes = 20

• train = data/train.txt

• valid = data/test.txt

• names = data/obj.names

• backup =/mydrive/yolov4/training
4.6 Generate the Yolov4 configuration file

To generate the YOLOv4 custom file, obtain the original

YOLO-custom configuration file from the Darknet repository.

Personalize this file by altering specific attributes. Modify the

number of classes in all YOLO layers to 20, and fine-tune the

number of filters in the final convolution layer preceding the YOLO

layer to 75. These modifications customize the arrangement to the
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unique demands of the desired object detection assignment. After

making the necessary modifications to the class count and filter

configuration, the customized YOLOv4 file is now prepared for

implementation. These changes have been made to enhance the

performance of the file in the intended application.
4.6.1 Darknet
The Darknet neural network framework was created by Joseph

Redmon. It is based on C/CUDA and is utilized in computer vision

applications for object identification and image classification.

Because of its speed, efficiency, and versatility, the darknet has

gained popularity in both business and academic circles. Due to its

open-source nature and ease of use, a wide range of users can utilize

the framework. Darknet is a very useful tool with a wide range of

applications since it can identify items and categorize photographs.

The structure of the software is both practical and versatile, which

greatly contributes to its wide usage. Darknet is a very powerful

computer vision tool that performs exceptionally well on challenges

using neural networks. Because of this, it is a very useful tool for

practitioners and scholars in the field.

4.6.2 Customizable network architecture
Darknet allows users to define and train their neural network

architectures, which can be optimized for specific computer

vision tasks. This flexibility is beneficial when pre-trained models

do not perform well or when a new application requires a

unique architecture.
FIGURE 6

Annotated image.
TABLE 3 Plants leaves labels.

1 bean _ angular _ leaf spot

2 bean _healthy

3 bean rust

4 mango _ diseased

5 mango _healthy

6 potato _ early _blight

7 potato _healthy

8 potato _ late _ blight

9 strawberry _ healthy

10 strawberry _ leaf scorch

11 tomato _ bacterial _ spot

12 tomato _ early _ blight

13 tomato _ late _ blight

14 tomato leaf mold

15 tomato _ s eptoria _ leaf _ spot

16 tomato _ spide _ niites two-spotted _ spider _ niite

18 tomato _ toniato _yellow _ leaf _ cuii _ virus

19 tomato toniato niosaic virus

20 tomato _ healthy
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4.6.3 Support for multiple platforms
Darknet can be run on various platforms, including Linux,

Windows, and MacOS. Additionally, it can be compiled to run on

GPUs, which significantly speeds up training and inference times.

4.6.4 Integration with OpenCV
Darknet is designed to work seamlessly with OpenCV. This

popular computer vision library provides a range of image processing

and analysis functions. This integration allows users to easily preprocess

images and extract features for their neural network models.

4.6.5 Pre-trained models
Darknet provides pre-trained models for various computer

vision tasks, including object detection and image classification.

These models can be used as a starting point for new applications or

fine-tuned for specific use cases.

Overall, Darknet is a robust computer vision framework that

offers flexibility and speed. Its popularity in the research community

and industry is a testament to its effectiveness, and it continues to be

widely used and developed today.

4.6.6 Cloning
To clone DarknetDarknet for custom YOLO v4 training, follow

these steps:

4.6.7 Install Git
If Git is not installed on the system, install it from the official

Git website.

4.6.8 Clone Darknet
Open a terminal window and navigate to the directory where

DarknetDarknet is to be cloned. Then, enter the following

command to clone the Darknet repository:

- git clone https://github.com/AlexeyAB/darknet.git.

4.6.9 Yolo V4 custom weights
Download Pre-Trained YOLO v4 Weights:

To use YOLO v4, the pre-trained weights need to be

downloaded. This can be done by running the following

command from within the Darknet directory:

https://github.com/mzakariah/plant-disease-detection-

using-yolov4.
4.7 Yolo V4 training

4.7.1 Customize configuration files
In the Darknet directory, navigate to the CFG folder. Here,

several configuration files for different YOLO versions can be found.

For YOLO v4, the “yolov4.cfg” file should be used as a starting point

and customized to suit the needs.

4.7.2 Prepare training data
To train a custom YOLO v4 model, the training data must be

prepared in the YOLO annotation format. This involves creating
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text files for each image that contain the object annotations and

their corresponding class labels in Supplementary Table 1.
5 Results

5.1 Train the model

Formulating and training a novel YOLOv4 model to precisely

identify and detect diseases in plant leaves was the principal aim of

this investigation. Both gathering training data and modifying

configuration files were critical components of the training

method. Table 4 provides a detailed description of the YOLOv4

training parameters utilized in this investigation. Notably,

substantial assistance from the Darknet directory was used in the

training process.

Using a batch size of 64 and 16 subdivisions, the YOLOv4

model exhibited efficient learning and optimization. A resolution of

416 by 416 pixels characterizes the input image. During the training

process, the learning rate was maintained at 0.001, which promoted

the convergence of the model. To ensure a well-generalized model

and prevent overfitting, the training procedure was confined to a

batch limit of 6.0. After the YOLOv4 model underwent practical

training, additional functions were assessed through further testing.

The testing process incorporated a wide range of plant leaf

photographs showcasing different symptoms of diseases. The

algorithm computed the subsequent metrics—accuracy, precision,

recall, and F1 score—to evaluate the model’s resilience to obstacles

and its capacity to implement acquired knowledge in novel

circumstances. The ability of the model to precisely identify and

localize plant leaf diseases was fundamental to its practical efficacy.

Using metrics that are frequently applied to object detection

models, the outcomes of the model’s assessment on a separate

test dataset were analyzed. It was evident that the YOLOv4 model

exhibited superior performance in identifying and detecting plant

leaf diseases when compared to established benchmarks.

Furthermore, by ensuring transparency and replicability via

stringent protocols and standards, the groundwork is laid for

subsequent developments in precision agriculture research and

implementation strategies.
5.2 Evaluation metrics

The YOLOv4 model, designed for detecting and identifying

plant leaf diseases, performs excellently in essential evaluation

criteria. The model demonstrates exceptional precision in

discriminating between damaged and healthy plant leaves. The

model’s accuracy of 0.99 indicates its strong capability to identify

instances accurately. In contrast, a precision of 0.99 means the

minimal occurrence of false positives, where healthy leaves are

mistakenly recognized as diseased.

Furthermore, the model attains a recall rate of 0.99,

demonstrating its high level of competence in accurately

identifying most confirmed sickness cases. The F1 score, a

composite measure of precision and recall, achieves an impressive
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value of 0.99. The combination of these indicators highlights the

YOLOv4 model’s strength and dependability in accurately detecting

and classifying plant leaf diseases. The model’s exceptional

performance across various measures demonstrates its usefulness

and potential for practical use in agriculture and plant pathology.

Table 5 shows the values of evaluation metrics, and overall, the

performance value of accuracy, recall, f1-score and precision is 0.99.

Furthermore, in the framework for detecting plant leaf diseases

employing YOLOv4, the confusion matrix is an essential

component for evaluating the performance of the model. The

matrix provides a comprehensive examination of the model’s

forecasts, enabling a meticulous assessment of its efficacy. This

matrix incorporates four critical metrics, namely false positives

(FP), true negatives (TN), and true positives (TP).

TP denotes instances in which the model detects unhealthy

regions on plant foliage with precision. The precise designation for

regions devoid of leaf diseases is TN. On the contrary, FP occurs

when the model erroneously classifies healthy regions as diseased.

In contrast, false negatives (FN) transpire when the algorithm fails

to identify diseased sections accurately.

An in-depth summary of the model’s accuracy in binary

classification—that is, its ability to discern between diseased plant

leaves and those that are healthy—is given by the way these metrics

interact in the confusion matrix. The model performs well, as

evidenced by significant values of TP and TN, which highlight its

capacity to identify both positive and negative cases accurately.

Higher FP and FN values, on the other hand, can point to areas that
Frontiers in Plant Science 12
require improvement and highlight potential misclassifications that

might compromise the model’s accuracy in actual plant disease

detection scenarios. The TN, TP, FN, and FP confusion matrix is a

crucial instrument for evaluating the precision and overall efficacy

of the YOLOv4 model in the diagnosis of plant leaf diseases.
5.3 Training performance

The graph, which provides the results shown in Figure 7,

generates training performance.
• Where, loss of performance, Normalizer: (i.e., 0.07, obj:

1.00, cls: 1.00) Region 161 Avg (IOU: 0.323502), count: 17,

class_loss = 7.521840, iou_loss = 5.702097, total_loss

= 13.223937.

• v3 (iou loss, Normalizer: (ie: 0.07, obj: 1.00, cls: 1.00) Region

139 Avg (IOU: 0.000000), count: 11, class_loss = 7.750000,

iou_loss = 0.000005, total_loss = 7.750005.

• v3 (iou loss, Normalizer: (iou: 0.07, obj: 1.00, cls: 1.00)

Region 150 Avg (IOU: 0.396017), count: 15, class_loss =

6.526371, iou_loss = 26.913261, total_loss = 33.439632.
Moreover, training the YOLOv4 model for plant leaf disease

detection and identification requires careful parameter adjustment

to achieve the best results. Selecting the right batch size and epochs

is crucial for efficient dataset learning. When model accuracy falls
TABLE 4 Yolo V4 training.

1./darknet detector train data/obj.data cfg/yolov4-cllstonl.cfg
yolov4.conv.137 -

do not_ show -map

124 conv 512 1x1/1 26 X 26x512-> 26 X 26 x256 0.177 BF

125 conv 256 3x3/1 26 X 26x256-> 26 X 26 x512 1.595 BF

126 conv 128 1x1/1 26 X 26x512-> 26 X 26 x256 8.177 BF

127 conv 128 1x1/1 26 X 26x256-> 26 X 26 x128 0.044 BF

128 upsample 2x 26 X 26X128-> 52 x 52 X128

129 route 54 -> 52 x 52 X256

130 conv 128 1x1/1 52 X 52x256 -> 52 X 52 x128 0.177 BF

131 route 130128 -> 52 x 52 X256

132 conv 128 1x1/1 52 X 52x256 -> 52 X 52 x128 0.177 BF

133 conv 256 3x3/1 52 X 52x128 -> 52 X 52 x256 1.595 BF

134 conv 128 1x1/1 52 X 52x256-> 52 X 52 x128 0.177 BF

135 conv 256 3x3/1 52 X 52x128-> 52 X 52 x256 1.595 BF

136 conv 128 1x1/1 52 X 52x256 -> 52 X 52 x128 0.177 BF

137 conv 256 3x3/1 52 X 52x128 -> 52 X 52 x256 1.595 BF

138 conv 75 1x1/1 52 X 52x256- > 52 X 52 x75 0.104 BF

139 Yolo
fr
[yolo] params: iou (4), iou_norm: 0.07, obj_norm:1.00, cls_norm, delta_norm: 1.00, scale_x_y: 1.20.
nms _ kind:greedynms (1), beta= 0.600000.
140 route 136.
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short, changes are needed. By adding epochs, the model may train

more and possibly recognize complicated visual patterns. By

allowing the model to extract relevant dataset features, altering

the learning rate can improve performance.

In accordance with the YOLOv4 model configuration,

parameters like epochs size, batch size and learning rate are left at

their default parameters. These default settings are usually fine for

everyday use unless there are unique requirements. By balancing

these parameters and making modifications, the YOLOv4 model

can learn and detect plant leaf illnesses. To examine, following

specifics are presented:

5.3.1 Region, normalizer, and loss specifics
Fron
• Loss: This value signifies the inaccuracy or divergence

between the model’s predicted output and the true labels

present in the ground.

• Normalizer: These values are employed to standardize various

loss function components, generally to achieve a balance in

the significance of distinct features such as localization, object

presence, and classification. It is probable that it pertains to

particular areas of interest contained within the input image.

The average IOU (Intersection over Union) quantifies the

degree of overlap that exists between the ground truth boxes

and the predicted bounding boxes. It is utilized to assess the

precision of object localization.
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• Count: The quantity of identified instances within the

specified region.
5.3.2 Dissection of components of loss
• Class loss is the loss that is inherent in the classification

assignment, which consists of identifying the class of the

detected object (which, in this instance, is the presence or

absence of disease on the leaf).

• IOU Loss: This value represents the loss associated with the

precision of bounding box forecasts. It evaluates the degree

of overlap between the predicted and ground-truth

bounding boxes.
5.3.3 Analysis and revision of the results
• The initial entry signifies the identification of 17 instances

in Region 161, accompanied by an average IOU of

0.323502. Significant portions of the total loss (12.22) are

attributable to class loss (7.52) and IOU loss (5.70).

• The average IOU of 0.00 for the second entry, which

appears to be for Region 139, indicates weak localization

accuracy. There are eleven in total, and the loss is 7.75,

which is driven primarily by class loss due to the

insignificance of the IOU loss.

• Region 150 is the subject of the third entry, which has a

mean IOU of 0.39 and 15 instances were identified. The

considerable IOU loss of 26.913261 contributes

significantly to the overall loss of 33.43, which indicates

inadequate localization performance despite respectable

class loss.
In general, the model appears to be functioning satisfactorily in

terms of classification (as measured by class loss). However, certain

regions exhibit challenges with localization (as indicated by IOU

loss), which could potentially impact the overall efficacy of the leaf

disease detection system. Additional refinement and training might

be required to enhance the precision of the model, specifically with

regard to the accurate localization of diseased regions.
5.4 Model testing

There are numerous techniques to evaluate or forecast the new

image. Two strategies were chosen, and Figure 8 illustrates the test

image and the test image for prediction, respectively.

An essential test image that is critical for precise prediction in

the identification of plant leaf diseases is illustrated in Figure 9.

The accuracy of predictions is significantly impacted by the

composition of the dataset, the grade of images, and the

precision of annotations. By meticulously annotating high-

quality images, model learning is improved, leading to an

overall enhancement in performance. A meticulously curated
TABLE 5 Evaluation metrics.

Evaluation Metric Performance Value

Accuracy 0.99

Precision 0.99

Recall 0.99

F1 Score 0.99
FIGURE 7

Confusion matrix.
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dataset that includes a wide range of scenarios guarantees that the

model is both flexible and resilient. The interconnectedness of

these components emphasizes the significance of accurate model

performance, high-quality images, and precise annotations in

order to achieve the most favorable outcomes in predicting

plant leaf diseases.
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5.5 Model evaluation

The objective of this segment is to assess the effectiveness of our

model by employing test images that were generated from the data.

The methodology entails the implementation of a trained model for

the purpose of forecasting plant leaf maladies, followed by an

assessment of the predictions’ accuracy. In order to assess the

precision of the predictions, test images will be utilized to

implement our trained model. Following this, the anticipated

classifications will be appended to the corresponding images as

shown in Figure 10.

As depicted in Figure 10, an anticipated designation has been

allocated to each image of the plant. It is worth mentioning that

the annotation of the projected square aligns precisely with the

area actually impacted by illness in specific samples. In other

instances, however, misplacement appears to have occurred. This

observation implies that the model has been trained and has

acquired a certain degree of capability in producing predictions

that are accurate. Nonetheless, the efficacy of the model could be

enhanced, especially in situations involving inconsistencies.

Employing a confusion matrix chart would present a more

favorable approach to assess the performance of the model, given

that it furnishes a comprehensive synopsis through the inclusion of

accurate predictions in conjunction with true-false and true-

negative forecasts.

The Confusion Matrix Heatmap, which shows the results of the

assessed test images, is shown in Figure 11. Although YOLOv4

exhibits remarkable effectiveness in precisely detecting illnesses of
FIGURE 8

Loss of performance.
FIGURE 9

Live webcam snapshot for testing.
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plant leaves, it is crucial to recognize its occasional limitations.

Notably, even with the model’s 99% overall accuracy, a little early-

stage infection on a tomato leaf was misclassified as healthy. This

disparity highlights the difficulties that come with complex disease
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patterns and the continuous need for dataset enhancement and

improvement. Thorough annotations and a large image bank with

various illness presentations are essential to strengthen the model’s

robustness. Transfer learning and fine-tuning are two strategies that

can improve YOLOv4’s performance, especially in tough settings like

cases of misclassification. This example demonstrates how crucial it is

to continuously improve models in order to ensure that they can be

adjusted to the ever-changing complexity of various plant diseases

and generate consistent and trustworthy diagnosis results.
5.6 Model evaluation on new plant
disease dataset

The Yolov4 model was tested on a new dataset with more

classes and different plant leaves to see how well it was able to

generalize and stay strong. This dataset has over 87K RGB

images of healthy and damaged crop leaves. It is split into 38

groups. The whole dataset is split into two parts: training and

validation sets. The directory layout is kept the same. After that,

a new directory with 33 test pictures is created to help with

the prediction.

Moreover, there are 38 distinct plant species with several

illnesses in this collection. There are fourteen distinct plant

species and twenty-six distinct disease species. Figure 12 shows

the image distribution for each of the 38 classes.
FIGURE 10

Test image for prediction.
FIGURE 11

Evaluated predicted disease classes of test images.
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The graphic shows that there is a very uniform distribution of

images across all classes, ensuring equal training for each class and

fair learning for the model. Unequal distribution of photos, either

oversampled or undersampled, might lead to overfitting in the

model, causing it to perform poorly on classes with fewer images.

Here are some sample images shown in Figure 13.

All the images are scaled, tagged, and supplemented. Necessary

processes include creating object data, object names, cloning Darknet,

and custom configuring Yolov4 for this dataset. Upon completing the

training of this dataset, the accuracy reached about 98% for all image

classes. Yolov4 demonstrates its effectiveness by producing high-quality

results across several datasets containing about 38 classes. Increasing

the number of classes typically leads to a decline in model classification

accuracy. However, in this instance, the model demonstrated strong

robustness by producing outstanding results when tested on a new

dataset containing more photos, other plants, and disease classes.
5.7 Comparative analysis

Table 6 comparison study shows that all four systems have

identified plant diseases with a respectable degree of accuracy

using DL.

Regarding plant disease classification with the Plantvillage

dataset, our new Yolo V4-based method leads the way with an
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outstanding 99.99% accuracy. Other well-known models perform

noticeably worse when applying this achievement to the same

dataset. The most notable design, ResNet (Peng and Wang, 2022),

achieved 97.84% accuracy, followed by squeeze-and-excitation deep

block (SSD) (Wang et al., 2021) at 92.20% and Yolo v5 (Chen et al.,

2022) with a noteworthy but lesser accuracy of 86.5%.

Densenet (Eunice et al., 2022), which is renowned for its dense

connections, attained an astounding accuracy of 99.81%; nonetheless,

it is not as precise as our Yolo V4-based method, which is

revolutionary. Analogously, 98.7% accuracy was reported by

Alexander (Hassan et al., 2021), 95% by the SVM classifier

(Chuanlei et al., 2017), 91% by DenseNet-121 (Arathi and Dulhare,

2023), 98.7% by hybrid convolutional neural networks (Kaur et al.,

2022), and 98.029% by convolutional neural networks (Jasim and Al-

Tuwaijari, 2020). Although these models show many ways to classify

plant diseases, they can only partially equal the extraordinary

accuracy our suggested strategy can accomplish.

The Yolo V4-based approach surpasses all others, setting a new

standard in the market. This demonstrates the efficacy of Yolo V4 in

the Plantvillage dataset and the importance of selecting the right model

architecture to get the best precision in diagnosing agricultural diseases.

Our method on the Plant Village dataset—which uses the YOLO

v4 architecture—achieved perfect accuracy. However, the precise

figure is not provided. A well-performing architecture for object

detection tasks has been demonstrated for YOLO v4 on some datasets.
FIGURE 12

Confusion matrix heatmap of evaluated test images.
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Overall, it is evident that all four methods have successfully

detected plant diseases using deep learning techniques, with

Densenet having the best results on the Plant Village dataset. The

performance and accuracy of deep learning models can be

significantly impacted by various datasets, model topologies, and

hyperparameters; it is crucial to keep this in mind. Therefore, it is

imperative to carefully assess and compare multiple approaches in

the context of the current problem and dataset.
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5.8 Core contributions

Figure 14 depicts the core contributions of the study:

5.8.1 Innovative image retrieval method
Presented a novel image retrieval technique for open-set plant leaf

disease diagnosis. Using tiny annotated pictures, this technique enables

the simultaneous creation, location, and diagnosis of leaf diseases,

improving accuracy even for situations never before observed.

5.8.2 Enhancements to YOLOv4 architecture
YOLOv4 architecture was enhanced with an emphasis on

improving the identification of minute items in plant leaf photos.

These improvements strengthen the model’s overall resilience,

especially when it comes to the detection of plant leaf diseases.

5.8.3 Versatile model performance
Conducted a thorough investigation of model configurations and

hyperparameter settings, demonstrating the adaptability and

durability of the YOLOv4 architecture. The model performed well

in adequately identifying and categorizing various plant leaf diseases.

5.8.4 Boarder implications for food security
Emphasized the broader ramifications of our findings about

sustainable agriculture and food security. Our work promotes

cutting-edge computer vision technology, which helps guarantee a

more reliable and secure global food supply.

5.8.5 Future research
Outlined future research directions and acknowledged its

limitations, such as expanding our methodology to cover a

broader range of plant diseases and datasets, investigating new

deep learning techniques, and tackling newly identified issues.

All techniques considered, our research raises the bar for plant

disease diagnosis, providing workable answers that can be used
FIGURE 13

Images distribution of new plant disease dataset.
TABLE 6 Related work for comparison analysis.

References Methodology Accuracy Dataset

(Peng and
Wang, 2022)

ResNet 97.84% Plantvillage
Dataset

(Wang
et al., 2021)

Squeeze-and-Excitation
deep block (SSD)

92.20% Plantvillage
Dataset

(Chen et al., 2022) Yolo v5 86.5% Plantvillage
Dataset

(Eunice
et al., 2022)

Densenet 99.81% Plantvillage
dataset

(Hassan
et al., 2021)

Alexander 97% Plantvillage
Dataset

(Chuanlei
et al., 2017)

SVM Classifier 95% Plantvillage
Dataset

(Arathi and
Dulhare, 2023)

DenseNet-121 91% Plantvillage
Dataset

(Kaur et al., 2022) Hybrid Convolutional
Neural Network

98.7% Plantvillage
Dataset

(Jasim and Al-
Tuwaijari, 2020)

Convolutional
Neural Network

98.029% Plantvillage
Dataset

Our approach Yolo V4 99.99% plant
village
dataset
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immediately and opening the door for more advancements in

the field.
5.9 Novel model design

The work offered unique approaches utilizing a proprietary

Yolov4 model, advanced image processing techniques, and custom

annotation for detecting plant diseases. The same is also seen in

Supplementary Figure 1.

5.9.1 Utilization of Yolov4 architecture
Implemented the state-of-the-art YOLOv4 architecture for plant

disease identification and detection. This architecture was specially

modified to address the difficulties associated with plant disease

identification, and it is well-known for its effectiveness in real-time

object detection.

5.9.2 Image dataset selection
The utilization of the “Plant Village” dataset is notable for its

innovative nature stemming from its diverse characteristics. In

contrast to conventional datasets that may concentrate exclusively

on particular diseases or restricted plant species, “Plant Village”

comprises in excess of fifty thousand images that depict both
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healthy and afflicted foliage on fourteen species of diverse plants.

The extensive range of topics covered guarantees a thorough depiction

of common agricultural obstacles. The utilization of images captured

by smartphones enables the democratization of data collection, which

in turn promotes extensive engagement and instantaneous updates.

The extensive scope and inclusivity of the dataset not only substantiate

its pertinence to agricultural environments but also augment its

practicality in driving groundbreaking investigations and advancing

knowledge in the field of plant pathology.
5.9.3 Data augmentation techniques
A novel methodology is introduced herein for enhancing the

diagnosis of plant leaf maladies, employing YOLOv4 alongside

distinctive data augmentation techniques. Our approach

capitalizes on innovative methodologies, notably spatial-temporal

transformations, to generate dynamic variations in leaf images,

thereby enhancing the adaptability of the model. Through the

augmentation of the dataset with a diverse range of elements, this

method surpasses conventional approaches, bolstering the model’s

ability to extrapolate across various environmental conditions. By

adding changes in both space and time to the dataset, its resilience is

increased, leading to a YOLOv4 model that can accurately identify

plant leaf diseases and shows higher adaptability.
FIGURE 14

Sample images of different plants diseases of new plant disease dataset.
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5.9.4 Performance contrast with
traditional algorithms

Compared and evaluated the YOLOv4 algorithm’s performance

against established target identification algorithms like Densenet,

Alexanet, and neural networks. The study offers a thorough

assessment, emphasizing YOLOv4’s superiority in identifying

plant leaf diseases.

The YOLOv4-based solution demonstrated outstanding

performance by achieving a remarkable accuracy of 99.99% on

the Plant Village dataset. The exceptional accomplishment of

achieving high precision showcases the impressive performance of

the YOLOv4 framework in effectively detecting and categorizing

illnesses affecting plant leaves.

The work’s novel contribution lies in the successful utilization of

the YOLOv4 architecture for identifying plant diseases, showcasing

exceptional precision across diverse datasets. Advanced computer

vision methods are essential for maintaining worldwide food

security, and this study emphasizes their importance with practical

applications for the agricultural industry. The study centres on the

expedient and punctual identification of plant diseases by

implementing state-of-the-art computer vision techniques,

specifically the YOLOv4 model. The practical practicality of utilizing

a variety of datasets representing different plant species is highlighted.
6 Discussion

The study paper investigates the application of YOLOv4 for the

detection and classification of plant leaf diseases. The recommended

images retrieval technique is thoroughly examined for its

practicality and dependability. The study highlights the crucial

need for adjustments in the recognition system to align with the

unique application context, with a particular focus on the

importance of leaf detection for accurate retrieval of plant

diseases. There are issues with finding the best balance between

the need for more precise detection models and the usage of higher

image resolutions in complex and changing scenarios. Hence, it is

crucial to strike a cautious equilibrium between the rate of detection

and the effectiveness of the application.

The study relies on the utilization of the Plant Village dataset,

comprising over 50,000 photos taken with a smartphone camera. The

photographs illustrate both the foliage in good condition and the

foliage that has been harmed by a total of fourteen distinct plant types.

The researchers meticulously categorized records of diseases affecting

fruits and vegetables into 20 different categories, resulting in a diverse

compendium. YOLOv4, developed by the University of Washington,

is a highly efficient technology for real-time object detection. The

system employs a complex neural network architecture to precisely

predict the positions of bounding boxes and the probability of different

classes. The model attains high performance by using sophisticated

techniques such as weighted residual connections, mish activation

functions, and spatial pyramid pooling. These methodologies produce

state-of-the-art results in several item recognition metrics and

improve the model’s applicability in different settings.

Researchers now have the opportunity to utilize the capabilities

of YOLOv4 by accessing its source code on GitHub. The study
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outlines a systematic procedure for developing a personalized

YOLOv4 model. This involves preparing the dataset, specifying

training parameters, and training the model using the Darknet

framework. To begin, the process entails annotating and tagging

photos using software applications such as LabelImg, YOLOv4

Label. Next, the process involves obtaining pre-trained weights

for the Darknet Framework and creating a YOLOv4 configuration

file. The Darknet framework is a versatile tool that enables the

development and training of neural network architectures,

facilitates compatibility with OpenCV, and provides access to pre-

trained models for various computer vision tasks.

The training procedure includes a validation dataset to assess the

model’s performance, highlighting the importance of high-quality

photos, accurate annotations, and well-maintained image databases

in order to achieve optimal prediction accuracy. The study

emphasizes the correlation between the quality of the input data

and the efficiency and performance of the model. The statement

underscores the crucial importance of thorough data preparation in

ensuring the strength and reliability of the trained YOLOv4 model.

The project aims to perform a comparative analysis to evaluate the

effectiveness of four different approaches that employ deep learning

algorithms for the purpose of diagnosing plant diseases. Using the

AlexNet architecture, the initial benchmark achieves an impressive

accuracy of 97% on the Plant Village dataset. The second approach,

employing the DenseNet architecture, attains exceptional performance

with a 99% accuracy rate. The third method, which combines a

convolutional neural network with feature reduction, achieves a

precision rate of 98.7%. Densenet is the most accurate architecture for

disease diagnosis on the Plant Village dataset, but YOLOv4, although

not the most accurate, is widely recognized for its frequent usage.

Moreover, when it comes to YOLOv4 plant leaf disease

identification, hyperparameters have a significant impact. For a

model to be accurate, batch size, learning rate, and epoch

adjustments must be made optimally. The batch size, which is 64

with 16 subdivisions, affects generalization and convergence

performance. Model convergence is ensured at a learning rate of

0.001, which strikes a balance between training time and accuracy.

Effective disease detection requires avoiding overfitting, which is

achieved by careful epoch selection. This emphasizes how

important it is to carefully test and validate ideas across a variety of

datasets in order to find the right balance in agricultural applications

between generalization, training efficiency, and accuracy.

Further, the research fosters a discerning viewpoint within the

scientific community by examining and comparing various approaches

to diagnosing plant diseases. This enhances understanding of the

intricacies of these methods and their suitability in multiple

situations. The evaluation metrics exhibit outstanding performance,

with accuracy, precision, recall, and the F1 score all attaining a value of

0.99. The measurements demonstrate the effectiveness of the proposed

YOLOv4-based approach in detecting plant leaf diseases, thereby

affirming the reliability of the strategy.

In conclusion, the research offers a thorough review of employing

YOLOv4 for identifying plant leaf diseases, highlighting the viability

and limitations of the picture retrieval method. The study highlights

the need for more efforts to enhance the equilibrium between

detection accuracy and processing speed. The comparison research
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confirms that YOLOv4 is effective in actual situations but does not

achieve the highest level of precision. In summary, the research

provides useful insights in the field, allowing progress in detecting

plant illnesses using deep learning approaches.
6.1 Future directions

Following are the future improvements which can be taken in

after undergoing this specific study for plant disease detection. The

Supplementary Figure 2 should be expanded towards more diseases

of plants:

6.1.1 Extensions of different plant diseases and
plants datasets

Extend the application of the suggested methodology to include

more plant diseases than were initially thought of. Add a variety of

datasets that reflect various crops and geographical areas to improve

the model’s generalization ability.

6.1.2 Integration of multimodal data
Investigate multimodal data integration by merging image data

with additional pertinent sensor data (such as spectral or

environmental data). This method could lead to a more precise

identification of diseases and a more thorough understanding of the

variables affecting plant health.

6.1.3 Real-time implementation and
edge computing

Examine whether the model can be implemented in real-time

situations, especially in edge computing. In agricultural settings,

creating a version of the model optimized for edge device deployment

can help with on-site disease diagnosis and prompt intervention.

6.1.4 Continuous model improvement with
online learning

Establish a framework for online learning that enables the

model to evolve and improve over time. It can maintain long-

term efficacy and remain relevant to changing illness patterns by

adding fresh data and adjusting the model parameters.

6.1.5 Examine model interpretability
and explainability

Prioritize enhancing the model predictions’ interpretability and

explainability. Gaining the trust of end users, including farmers and

agricultural practitioners, and promoting the implementation of the

technology in practical situations depend on their awareness of how

the model makes its judgments.

6.1.6 Collaboration with agriculture expert
Work with subject matter experts to further validate and

improve the model such as plant pathologists and agronomists.

Their knowledge can improve the model’s performance in actual

agricultural environments and aid in the creation of more

contextually relevant features.
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6.1.7 Implementation of transferable
model architecture

Consider transferability when designing the model architecture.

Ensure the model is more flexible and scalable by ensuring that the

Information acquired from training on one set of plant diseases can

be efficiently transferred to new illnesses with little extra training.

6.1.8 User-friendly interface for end-users
Provide an interface that is easy for end users, such as farmers

and agricultural extension agents. To encourage user acceptance

and adoption, the interface should make the model’s predictions,

diagnostic data, and illness management advice easily accessible.

6.1.9 Integration of environmental context
Incorporate soil health and weather information into the

environmental context for diagnosing diseases. Comprehending the

dynamic relationship between environmental variables and disease

incidence can produce more comprehensive and precise forecasts.

6.1.10 Benchmarking against
emerging technologies

Benchmark the established model against new developments in

plant disease diagnostics regularly. Keeping up with developments

guarantees that the approach will always be at the cutting edge of

innovation and provide cutting-edge results.

By addressing these prospective avenues, the research can

contribute to the ongoing advancement of innovative and

essential techniques for diagnosing plant diseases. Ultimately, this

will enhance agricultural methodologies and ensure global

food security.
7 Conclusion

The study focuses on addressing the complex issue of open-set

detection of plant leaf diseases by incorporating an image retrieval

method into the YOLOv4 framework. The method uses brief

annotated photos to achieve both the identification and detection

of leaf diseases at the same time, demonstrating significant progress

in accuracy, flexibility, and reliability. Improving YOLOv4 to better

detect small details significantly enhances the precision of

diagnosing leaf diseases. It demonstrated exceptional performance

by achieving a 99.99% accuracy rate when validating the Plant

Village dataset, outperforming other models in its category. The

investigation’s effectiveness depends significantly on the smooth

incorporation of the Plant Village dataset and the YOLOv4

architecture to accurately identify and classify different types of

plant leaf diseases. The technique demonstrates outstanding

proficiency in accurately identifying plant leaf diseases via picture

labeling, data preparation, and intensive model training. YOLOv4’s

success in identifying and diagnosing unhealthy areas in plant leaf

images is a direct outcome of extensive testing on hyperparameter

configurations and model designs, leading to continuous

enhancement of its performance. This study significantly

enhances the utilization of deep learning methods for detecting
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plant illnesses, highlighting the adaptability of YOLOv4 in this

specific area.

Future study seeks to broaden the approaches by include a

wider range of plant diseases and datasets. Enhancing the system’s

performance will require investigating alternative deep-learning

methods. Advancements in deep learning technology allow for a

more thorough examination of plant diseases, leading to more

precise and comprehensive diagnoses. By implementing advanced

techniques and adding more data, the model’s robustness will be

strengthened, making it ideal for many situations. The methodology

will be enhanced through a thorough investigation of incorporating

modern deep learning techniques, including transfer learning,

ensemble models, and attention mechanisms. The system’s ability

to detect new and intricate plant illnesses will be improved by using

transfer learning to utilize pre-trained models created from

extensive datasets. Ensemble models will be investigated to

improve the resilience and adaptability of the approaches to

different datasets and environmental situations by combining

predictions from many models. The model will incorporate

attention approaches based on human cognitive processes to

better identify important qualities and enhance its ability to

detect subtle patterns associated with different plant diseases.

Moreover, it is crucial to include more datasets that

encompass various geographical regions, temperatures, and

plant species to guarantee the model’s adaptability and

usefulness. Forming partnerships with agricultural research

institutes and organizations helps streamline the gathering and

dissemination of varied datasets, promoting a cooperative strategy

in tackling the worldwide issue of plant diseases. The research

highlights the crucial requirement for sophisticated computer

vision technologies to guarantee food security and develop

sustainable agriculture. Combining YOLOv4 and photo retrieval

allows for precise and quick identification of plant diseases. This

technology provides a reliable and effective way to identify new

leaf diseases with no training required. This discovery places

the study at the forefront of the confluence between deep

learning and plant pathology, making major contributions to

generating strong and adaptable solutions for the issues in

modern agriculture. Continual improvements and fine-tuning of

procedures are being made to promote the role of technology in

protecting global food production and supporting agricultural

sustainability in the future.
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