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Introduction: Partial or complete submergence of trees can occur in natural

wetlands during times of high waters, but the submergence events have increased

in severity and frequency over the past decades. Taxodium distichum is well-known

for its waterlogging tolerance, but there are also numerous observations of this

species becoming partially or complete submerged for longer periods of time.

Consequently, the aims of the present study were to characterize underwater net

photosynthesis (PN) and leaf anatomy of T. distichum with time of submergence.

Methods: We completely submerged 6 months old seedling of T. distichum and

diagnosed underwater (PN), hydrophobicity, gas film thickness, Chlorophyll

concentration and needles anatomy at discrete time points during a 30-day

submergence event. We also constructed response curves of underwater PN to

CO2, light and temperature.

Results: During the 30-day submergence period, no growth or formation new leaves

were observed, and therefore T. distichum shows a quiescence response to

submergence. The hydrophobicity of the needles declined during the submergence

event resulting in complete loss of gas films. However, the Chlorophyll concentration

of the needles also declined significantly, and it was there not possible to identify the

main cause of the corresponding significant decline in underwater PN. Nevertheless,

even after 30 days of complete submergence, the needles still retained some capacity

for underwater photosynthesis under optimal light and CO2 conditions.

Discussion: However, to fully understand the stunning submergence tolerance

of T. distichum, we propose that future research concentrate on unravelling the

finer details in needle anatomy and biochemistry as these changes occur

during submergence.
KEYWORDS

bald cypress, contact angle, flood tolerance, gas films, hydrophobicity, swamp cypress,
low oxygen quiescence syndrome
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1 Introduction

Partial or complete submergence of trees can occur in natural

wetlands during times of high waters. Accordingly, more than 1,000

species of trees and bushes in Pantanal (one of the world’s largest

tropical wetlands) become submerged every year in the wet season

when the River Negro rises up to 10 m above its water level in the

dry season (Parolin, 2009). However, trees can also face complete

submergence in man-made wetlands such as at the banks of the

Three Gorges Reservoir, where Taxodium distichum has been

introduced in an attempt to stabilize the steep banks (Wang et al.,

2019; Ding et al., 2021; He et al., 2021). Since the Three Gorges dam

has first stored water in June 2003, plants growing at lower

elevations, including the cultivated T. distichum, have experienced

periodic complete submergence every year. In this case, T.

distichum not only survived but grew from seedling to tree (Li

et al., 2006). We propose that the outstanding flood tolerance of T.

distichum is partly a result of its remarkable ability to

photosynthesize under water, which slows down carbohydrate

depletion and protects the tissue from anoxia via O2 production

during extended periods of submergence.

In air, gases diffuse 10,000-fold faster than in water, and

therefore, CO2 and O2 generally restrict photosynthesis and

respiration of submerged terrestrial plants. Consequently,

submerged aquatic plants have evolved a number of key shoot

and root traits involved in facilitating CO2 or O2 exchange with the

floodwater including, but not limited to, thin leaf lamina composed

of only two cell layers, thin or completely absent leaf cuticle,

chloroplasts in the leaf epidermis, and aerenchyma to facilitate

internal aeration (Sculthorpe, 1967). However, even in the presence

of these extreme adaptations, CO2 availability can still limit

underwater photosynthesis (Madsen and Sand-Jensen, 1991;

Maberly and Madsen, 2002), and about half of the world’s aquatic

plant species have thus evolved the ability to use bicarbonate

(HCO3
−) as an alternative inorganic carbon source in

photosynthesis (Prins and Elzenga, 1989; Iversen et al., 2019).

Lacking most of these key leaf traits, the photosynthetic rates of

submerged terrestrial plants are significantly lower than those of

aquatic plants regardless of whether underwater photosynthesis is

measured at ambient or elevated CO2 levels (Colmer et al., 2011).

Similarly, the availability of molecular O2 can restrict underwater

respiration of submerged terrestrial plants, and an O2 pressure of

almost twice that of atmospheric equilibrium is needed to saturate

respiration (Colmer and Pedersen, 2008). A recent meta-analysis

encompassing 112 species of both aquatic and terrestrial plants have

clearly demonstrated that partial or complete submergence lead to

significant declines in tissue O2 status particularly during darkness

when the only source of O2 for underwater respiration is O2

dissolved in the floodwater (Herzog et al., 2023). However, some

species of wetland plants form numerous adventitious roots

emerging from the stem and hanging into the floodwater as

response to partial or complete submergence (Rich et al., 2013;

Zhang et al., 2017; Lin et al., 2023). Such roots are referred to as

aquatic adventitious roots and have been shown to act as “physical

gills” by facilitating uptake of O2 from the floodwater (Ayi

et al., 2016).
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Some terrestrial plants, including the focal species of the present

study, possess superhydrophobic leaves, and these have been shown

to enhance gas exchange with the floodwater. Upon submergence,

superhydrophobic leaves retain a thin gas film visible as a silvery

sheen from the leaf surface (Pedersen and Colmer, 2012). Gas film

formation on submerged leaves was first reported for deepwater

rice, wheat, barley, and oats, where the beneficial effects on carbon

fixation was also first reported (Raskin and Kende, 1983). Later, a

series of studies reported leaf gas film formation during

submergence in several species of wild wetland plants, where gas

films were retained on partially or completely submerged leaves

(Colmer and Pedersen, 2008; Pedersen et al., 2009; Winkel et al.,

2016). The increased CO2 exchange caused by leaf gas films results

in enhanced underwater net photosynthesis rate (PN), and generally

underwater PN is 6- to 10-fold higher in the presence of leaf gas

films compared with leaves without superhydrophobic leaves or

with leaves where the gas films have been experimentally removed

(Colmer and Pedersen, 2008; Pedersen et al., 2009; Winkel et al.,

2011; Verboven et al., 2014; Konnerup et al., 2017; Winkel et al.,

2017). Although the beneficial effects of leaf gas films have

emphasized CO2 exchange for underwater photosynthesis, leaf

gas films have also been shown to significantly enhance internal

aeration. Accordingly, removal of hydrophobicity (and thereby also

the leaf gas films) by brushing with a dilute detergent resulted in

steep declines in O2 status of belowground tissues both in rice

(Winkel et al., 2013) and in a wild wetland plant (Winkel et al.,

2011), clearly demonstrating the crucial importance of leaf gas films

for internal aeration of submerged terrestrial plants.

Low light availability under water may also restrict

photosynthesis and submergence can invoke shade acclimation of

submerged terrestrial leaves. In natural water bodies, the light

intensity under water is lower than that in the air above not only

because light is being reflected at the surface but also because light is

being absorbed by water itself, by suspended particles such as algae,

and by colored dissolved organic matter (Kirk, 1994). Murky

floodwaters with algal blooms and/or high amounts of colored

dissolved organic matter offer even less light for submerged plants

with only 0.5% of the surface insolation left at deep floods (Vervuren

et al., 2003). Consequently, many terrestrial plants respond to

submergence by shade acclimations in their leaves, and these

acclimations involve a reduction in leaf thickness, a thinner cuticle,

thinner cell walls, and therefore a lower leaf mass area all resulting in

better tissue O2 status (Mommer et al., 2007) and enhanced

underwater PN due to better CO2 exchange (Mommer et al., 2004).

Interestingly, the strong beneficial effect of leaf gas films on CO2

uptake is to a certain extent counteracted by the reflection of light at

low light intensities; i.e., at low light, the silvery sheen of gas films

reflects light and results in lower underwater PN (Winkel et al., 2017),

showing that leaf gas films can also be disadvantageous during

submergence in a low-light environment.

Trees and bushes forming the riparian vegetation often become

partial or completely submerged when the river rises. However,

poor flood tolerance of terrestrial plants leads to decreases in species

richness as flooding intensity increases, leaving only the most flood-

tolerant species to form the riparian vegetation (Garssen et al.,

2017). Consequently, there are only two genera of Central European
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Trees showing very high flood tolerance (i.e., species of Alnus and

Salix), and these are characterized with the formation of

adventitious roots, lenticels, and aerenchyma in response to

flooding (Glenz et al., 2006). However, the model species of the

present study, T. distichum (L.) Rich, also shows extraordinary flood

tolerance. It is a deciduous tree of the Taxodium genus, native to

North America and Mexico where it forms large natural stands

mostly in coastal plains affected by tide, in marshes with poor

drainage, and in lowlands with periodic flooding (Wang et al., 2022;

Guo et al., 2023). Owing to its outstanding flood tolerance, T.

distichum has broad application prospects and is promoted for use

in ecosystem restoration and construction of wetlands (Ding et al.,

2021; He et al., 2021). More recently, it was found to have excellent

tolerance to long-term periodic submergence in the water-level-

fluctuating zone of the Three Gorges Reservoir (Wang et al., 2016,

2019). Interestingly, we found that T. distichum had a higher

survival rate when submerged in winter than in summer, which

may be because the activity of enzymes involved in underwater PN is

affected by water temperature like other enzymes; thus, it is

necessary to explore the response of underwater PN to temperature.

Consequently, the aims of the present study were to characterize

underwater PN and leaf anatomy of T. distichum with time of

submergence and to establish light, CO2, and temperature response

curves of the underwater PN. Aerial photosynthesis of T. distichum

has been thoroughly investigated (Wang et al., 2016; Taylor and

Smith, 2017), but its capacity for underwater photosynthesis has not

yet been evaluated. Interestingly, it was previously reported that T.

distichum possesses a superhydrophobic leaf cuticle (Neinhuis and

Barthlott, 1997), which should result in gas film formation during

submergence. We therefore hypothesized that (i) some

photosynthesis takes place when submerged, but the rate is

strongly limited by light and CO2 showing a characteristic

relationship with temperature; (ii) the underwater PN of T.

distichum declines with time of submergence; (iii) and the decline

in PN is linked to loss of leaf hydrophobicity and thereby the

beneficial role of leaf gas films. Our study therefore fills an

important gap related to the complete lack of knowledge related

to the photosynthetic capacity of woody plants under water and the

associated mechanistic understanding of flood tolerance of trees.
2 Materials and methods

2.1 Plant materials and growth conditions

Leaf material for characterization of key photosynthetic

parameters was sampled from a 4-year old T. distichum (L.) Rich

at the Institute of Botany, Jiangsu Province and Chinese Academy of

Sciences (32°05’ N, 118°83 ‘E) during midmorning from 9 to 10 a.m.

The plant height was 2.6 m high and the diameter at breast height was

2.32 cm, which was in a rapid growth phase. Young but fully

expanded and healthy branchlets with green needle-like leaves of

the linear-lanceolate type were chosen for these experiments in June–

July, whereas scale-like and appressed needles were disregarded.

For the long-term submergence experiment, seeds of T. distichum

were sown in a seedling tray and after germination transferred to pots
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(23 cm upper diameter, 15 cm basal diameter, and 22 cm high) filled

with a mixture of potting soil and sandy clay. The seedlings were

grown in a greenhouse (temperature: 23 ± 2°C; humidity: 60%–70%)

for 2 months and then moved outdoors for another 4 months, and

the pots were watered daily with tap water. 30 healthy seedlings with

an average height of 45 cm were selected for the experiment.
2.2 CO2 versus underwater PN

Underwater PN was measured following the approach of

Pedersen et al. (2013). In brief, artificial floodwater was prepared

according to Smart and Barko (1985) with a final alkalinity of

2.0 mol H+ equivalent m−3. Considering that the underwater

photosynthetic CO2 saturation concentration of submerged leaves

of terrestrial wetland plants is approximately 20–75 times or even

higher than the atmospheric equilibrium concentration (~18 mmol

m−3 free CO2) (Pedersen et al., 2009), a CO2 concentration range of

10–2,000 mmol m−3 was set. In addition, compared with high CO2

concentration, underwater PN changes more significantly under low

CO2 concentration; thus, six concentration gradients (10, 25, 50,

100, 200, and 500 mmol m−3) were set for low concentration and

three concentration gradients (1,000, 1,500, and 2,000 mmol m−3)

were set for high concentration. Prior to the pH adjustment, the

solution was purged with N2 to reduce the O2 concentration

approximately 30%–50% of air equilibrium to prevent

photorespiration during incubation (Setter et al., 1989). The

artificial floodwater was then siphoned into 44-mL glass vials and

two pieces of 3-mm glass beads were added to each vial to ensure

the mixing during incubation. One branchlet with needles

(approximately 1 cm2 or approximately 15.8 mg fresh mass)

before the vial was sealed with a glass lid (no headspace or gas

bubbles present). The vials were mounted on a vertically rotating

disk (10 rpm) and inundated in a constant temperature bath at 25°C

and illuminated with a photon flux of 1,000 µmol m−2 s−1 (see

below). Vials without tissue served as blanks.

After 60 min, the vials were retrieved and the O2 concentration

was measured using an O2 optode (OPTO-MR, Unisense,

Denmark) inserted into the vial. The needles in the vial were then

neatly placed on a clean white background board while a ruler is

placed to take the photo. Make sure the leaves do not overlap each

other when taking the photo; ImageJ software was used to measure

the exact leaf area (Schneider et al., 2012). The photosynthetic rate

was calculated using the following equation:

PN (mmol O2 m−2s−1) =
DO2(mmol O2 L−1)Vvial(L)

t(sec)A(m2)

where DO2 is the difference in O2 concentration in vial with

tissue and blanks, Vvial is the volume of the vials, i.e., 0.044 L, t is the

incubation time, and A is the area of the needles.
2.3 Light versus underwater PN

Floodwater and tissue were prepared as above but with a fixed

CO2 concentration of 500 mmol m−3. Compared with high light
frontiersin.org
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intensity, underwater PN changes more significantly under low light

intensity; thus, six gradients (0, 50, 100, 200, 300, and 500 µmol

photons m−2 s−1) were set for low light intensity and three gradients

(1,000, 1,500, and 2,000 µmol photons m−2 s−1) were set for high

light intensity. Different light intensities were established by using a

high-pressure Na lamp at various distances and by regulating the

voltage. For zero light, the vials were wrapped in aluminum foil. The

light intensities were measured using a spherical PAR

(photosynthetically active radiation) sensor (QSL2101,

Biospherical Instruments Inc., USA). As for the CO2 response

(see above), samples were incubated for 60 min.
2.4 Temperature versus underwater PN

Floodwater and tissue were prepared as above but with a fixed

CO2 concentration of 500 mmol m−3 and PAR at 1,000 µmol

photons m−2 s−1. The temperature was set to 10, 15, 20, 25, 30, or

35°C using a combination of an immersion heater (300W,

SUNSUN, Zhejiang, China) and a water cooler (TECO, Taiwan,

China) to achieve a stable temperature, which was monitored in real

time by a temperature electrode (Temp-UniAmp thermosensor,

Unisense, Denmark). As for the CO2 response (see above), samples

were incubated for 60 min.
2.5 Long-term submergence

A 30-day submergence experiment with two treatments (drained

controls or completely submerged) was conducted using 6-month-old

T. distichum seedlings. Fifteen pots with one plant in each were

transferred to three plastic tanks (depth, 69 cm; volume, 122 L) filled

with tap water, with five seedlings (technical replicates) in each tank

(true replicates). The water was changed every 2 days, and the hose was

placed at the bottom of the bucket to ensure that the water was

completely replaced. Another 15 plants served as controls, and these

were unsubmerged and kept under conditions (photoperiod and

temperature) similar to those for submerged plants and irrigated

every 2 days. Underwater PN was measured on healthy needles on

days 7, 14, 21, and 31 using a PAR of 1,000 µmol photonsm−2 s−1 and a

CO2 concentration of 500 mmol m−3 (see experimental procedure

above) and leaves were transported in water back to the laboratory to

minimize damage and exposure to air. It should be noted that the

underwater PN of the submerged leaves of terrestrial wetland plants will

be severely limited by the CO2 availability at atmospheric equilibrium

CO2 concentrations. In order to more accurately evaluate the

underwater photosynthetic capacity of submerged leaves, a CO2

concentration higher than atmospheric equilibrium was required,

and 500 mmol m−3 is set for this experiment.

During the first 8 days of the submergence experiment,

submerged leaves were harvested every other day. These were

observed and photographed with scanning electron microscopy

(SU8100, Hitachi Scientific Instruments, Japan). Subsequently,

stomatal density (number of stomata per mm−2) and stomatal
Frontiers in Plant Science 04
index (ratio of number of stomata to the total number of

epidermal cells including stomata) were calculated from these

images (Hegde and Krishnaswamy, 2021; Li et al., 2022).

At the end, healthy leaves were sampled and then transported

into water to minimize damage and re-exposure to air. Chlorophyll

measurements were conducted on submerged leaves as well as

controls using ethanol extractions and absorbance of the extract

was measured on a spectrophotometer (UV-1800, Shanghai

Mepuda Instrument Co., LTD, China). Chlorophyll was

calculated using the equations in Zhang et al. (2020).

Finally, cross-sections for microscopy were prepared from

paraffin-embedded needles and later studied using visible light

microscopy (BX53F, Olympus, Tokyo, Japan).
2.6 Influence leaf gas films on
underwater PN

To investigate the effects of leaf gas films on underwater PN, four

healthy 6-month-old T. distichum seedlings were selected. Two fully

unfolded branchlets were sampled from each plant and then they

were divided into two groups. To remove hydrophobicity and

thereby prevent formation of leaf gas films, one group was

brushed five times, on both sides, with a fine paintbrush dipped

into 0.01% (v/v) Triton X. After that, they were washed for 5 s, three

times, in artificial floodwater without Triton X (Teakle et al., 2014;

Winkel et al., 2014). The other group was untreated and served as

control with each group having four replicates. Underwater PN was

measured as described above with 500 mmol CO2 m−3 under a

photon flux of 1,000 µmol photons m−2 s−1 at 25°C.
2.7 Assessment of gas film thickness and
needle hydrophobicity

Leaf gas film thickness was measured following the approach of

Raskin and Kende (1983). In brief, the buoyancy of a branchlet was

measured on five replicates using a four-digit balance with a hook

underneath before and after removal of hydrophobicity using 0.01%

Triton X; see above. Next, the area of the needles was determined

(see above), and the gas film thickness (m) was calculated as gas film

volume (m3) divided by needle area (m2).

Surface hydrophobicity was assessed by measuring the contact

angle of a 1-mm3 droplet of water on the needle surfaces following

Sikorska et al. (2017). Branchlets with needles were held horizontal

using a glue stick. Water droplets were applied to the lamina of 10

replicate needles (5 on the adaxial side and 5 on the abaxial side), and

photographed at ×35 magnification using a horizontally positioned

dissecting microscope (MZ62, Mshot, China) and a digital camera.

The droplet contact angles were measured using ImageJ (ImageJ

v.1.43U, National Institutes of Health, Bethesda, MD, USA).

Finally, specific leaf area (SLA) was measured by determining

the area (see above) and dry mass of needles, where the needles were
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dried for 48 h at 60°C. SLA was calculated as area (m2) divided by

dry mass (kg).
2.8 Data analysis

We used non-linear regression to fit models derived from FvCB

(CO2 response) (Liang and Liu, 2017) and light response was fitted

according to the Ye model (Ye et al., 2013). The temperature

optimum was modeled using a Gaussian function and a standard

exponential function was used to predict temperature coefficient

Q10 (Pedersen et al., 2016). The temperature coefficient Q10

represents the relative change of underwater PN with every 10°C

change in temperature. The data were processed using Excel 2016

and graphed with Origin software (2021 64Bit, Electronic Arts

Games, USA). Results were expressed as means ± standard

deviation. All statistical tests were conducted using SPSS 16.0s

(SPSS Inc., USA) including that of the Duncan’s multiple range

test. Unless otherwise stated, a probability level of 0.05 was used.
3 Results

3.1 Submergence of Taxodium during
times of high water level

Waterlogging, partial submergence, and even complete

submergence of Taxodium is a recurrent phenomenon during
Frontiers in Plant Science 05
times of high water levels. When the water first starts rising, the

soil becomes flooded, resulting in waterlogging of vast areas of trees

(Figure 1A), and as the water continues to rise, the lower branches

become submerged (Figures 1B, C). Ultimately, the entire canopy is

under water (Figure 1D), and gas exchange with the atmosphere is

no longer possible. The floodwater in the Yangtze River is murky as

a result of suspended materials (Figure 1D), and therefore the light

environment also changes upon submergence, resulting in reduced

photosynthesis due to the combination of low light and restricted

CO2 availability. The habitat photos in Figure 1 clearly demonstrate

the relevance of our study, where we are aiming to characterize the

ability of T. distichum to continue photosynthesizing under water

with emphasis on response to CO2 and light availabilities,

and temperature.
3.2 Response of underwater net
photosynthesis to CO2, light, and
temperature by Taxodium distichum

We characterized the response of underwater net

photosynthesis (PN) to dissolved CO2, light availability, and

temperature, which are relevant environmental parameters during

submergence of T. distichum. Submerged branchlets with needles

produced O2 when incubated in the artificial floodwater in the light

visible as bubble formation on the needles (Figure 2A). The

response of PN (i.e., net O2 consumption) to dissolved CO2 at

25°C and a photon flux of 1,000 µmol photons m−2 s−1 showed a
FIGURE 1

Habitat photos of Taxodium growing along the banks of the Three Gorges Reservoir, which is part of the Yangtze River. The species depicted is
hybrid between Taxodium distichum and Taxodium mucronatum, which has been planted on the banks in an attempt to reduce erosion as the
annual water level fluctuations are up to 175 m (Wang et al., 2019). (A) The initial phase of flooding resulting in waterlogging, but as the water
continues to rise, the low branches become submerged (B, C). Finally, the entire canopy is under water (D) and may remain so for up to 120 days
and still survive (Yang et al., 2023).
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typical saturation response, increasing as CO2 was raised to 2,000

mmol m−3 (Figure 2B). The FvCB model estimated the maximum

carboxylation rate (Vcmax), maximum electron transfer rate (Jmax),

and day respiratory rate (Rday) to be 19.73 µmol m−2 s−1, 39.34 µmol

m−2 s−1, and 0.3 µmol m−2 s−1, respectively. However, the CO2

compensation point (G*) and CO2 saturation point (Ci,TUP) are

37.43 mmol m−3 and 2,334 mmol m−3, which are approximately 2-

fold and 130-fold atmospheric equilibrium (~18 mmol m−3 free

CO2), respectively (Table 1).

We diagnosed PN at contrasting light availabilities with 500

µmol CO2 L
−1 in the floodwater. As expected, underwater PN also

followed a saturation response with increasing light availability. In

darkness, the dark respiration (Rdark) of branchlets with needles was

1.31 µmol O2 m
−2 s−1 (Figure 2C). Using the equation from Ye et al.

(2013), the light compensation point (Ic) and light saturation point

(Im) were 65.38 µmol photons m−2 s−1 and 1,666.67 µmol photons

m−2 s−1, respectively. PNmax was estimated to 10.97 µmol O2 m
−2 s−1

at the given environmental conditions, i.e., dissolved CO2 at 500

µmol L−1 at 25°C (Table 1).

Underwater PN followed an exponential increase with

increasing temperature in the tested interval from 10 to 25°C

whereafter it steeply decreased with increasing temperature. Using

a Gaussian model, we estimated the temperature optimum for

underwater PN in T. distichum to 25°C with 500 µmol L−1

dissolved CO2 in the floodwater at a photon flux of 1,000 µmol

photons m−2 s−1 (Figure 2D). Using the same dataset, but without

considering temperatures exceeding the optimum for underwater
FIGURE 2

Response of underwater photosynthesis to CO2, light, and temperature of submerged Taxodium distichum branchlets. In (A), a section of a
branchlet is incubated in artificial floodwater in a glass vial, and the gas bubbles forming on the leaves show that O2 is being produced in underwater
photosynthesis. (B) Underwater net photosynthesis (PN) at PAR = 1,000 µmol photons m−2 s−1 as a response to CO2 dissolved in the floodwater
followed a saturation curve and is fitted to the means using the FvCB model (R2 = 0.99). (C) Similarly, underwater PN was fitted to a general light
response curve (Ye model, R2 = 0.997) measured with 500 µmol L−1 dissolved CO2 in the floodwater to enable estimation of PNmax (10.97 µmol O2

m−2 s−1). In (D), the response of PN to temperature is shown with 500 µmol L−1 dissolved CO2 in the floodwater and PAR = 1,000 µmol photons m−2

s−1, and using a Gaussian fit revealed an optimum for PN at 25°C. Data points in B–D show the mean ± SD (n = 4).
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TABLE 1 Taxodium distichum response curve parameter estimation and
goodness of fit.

Parameters Estimated value

PN–CO2 response curve
(FvCB model)

Vcmax 19.73 µmol m−2 s−1

Jmax 39.34 µmol m−2 s−1

Rday 0.30 µmol m−2 s−1

Ci,TUP 2334 mmol m−3

G* 37.43 mmol m−3

R2 0.99025

PN–light response curve
(Ye model)

a 0.0221

PNmax 10.97 µmol m−2 s−1

Rdark 1.31 µmol m−2 s−1

Im 1666.67 µmol m−2 s−1

Ic 65.38 µmol m−2 s−1

R2 0.997
Vcmax, maximum carboxylation rate; Jmax, maximum electron transfer rate; Rday, daily
respiration rate; Ci,TUP, CO2 saturation point; G*, CO2 compensation point; R2, coefficient
of determination; a, initial quantum efficiency; PN max, maximum net photosynthetic rate at
light saturation; Rdark, dark respiration rate; Im, light saturation point; Ic, light
compensation point.
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PN, we estimated the Q10 of PN to 1.84 demonstrating the strong

dependence of underwater PN on environmental temperature.
3.3 Hydrophobicity and gas film retention
by needles of Taxodium distichum

At the onset of submergence, T. distichum forms a thin gas film

on its needles and therefore we aimed at characterizing

hydrophobicity, gas film thickness, and other key features known

to influence underwater PN. Macroscopically, the needles are very

similar on their adaxial and abaxial sides, but stomatal density

differs with more than fourfold higher density of stomata on the

abaxial side (Figures 3A–D, G). However, the water-repellent traits

were similar, showing a contact angle of 146° on both sides, and

although these angles only render the needles hydrophobic (and not

superhydrophobic) (Koch and Barthlott, 2009), the hydrophobicity

was nevertheless sufficient to initially retain a 35-µm-thick gas layer

upon submergence (Figures 3E–G). The needles of T. distichum in

air have been observed to repel water, and the gas film formed

underwater is directly visible as a silvery sheen (Figures 3H, I), and

its well-described facilitation of underwater photosynthesis is

evident from the bubble formation when the branchlets are

submerged in CO2-rich water in the light (Figure 3J). We also

manipulated needle hydrophobicity to enable a direct comparison

of underwater PN of needles with or without a gas film, and we

found that the gas film increased underwater PN 2.1-fold as
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compared with needles where gas fi lm formation was

prevented (Figure 3K).
3.4 Response of Taxodium distichum to
long-term submergence

The fact that Taxodium can become completely submerged for

several months prompted us to conduct a controlled laboratory

experiment where we submerged 6-month-old plants for 30 days.

During the first 24 days of submergence, the hydrophobicity was

lost and the leaf cuticle gradually became colonized with bacteria

with the first bacterial cells appearing already after 2 days of

submergence (Figure 4A). The colonization of bacteria was

accompanied by a decline in hydrophobicity, and leaf gas films

dramatically decreased during the first few days of submergence

(Figure 4B). This loss of gas films resulted in a significant decline in

underwater PN as indicated by the significant positive correlation

between gas film thickness and under PN (Figure 4C). Key stomatal

features (stomatal density and stomatal index) did not change

during the first 8 days of submergence (Figure 4D).

However, over the entire submergence period of 30 days,

significant changes took place at the needle level. The needles

started yellowing (Figure 5A), and the yellow was also reflected in

a significant decline in chlorophylls (Figure 5B). The combined

effect of loss of hydrophobicity and the decline in chlorophylls

resulted in a steep decline in underwater photosynthesis already
FIGURE 3

Adaxial (A, C, E) or abaxial (B, D, F) view of the needle surface close to the mid-vein, scanning electron micrograph of the cuticle and lateral view of
a 1 mL water droplet. More details are shown in (G). The needles in the air repel water (H), and retain a thin gas film upon submergence visible as a
silvery sheen (I). When submerged in light, underwater photosynthesis results in bubble formation on the needle surfaces (J, K) shows the effect of
gas film on underwater net photosynthesis measured at PAR = 1,000 µmol photons m-2 s-1 and CO2 at 500 µmol L-1. In (K), ** indicates P < 0.01,
one-tailed Student’s t-test.
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within the first 8 days of submergence with a predicted T½ in PN of

1.85 days (Figure 5C). In addition to the biochemical changes in

chlorophyll concentration, the needles also underwent anatomical

changes during the 30 days of submergence as all of the palisade

cells degraded (Figures 5D, E). Importantly, even with the loss of

palisade tissues and the significant declines in chlorophylls, the

needles maintained some capacity for underwater PN during the

entire submergence period as underwater PN never declined below 1

µmol O2 m
−2 s−1.
4 Discussion

Partial or complete submergence of trees is a common

phenomenon in several natural or man-made wetlands (Parolin,

2009) and yet the ability of the leaves to photosynthesize under

water had not yet previously been studied. In the present study, we

found that the needles of T. distichum are hydrophobic and retain a

thin gas film during submergence, and the gas films greatly

enhanced underwater PN through their beneficial effect on gas

exchange between needles and floodwater. We also found that the
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needle hydrophobicity was lost with time of submergence, but even

after a month of complete submergence, the needles still maintained

some capacity for underwater PN. Nevertheless, the needles had

undergone structural and biochemical changes with loss of

mesophyll cells and significant declines in chlorophyll

concentrations. Below, we are discussing these findings in the

context of existing knowledge on flood tolerance of terrestrial

plants with emphasis on beneficial leaf traits such as leaf

hydrophobicity, gas film formation, and SLA, and we also identify

areas of exploration to fill in the many knowledge gaps that

still remain.
4.1 Hydrophobicity of Taxodium distichum
needles and gas film formation

Terrestrial leaves generally perform poorly under water due to

the restricted gas exchange in water compared with air resulting in

restricted O2 uptake for respiration or CO2 uptake for

photosynthesis. The poor performance has been clearly

demonstrated using the model plant, Rumex palustris, showing
FIGURE 4

Changes in needle surface structure, gas film thickness, and underwater PN with time of submergence of Taxodium distichum. Scanning electron
micrographs (A) show the changes in surface structure immediately before submergence (day 0, control) and days 2, 4, 6, and 8. Decline in gas film
thickness (B) during the 30 days of submergence and the relationship between gas film thickness and underwater PN (C). A Pearson correlation
analysis showed a correlation coefficient of 0.83 and p< 0.01. The table (D) shows stomatal aperture, density, opening rate and index, and the same
time points. Data are means ± SD, n = 3–5. Different letters within the same column of data indicate p< 0.05 (Duncan’s multiple comparison).
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that underwater PN of aerial leaves was only 0.5% of the rate in air

(Mommer et al., 2006). In stark contrast, leaves of R. palustris

formed under water could attain rates of underwater PN at 35% of

that in air showing the great benefit of leaf acclimation to

underwater gas exchange. However, leaf acclimation is only a

feasible strategy for long-term submergence, as production of new

aquatic leaves requires reallocation of carbohydrates to fuel leaf.

Instead, superhydrophobic leaves that retain a gas film under water

have been shown to be a very competitive solution to enhance gas
Frontiers in Plant Science 09
exchange without further investment in leaf acclimation (Colmer

and Pedersen, 2008).

Hydrophobicity can be characterized using the contact angle of

a microscopic water droplet. Accordingly, leaf cuticles with contact

angles exceeding 150° are classified as superhydrophobic (with rice

being a typical example) (Kwon et al., 2014), whereas those with

contact angles less than 150°—but larger than 90° (Koch and

Barthlott, 2009)—are hydrophobic. In the case of T. distichum,

the contact angles were just below the 150° cut (146°, Figure 3G),
FIGURE 5

Response to long-term submergence by Taxodium distichum. (A) shows habitus photos of an unsubmerged control plant and a plant that has been
completely submerged for 30 days. In (B), chlorophylls (Chla, Chlb, and Chla+b) are shown for unsubmerged control needles and needles that have
been submerged for 30 days. (C) shows underwater net photosynthesis (PN) with time of submergence along with control measurements on
unsubmerged branchlets at each sampling point. Data are means ± SD (n = 4), and * and ** indicate p< 0.05 and p< 0.01, respectively (one-tailed
Student’s t-test), and the half-life of PN was calculated using an exponential decay function. Below, (D, E) show cross-sections of an unsubmerged
needle and a needle that has been submerged for 30 days. To the left, arrowheads point at palisade tissues, and to the right, * indicates missing
palisade tissues.
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but the needles nevertheless retained a gas film upon submergence

(Figure 3I). The gas films forming on the needles of T. distichum

were of similar thickness (35 µm, Figure 3G) to those formed by rice

leaves (30–60 µm) (Winkel et al., 2014; Kurokawa et al., 2018; Mori

et al., 2019) or by wheat leaves (20–40 µm) (Konnerup et al., 2017).

Consequently, it is not surprising that the beneficial effects on gas

exchange and underwater PN were significant.

In water, gas diffusion is slow and therefore physiological

processes relaying on gas exchange can become restricted by slow

substrate supply such as CO2 for photosynthesis. However, leaf gas

films greatly enhance gas exchange (Verboven et al., 2014), and we

found that needles with gas films achieved twofold higher

photosynthetic rates compared with needles that had the

hydrophobicity removed and where gas films therefore did not

form (Figure 3K). It has previously been found that leaf gas films

can increase underwater PN up to three- to sevenfold (Colmer and

Pedersen, 2008), but the photosynthesis in these experiments was

assessed at lower (200 µM) external CO2 concentrations, where the

beneficial effect of gas films on gas exchange is more pronounced

(Winkel et al., 2017). Interestingly, the underwater PN obtained at

saturating light and CO2 levels in the present study matched those

of PN in air; i.e., in both environments, the rates were approximately

10–12 µmol O2 m
−2 s−1 (Figures 2B, C) (Neufeld, 1983; Mommer

et al., 2006), underlining the significant effect of gas films on the

needles of T. distichum. Consequently, we propose that a key reason

for the stunning flood tolerance of T. distichum is its ability to

maintain a substantial photosynthetic activity during submergence

resulting in both carbohydrate and O2 production. However, the

realized photosynthetic rates greatly depend on both light and CO2

availability under water and, to a large extent, temperature as well.
4.2 Influence of CO2, light, and
temperature on underwater PN of
Taxodium distichum

CO2 uptake by T. distichum followed a classical FvCB response

curve. However, underwater PN remained negative until the CO2

compensation point at 37.43 mmol m−3 was reached; below, the

needles of T. distichum consumed more O2 than they produced. The

CO2 compensation point is equivalent to approximately twofold

that of atmospheric equilibrium (~18 mmol m−3 free CO2),

demonstrating the importance of net CO2 production in the

floodwater in order for the underwater PN to become positive and

therefore result in significant carbohydrate production. The Ci,TUP

(CO2 saturation point) was estimated to 2,334 mmol m−3, or 130-

fold atmospheric equilibrium, which is higher than that of

submerged rice (Winkel et al., 2013) and submerged wheat

(Winkel et al., 2017), and even higher than that of submerged

Hordeum marinum (Pedersen et al., 2010). It has been

demonstrated that the underwater PN capacity of submerged

plants was severely limited at atmospheric equilibrium CO2

concentrations (Pedersen et al., 2009). Although some studies

found that the CO2 concentration recorded in flooded rice fields

was 20–180 times the atmospheric equilibrium concentration (360–
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3,240 mmol m−3) (Setter et al., 1987), the diffusion rate of the gas in

water is 10,000 times lower than in air, resulting in underwater PN
being still limited (Pedersen et al., 2013). CO2 availability

limitations are a long-standing challenge for submerged plants,

but interestingly, rice, wheat, and H. marinum retain leaf gas films

when submerged, which has been shown to significantly enhance

gas exchange. The overall similarity of the CO2 response in T.

distichum to the other three terrestrial species with leaf gas films is

likely due to the physical effect of the gas films facilitating the

exchange between needles and floodwater rather than physiological

similarities among these distantly related species.

Light utilization by T. distichum under water also showed a

saturating response to light when assessed with 500 µmol CO2 L
−1

in the floodwater. As for CO2, underwater PN was initially negative

at low light levels and only reached positive values (Ic) at PAR >

65.38 µmol photons m−2 s−1 (Figure 2C). When PAR is higher than

the saturation point (Im) of 1,666.67 µmol photons m−2 s−1,

underwater PN reaches a maximum value (PNmax) of 10.97 µmol

m−2 s−1, which is very difficult to achieve due to light loss; thus,

underwater PN is generally limited by PAR. The initial quantum

efficiency (a) of 0.0221 absorbed was in the same order of

magnitude as that of submerged wheat (Winkel et al., 2017) and

Phalaris arundinacea (a terrestrial wetland species also forming leaf

gas films upon submergence) (Vervuren et al., 1999; Winkel et al.,

2017), whereas two other species without gas films utilized light

much less efficiently (Rumex crispus and Arrhenatherum elatius)

(Vervuren et al., 1999). These findings emphasize the importance of

gas films also for light use efficiency as the light use relies not only

on incident light reaching the leaf surfaces but also on entry of CO2.

In addition to CO2 and light, underwater PN of T. distichum was

also strongly affected by the environmental temperature. In the

temperature range tested, i.e., 10 to 35°C, there was a strong positive

relationship between temperature and underwater PN until the

temperature optimum was reached at 25°C after which PN
declined with increasing temperature (Figure 2D). This is a

common response of underwater PN to rising temperature as also

demonstrated for two tidal seagrass species, Thalassia hemprichii

and Enhalus acoroides (Pedersen et al., 2016). Being tropical species,

these seagrasses showed a temperature optimum for underwater PN
at 33°C, i.e., 8°C above that of T. distichum. The Q10 of underwater

PN in T. distichum was somewhat lower (1.8) than that of T.

hemprichii (2.0) and E. acoroides (2.8) (Pedersen et al., 2016), but

it nevertheless show the strong dependency of temperature for

underwater PN also in T. distichum. This is an important point to

consider when extrapolating the current laboratory findings to the

field situation since the water temperature in the Yangtze River can

fluctuate from 11 to 22°C during the time of the year when the trees

on the banks become submerged (Yu et al., 2021).
4.3 Responses of Taxodium distichum to
long-term submergence

The trees growing on the banks of the Yangtze River can

become partially or completely submerged for up to 120 days and
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still survive (Yang et al., 2023), and we therefore tested the response

of T. distichum to long-term submergence. Six-month old seedlings

were completely submerged for a period of 30 days with sampling of

leaf tissue during the period at discrete time points. Leaf gas films

quickly diminished, and the decline in gas film thickness was

accompanied by a decline in underwater PN (Figure 4C). The

strong relationship between gas film thickness and underwater PN
during long-term submergence has previously been observed in rice

(Winkel et al., 2014), but our study represents the first to

demonstrate this relationship for a tree species.

The gas films forming on the surfaces of the submerged needles

of T. distichum persist longer than in other species tested with

hydrophobic cuticles. In the present study, the gas films were

detectable up to 24 days of submerged after which they had

totally vanished (Figure 4B). This is longer than observed for rice,

which represents the only other species with superhydrophobic

leaves, where gas film thickness have been followed during a

submergence event. Here, it was found that gas film thickness was

below the detection limit already after 7 days of submergence

(Winkel et al., 2014). In T. distichum, the needles maintained

their ability to photosynthesize also after the gas films were lost at

a rate of approximately 1 µmol O2 m
−2 s−1, which is similar to the

photosynthetic rate of rice and wheat once the leaf gas films of these

species have also disappeared due to long-term submergence

(Winkel et al., 2014; Konnerup et al., 2017). It is still not fully

understood why the loss in hydrophobicity occurs during

submergence. However, the present study as well as one on wheat

(Konnerup et al., 2017) clearly demonstrated that a biofilm was

established during submergence (Figure 3I), but if this biofilm is the

result or the cause of loss of hydrophobicity remains unknown.

Distinct anatomical and biochemical changes occurred during

the long-term submergence event. The decline in total chlorophylls

was significant with initial values at 2.1 mg g−1 DM and only 1.0 mg

g−1 DM after 30 days of submergence (Figure 5B). While this

decline will have significant consequences for the light capturing

capabilities, the decline in submerged rice was even more

pronounced where the initial levels are at approximately 18 mg

g−1 DM to less than 5 mg g−1 DM in only 2 weeks. The decrease in

chlorophyll concentration observed in the present study may be one

of the important reasons for the decrease in underwater PN, as it has

been shown that underwater PN of rice is positively correlated with

leaf chlorophyll concentration (Winkel et al., 2014). The significant

decrease in chlorophyll concentration is likely a result of palisade

tissue loss in needles (Figures 5D, E). To our knowledge, similar

observations are missing in the literature as previous studies have

focused on anatomy of leaves formed during the submergence event

(Mommer et al., 2007) and not on acclimation of already existing

leaves. The lysis of palisade tissues observed towards the end of the

30-day submergence event might be accompanied by water

infiltration in the newly formed cavities, and such water-filled

cavities would slow down intra-tissue diffusion of O2 and CO2

(Armstrong, 1980). Interestingly, the parallel decline in chlorophyll

concentration and leaf gas film thickness makes it difficult to

identify the primary causal effect of the observed decline in

underwater PN.
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5 Conclusions and perspectives

During the 30-day submergence period, no growth or

formation new leaves were observed, and therefore, T. distichum

shows a quiescence response to submergence (cf. Bailey-Serres and

Voesenek, 2008). The hydrophobicity of the needles declined

during the submergence event, resulting in loss of gas films.

However, the chlorophyll concentration of the needles also

declined significantly, and it was therefore not possible to identify

the main cause of the corresponding significant decline in

underwater PN.

Several questions still remain unresolved in order to fully

understand the striking ability of T. distichum to withstand

partial or complete submergence for months. We propose that

future research concentrate on unraveling the finer details in needle

anatomy and biochemistry as these changes occur during

submergence. For example, the lysis of palisade tissues should be

further studied in order to understand if the lysis is merely a

consequence of senescence processes or if the lysis is actively

controlled via programmed cell death with the aim of acclimating

the leaves to a low-light environment and the slow diffusion of gases

in water. We also suggest to investigate if changes in cuticle

structure take place beyond those involved in surface

hydrophobicity. A thinning of the cuticle would greatly enhance

diffusion of O2 and CO2 from the floodwater to the needles’ tissues

and thereby enhance the supply of O2 for dark respiration or CO2

for underwater photosynthesis. In addition, whether the bacteria

colonized on leaf surface will cause negative impacts on the leaf cells

and hence affect hydrophobicity and photosynthesis, and the

difference in underwater PN capacity and detailed submergence

tolerance mechanisms of T. distichum seedlings and big trees are

also interesting questions that are worthy of further investigation.
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