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Background: Accurate estimation of reference crop evapotranspiration (ET0) is

crucial for farmland hydrology, crop water requirements, and precision irrigation

decisions. The Penman-Monteith (PM) model has high accuracy in estimating

ET0, but it requires many uncommon meteorological data inputs. Therefore, an

ideal method is needed that minimizes the number of input data variables

without compromising estimation accuracy. This study aims to analyze the

performance of various methods for estimating ET0 in the absence of some

meteorological indicators. The Penman-Monteith (PM) model, known for its high

accuracy in ET0 estimation, served as the standard value under conditions of

adequate meteorological indicators. Comparative analyses were conducted for

the Priestley-Taylor (PT), Hargreaves (H-A), McCloud (M-C), and FAO-24

Radiation (F-R) models. The Bayesian estimation method was used to improve

the ET estimation model.

Results: Results indicate that, compared to the PM model, the F-R model

performed best with inadequate meteorological indicators. It demonstrates

higher average correlation coefficients (R2) at daily, monthly, and 10-day

scales: 0.841, 0.937, and 0.914, respectively. The corresponding root mean

square errors (RMSE) are 1.745, 1.329, and 1.423, and mean absolute errors

(MAE) are 1.340, 1.159, and 1.196, with Willmott's Index (WI) values of 0.843,

0.862, and 0.859. Following Bayesian correction, R2 values remained unchanged,

but significant reductions in RMSE were observed, with average reductions of

15.81%, 29.51%, and 24.66% at daily, monthly, and 10-day scales, respectively.

Likewise, MAE decreased significantly, with average reductions of 19.04%,

34.47%, and 28.52%, respectively, and WI showed improvement, with average

increases of 5.49%, 8.48%, and 10.78%, respectively.
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Conclusion: Therefore, the F-R model, enhanced by the Bayesian estimation

method, significantly enhances the estimation accuracy of ET0 in the absence of

some meteorological indicators.
KEYWORDS

reference crop evapotranspiration, Penman-Monteith, FAO-24 radiation, meteorological
indicators, Bayesian estimation
1 Introduction

Agriculture stands as the largest consumer of freshwater (Food,

and Nations, A. O. o. t. U, 2017; Boretti and Rosa, 2019). Efficient

freshwater resource utilization in agricultural product production is

a pivotal concern for sustainable development (Tunalı et al., 2023).

Particularly in arid or semiarid climates, irrigation plays a critical

role in food production systems and economies. However, limited

available water may not meet the demands of food production,

necessitating effective scheduling methods to optimize crop yields

with constrained water resources (King et al., 2020; Gu et al., 2021;

Zhang et al., 2021). There is a growing emphasis on enhancing

water productivity by improving evapotranspiration (ET) efficiency

in food production (Xu et al., 2018; Qiu et al., 2021). This shift

toward sustainable and efficient water use in agricultural systems

underscores the need for precise estimations of crop transpiration

and soil ET (Yong et al., 2023a).

Accurate estimation of crop ET is instrumental in on-farm

irrigation management, facilitating improvements in irrigation

practices and systems (Nyolei et al., 2021). This enhances water

productivity, enabling more farmers to derive benefits from limited

water resources and achieve increased food production (Perry et al.,

2009; Akumaga and Alderman, 2019). Crop water requirement

holds a pivotal role in the farm water cycling system. Modern water-

saving irrigation theory advocates for deficit-regulated irrigation

based on crop water requirement. This approach maximizes yields

while maintaining optimal water levels in the root zone and

minimizing nutrient losses, disease susceptibility, and operating

costs (Tunalı et al., 2023). Reference crop evapotranspiration (ET0)

forms the basis for calculating crop water requirements. Over nearly

a century, the estimation methods for ET0 have been extensively

studied globally. Although lysimeters are one of the most accurate

tools for direct calculation of ET0, they are not suitable for this

purpose due to their relatively higher cost, the time required for the

complex measurements, and their limited accessibility at most sites

(Chia et al., 2020). Another common strategy is to calculate ET0

indirectly using experimental formulae and meteorological factors

(Salam and Islam, 2020). The Penman-Monteith model, widely

utilized, comprehensively describes ET processes, incorporating

meteorological and vegetation physiological characteristics

(Monteith, 1965). This model estimates ET as water vapor

diffusing from the canopy surface through aerodynamic and
02
gradient methods (Monteith and Unsworth, 2013). Although the

ET0 obtained by the PM model is reliable, it faces limitations due to

the stringent requirements for climate data at specific locations

(Alam et al., 2024).The Priestley-Taylor (PT) model, a radiation-

based approach, calculates actual evapotranspiration using an

empirically derived potential ET coefficient a (Kohler et al.,

1955). This model minimizes differences in land cover and soil

moisture (Priestley and Taylor, 1972). Hargreaves and Samani

(1985) introduced the Hargreaves (H-A) model, utilizing

maximum and minimum temperatures and extraterrestrial

radiation to estimate ET0. Recognized for its simplicity and

accuracy, the H-A model is considered one of the most reliable

methods for ET0 estimation (Jensen et al., 1997). The Mc-Cloud

method, relying on average daily air temperature, treats potential

ET as an exponential function of temperature. This method is

particularly suitable for regions with large temperature variations

(Valipour, 2015). The FAO-24 Radiation method, derived from the

Makkink formula, exhibits variable accuracy based on altitude

(Hauser et al., 1999). Each of these methods contributes to the

rich landscape of ET0 estimation, offering diverse options for

addressing the complexities of agricultural water management.

The Penman-Monteith (PM) model has demonstrated

applicability to various surfaces across diverse spatial and temporal

scales (Allen et al., 2006; Matejka et al., 2009). In order to exclude the

impact of climate change on reference evapotranspiration (ET0), it is

necessary to fully consider the impact of different annual rainfall on

the evapotranspiration model. Therefore, it is necessary to select a

representative hydrological year to verify the model to reflect the

universality of the model (Yong et al., 2023b; Latrech et al., 2024). It is

recommended as the standard method for estimating ET0 and serves

as a benchmark for validating other evapotranspiration models

(Allen, 1998). The PM method exhibits versatility across

environments and climates, eliminating the need for local

calibration. Extensive validation in various climates, including the

use of lysimeter facility, supports its reliability (Landeras et al., 2008;

Shiri et al., 2012). Reference evapotranspiration relies on

meteorological factors such as radiation, air temperature, humidity,

and wind speed, with temperature being the most influential. The PM

model, chosen as the standard method for ET0 estimation, requires

daily maximum and minimum temperatures, relative humidity, solar

radiation, and wind speeds (Luo et al., 2014). However, a notable

limitation of PM models is their demand for an extensive array of
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uncommon meteorological data, including relative humidity, solar

radiation, and wind speed (Droogers and Allen, 2002; Almorox et al.,

2015). In the absence of comprehensive meteorological information,

accurately calculating ET0 using PM models becomes challenging

(Feng et al., 2017). Public weather forecasts typically include only

weather conditions, maximum and minimum temperatures, wind

levels, and wind directions. To address this, four widely used ET0
estimation models with lower meteorological data requirements have

gained prominence. The PTmodel omits the need for wind speed and

humidity data, the H-A model calculates ET0 based on temperature

and solar radiation, the M-C model simplifies ET0 calculation based

on temperature, and the F-R model primarily uses sunshine duration

data. An ideal ET0 estimation method should minimize the number

of required meteorological variables without compromising accuracy

(Shih, 1984; Traore et al., 2010). Recent studies (Choi et al., 2018; Gao

et al., 2021; Yamaç, 2021; Dimitriadou and Nikolakopoulos, 2022;

Elbeltagi et al., 2022) have achieved superior ET0 estimation results

compared with traditional methods with limited climate data. As a

result, there is a pressing need to comprehend the temporal

distribution of crop ET and anticipate its future changes using

constrained meteorological information.

In the current study, the calculation of ET0 is based on the PM

model with more meteorological data, or the model with less

meteorological data to blur the calculation, but the accuracy is not

high. Therefore, in order to accurately calculate ET0 to successfully

monitor crop water requirements and prevent excessive or

insufficient irrigation. The primary aim of this study is to conduct

a comparative analysis of different ET0 estimation models under

conditions of incomplete meteorological indicators. Additionally, the

study seeks to enhance the optimal estimationmodel to better suit the

requirements for ET0 estimation in the presence of insufficient

meteorological data. The most important studies are listed below:
Fron
1) Conduct a comparative performance analysis of the PM

model and four alternative ET0 calculation models (H-A,

PT, F-R, and M-C), which require fewer meteorological

data inputs. Evaluate their effectiveness in estimating ET

across various hydrologic years.

2) Investigate and identify a simplified method for calculating

ET0 distinct from the PM model. Explore alternative

models or approaches that offer simplicity while

maintaining accuracy in ET0 estimation.

3) Employ Bayesian estimation to rectify the empirical

parameters of the optimal ET estimation model.
2 Materials and methods

2.1 Overview of the study area

The Haihe Plain (34°48′–41°3′N, 112°33′–119°50′E), situated in
the northern part of the North China Plain, encompasses the plain

areas of Beijing, Tianjin, and Hebei, as well as the northern regions

of Henan and Shandong Provinces (Figure 1). Renowned as a

primary grain-producing region, our study specifically focuses on
tiers in Plant Science 03
the large and medium-sized cities of Baoding, Xinji, and Handan

within the plain part of Hebei Province. The climate of the Haihe

Plain is characterized by a temperate semi-humid and semiarid

continental monsoon climate. This climate exhibits four distinct

seasons, featuring a dry and windy spring, a hot and rainy summer,

a mild and cool autumn with slightly more cloudiness and rain in

early autumn, and a cold winter with minimal rain and snow. These

pronounced seasonal variations contribute to noticeable changes in

ET0 within the study area.
2.2 Data preparation

The study is conducted in Baoding, Xinji, and Handan cities in

Hebei Province, China. Meteorological data were sourced from the

Meteorological Information Center of the National Meteorological

Administration (http://www.nmic.cn/). The time span covered by

the meteorological data is 1991–2019 for Baoding, 2000–2021 for

Xinji, and 1991–2019 for Handan. The comprehensive

meteorological datasets encompass information such as station

name, elevation of the meteorological station, observation time,

mean barometric pressure, mean water vapor pressure, mean air

temperature, daily maximum temperature, daily minimum

temperature, mean relative humidity, 8–8-h rainfall (24-h

cumulative rainfall from 8 a.m. to 8 a.m. the next day), mean

wind speed, and sunshine hours.
2.3 Selection of typical hydrological years

To mitigate the impact of annual rainfall variations on ET

model estimation, a specific hydrological year was carefully chosen

for the test area. Separate validations were conducted for each

identified typical hydrological year to uphold model accuracy. The

selection of typical hydrological years followed a process whereby

cumulative annual rainfall data for Baoding City (1991–2019), Xinji

City (2000–2021), and Handan City (1991–2019) underwent

frequency exclusion. The annual rainfall was then ranked in

descending order, and cumulative frequencies were computed for

accurate year selection.

p = m=(N + 1) (1)

where p represents the cumulative frequency, m is the ordinal

number of years for rainfall after the treatment of rainfall frequency

ranking, and N is the total number of years of rainfall. Utilizing the

Pearson Type III curve for fitting, the rainfall values corresponding

to p = 25%, 50%, 75%, and 90% are typically considered as the

design values for high flow, median water, low flow, and special

dry years.
2.4 ET0 calculation method

The Haihe Plain region experiences four distinct seasons,

marked by significant climatic variations. To assess the

calculation accuracy of different ET0 models during each fertility
frontiersin.org
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period of crops, daily ET0 values for each identified typical

hydrological year were computed using five ET0 models,

calculating daily ET0 values for each typical hydrological year

using five ET0 models, and further obtaining monthly and 10-day

ET0 values.

(1) The Penman-Monteith model

The meteorological data utilized in the model encompass

insolation, radiation, temperature, humidity, and wind speed. The

Penman-Monteith equations are formulated to accurately predict

ET0 across diverse locations and climatic conditions, although they

exhibit high demands for meteorological data. Previous studies

applied the Penman-Monteith model in controlled environments

(Doorenbos, 1977; Smith et al., 1991), emphasizing the importance

of determining evaporative losses in the presence of various natural

and anthropogenic land cover interventions. This approach aids in

identifying the contributors to evaporative losses. The FAO

Penman-Monteith model employed in this study is derived from

the original Penman-Monteith equation, aerodynamic drag

equation, and surface drag equation, as follows:

               ET0 =
0:408D(Rn − G) + g 900

T+273 u2(es − ea)

D + g (1 + 0:34u2)
(2)

where Rn is the net radiation at the crop surface (MJ m-2 day-1),

G is the soil heat flux (MJ m−2 day−1), T is the air temperature at a
Frontiers in Plant Science 04
height of 2 m (°C), u2 is the wind speed at a height of 2 m (ms−1), es
is the saturated water vapor pressure (kPa), ea is the actual water

vapor pressure (kPa), es − ea is the difference in saturated water

vapor pressure (kPa), D is the slope vapor pressure curve (kPa °C−1),

and g is the psychrometric constant (kPa °C−1).

(2) The Priestly-Taylor model

The meteorological data utilized in the model consist of

insolation, radiation, and temperature (Priestley and Taylor,

1972). The PT model establishes a relationship between heat flux

and evaporation. Notably simpler than the PM model, it eliminates

the need for wind speed and humidity data, rendering it more

convenient for application over large areas. However, subsequent

studies have indicated that the PT model is better suited for humid

areas (Priestley and Taylor, 1972; Pereira et al., 2007) and may not

perform as well in arid regions. The formula is as follows:

ET0 = a
D

D + g
(Rn − G)   (3)

where a coefficient is mainly considered the influence of

aerodynamic factors, in general, taking 1.26; D is the slope vapor

pressure curve (kPa °C−1), g is the psychrometric constant (kPa °

C−1), Rn is the net radiation on the surface of the crop (MJ m−2

day−1), and G is the heat flux of the soil (MJ m−2 day−1).

(3) The Hargreaves model
FIGURE 1

Study area.
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The Hargreaves model, introduced by Hargreaves and Samani

(Hargreaves and Samani, 1985), simplifies the estimation of ET0.

This model necessitates only the average daily maximum and

minimum temperatures along with solar zenith radiation

(Hargreaves and Allen, 2003), thereby reducing the need for

extensive raw data. This characteristic makes it feasible to utilize

observations for estimating ET0 in regions where meteorological

data are limited. The formula is as follows:

                 ET0 = C0Ra(Tmean + 17:8)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tmax − Tmin

p
(4)

where Tmean, Tmax, and Tmin represent the daily mean, daily

maximum, and daily minimum temperatures, respectively; Ra is the

atmospheric upper boundary solar radiation; and C0 is the

conversion factor, taken as 0.0023.

(4) The Mc-Cloud model

The Mc-Cloud model, introduced by McCloud in 1955, offers a

simplified equation for estimating ET0 based solely on temperature

(McCloud, 1955). The formula is as follows:

ET0 = KW1:8Tmean (5)

where K andW are constant terms, 0.254 and 1.07, respectively,

and Tmean is the average temperature, °C.

(5) The FAO-24 Radiation model

The FAO-24 Radiation model, derived from the Makkink

formula (Hauser et al., 1999), calculates ET0 exclusively from

solar radiation data. The formula is as follows:

 ET0 = a + b
D

D + Υ
Rs

� �
  (6)

where a and b are empirical coefficients with values of 0.18 and

0.50, respectively; D is the slope vapor pressure curve (kPa °C−1); g is
the psychrometric constant (kPa °C−1), and Rs is the incoming short

wave solar radiation, (MJ·m−2·day−1).
2.5 Modifying evapotranspiration models
using Bayesian estimation

The ET0 values for each typical hydrological year were computed

using the aforementioned five ET0 models (Equations 2–6). Simulated

values from the PM model served as the standard for analyzing the

performance of the H-A, PT, F-R, and M-C models. The objective is to

identify the most suitable and recommended model for simplified ET0
estimation in the Haihe Plain region. Employing Bayesian theory,

which involves both prior and posterior distributions, possible

outcomes were obtained by reestimating the probability of an event

occurring based on estimates of existing data. Bayesian estimation was

iteratively applied to infer the model parameters, correcting the

empirical parameters of the ET model. This iterative process

enhances the model’s adaptability and accuracy in the study area.
2.6 Model performance statistics

Utilizing the original eight meteorological data inputs (daily

minimum temperature, daily maximum temperature, daily average
Frontiers in Plant Science 05
temperature, geographic latitude and longitude, altitude, average

relative humidity, actual sunshine duration, and wind speed), the

ET0 inputs of the PMmodel were selected as the model’s calibration

values. Statistical measures, including the R2, RMSE, MAE, and WI

(Equations 7–10) were employed as key factors for evaluating the

model. These evaluation metrics are calculated as follows:

R2 = oN
i=1(Pi − �P)(Qi − �Q)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

oN
i=1(Pi − �P)2

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
oN

i=1(Qi − �Q)2
q

2
64

3
75
2

(7)

                 RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N o

N
i=1(Pi − Qi)

2

r
(8)

MAE =
1
No

N
i=1 Pi − Qij j (9)

WI = 1 − oN
i=1(Qi − Pi)

2

oN
i=1( Qi − �Pj j + Pi − �Pj j)2 (10)

where N is the number of data series; Pi and Qi (mm/d) are the

simulated and PM model ET0 values, respectively; and �P and �Q

(mm/day) are the average of the simulated and PM model ET0

values, respectively.
3 Results and analysis

3.1 Selection of hydrological year

Based on the rainfall data from Baoding (1991–2019), Xinji (2000–

2021), and Handan (1991–2019), the selection of typical hydrological

years was carried out sequentially using Equation 1. The identified

years for Baoding are 2008, 2009, 1992, and 1997, representing the high

flow year (p = 25%), median water year (p = 50%), low flow year (p =

75%), and special dry year (p = 90%), respectively. Similarly, for Xinji,

the years are 2004, 2010, 2007, and 2006, and for Handan, the years are

1993, 2014, 2006, and 2017, corresponding to the same hydrological

conditions (Figure 2 and Table 1).
3.2 Comparative analysis of daily ET0
values for different typical hydrologic years

In Figure 3, the day-by-day ET0 trends of the five models across

the three regions under various typical hydrological years exhibit

patterns approximating monotonically increasing and decreasing

parabolas. The upward segment spans from January to July,

followed by a downward segment from July to December, with

peak values occurring in the months of June and July for all five

models. Comparatively, the H-A model consistently produces

higher ET0 results than the PM model throughout the year. In

contrast, the PT and F-R models consistently yield lower ET0 results

than the PM model throughout the year. The M-C model produces

higher ET0 results than the PM model in the months of June–

September but lower values in the remaining months.
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Using the PM model-calculated ET0 values as the standard, a

comparative analysis of daily ET0 values for the remaining four ET

models is conducted under different typical hydrological years. At

the daily scale, the H-A model yielded slightly larger results than the

PM model while the F-R and PT models produced slightly lower

values. The remaining three models showed relatively close results

to the PMmodel, except for the H-A model. The PMmodel and the

other four models were used to calculate the RMSE, MAE, and R2

for each typical hydrological year. The results are presented in

Table 2. At a significance level of 0.01, the PT, H-A, and F-R models

exhibited good correlation with the PM model’s standard values.

The average R2 for PT, H-A, and F-R models in typical hydrological

years were 0.710, 0.703, and 0.748 in Baoding; 0.707, 0.718, and

0.746 in Xinji; and 0.644, 0.664, and 0.644 in Handan, respectively.

All three models had R2>0.6, demonstrating their predictive

effectiveness at the daily scale. However, the M-C model showed

an average R2 of 0.500, 0.480, and 0.471 in Baoding, Xinji, and
Frontiers in Plant Science 06
Handan, respectively, with R2<0.6, indicating a lower prediction

effectiveness. Moreover, in each typical hydrological year, the F-R

model consistently exhibits smaller RMSE andMAE compared with

the PT and H-A models. Moreover, the WI is higher for the F-R

model, indicating its superior predictive performance for daily ET0

values under varying hydrological conditions.
3.3 Comparative analysis of monthly ET0
values for different typical hydrologic years

In Figure 4, the monthly ET0 trends of the five models across the

three regions under various typical hydrological years exhibit patterns

resembling monotonically increasing and decreasing parabolas. The

upward segment spans from January to July, followed by a downward

segment from July to December, with peak values occurring in the

months of June and July for all five models. Similar to the daily

trends, the H-A model consistently produces higher ET0 results than

the PM model throughout the year. In contrast, the PT and F-R

models consistently yield lower ET0 results than the PM model

throughout the year. The M-C model produces higher ET0 results

than the PM model in the months of June–September but lower

values in the remaining months.

Using the PM model-calculated ET0 values as the standard, a

comparative analysis of monthly ET0 values for the remaining four

ET0 models is conducted under different typical hydrological years.

At the monthly scale, the H-A model yielded slightly larger results

than the PM model while the F-R and PT models produced slightly

lower values. The remaining three models showed relatively close

results to the PM model, except for the H-A model. The PM model

and the other four models were used to calculate the RMSE, MAE,

and R2 for each typical hydrological year. The results are presented

in Table 3. At a significance level of 0.01, the PT, H-A, and F-R

models exhibited good correlation with the PM model’s standard

values. The average R2 for PT, H-A, and F-R models in typical

hydrological years were 0.852, 0.900, and 0.879 for Baoding, Xinji,
TABLE 1 Selection of typical hydrological years in some areas of the Haihe Plain region.

Study area Year Annual precipitation Cumulative frequency Hydrological year type

Baoding

2008 564.3 25% High flow year

2009 476.9 50% Median water year

1992 375.4 75% Low flow year

1997 301.3 90% Special dry year

Xinji

2004 543.9 25% High flow year

2010 459.3 50% Median water year

2007 387.8 75% Low flow year

2006 290.2 90% Special dry year

Handan

1993 541.9 25% High flow year

2014 506.6 50% Median water year

2006 345.2 75% Low flow year

2017 318.2 90% Special dry year
FIGURE 2

Typical hydrological year selection.
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and Handan, respectively. All three models had R2 > 0.8, indicating

better prediction effects at the monthly scale. However, the M-C

model showed an average R2 of 0.622, 0.607, and 0.554 in Baoding,

Xinji, and Handan, respectively, with R2 around 0.6, signifying

poorer prediction compared with other models. Simultaneously, in

each typical hydrological year, the F-R model consistently exhibits

smaller RMSE and MAE compared with the PT and H-A models.

Additionally, the WI is higher for the F-R model, indicating its

superior predictive performance for monthly ET0 values under

varying hydrological years.
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3.4 Comparative analysis of 10-day ET0
values for different typical hydrologic years

In Figure 5, the trends of 10-day ET0 values from the five

models across the three regions under various typical hydrological

years exhibit patterns resembling monotonically increasing and

decreasing parabolas. The overall trend indicates an increase from

January to around early July and a subsequent decrease from

around early July to the end of December, with peak values

occurring around early June to early July. Similar to the daily and
FIGURE 3

ET0 values of different models under typical hydrological year at daily scale.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1354913
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Sun et al. 10.3389/fpls.2024.1354913
monthly trends, the H-A model consistently produces higher ET0

results than the PM model throughout the year. In contrast, the PT

and F-R models consistently yield lower ET0 results than the PM

model throughout the year. The M-C model produces higher ET0

results than the PM model from mid-late June to early September,

and the remaining 10-day ET0 values are lower than those of the

PM model.

Using the PM model-calculated ET0 values as the standard, a

comparative analysis of 10-day ET0 values for the remaining four ET0
models is conducted under different typical hydrological years. At the

10-day scale, the results of the H-A model are slightly larger than the

standard value of the PMmodel, the results of the F-R model and the

PTmodel are slightly lower than the standard value of the PMmodel,

and the results of the other three models are relatively close to those

of the PM model except for the H-A model. The PM model and the

other four models were used to calculate the RMSE, MAE, and R2 for

each typical hydrological year, and their corresponding results were

analyzed. The results are shown in Table 4. At significance of 0.01, the

analytical results of the three models, PT, H-A, and F-R, have good

correlation with the standard values of the PM model, among which

the average coefficients of determination (R2) of the three models, PT,

H-A, and F-R, in typical hydrological years are 0.806, 0.835, and 0.840

in Baoding, Xinji, and Handan cities, respectively; 0.818, 0.885, and

0.851, respectively; and 0.743, 0.799, and 0.815 respectively. The R2 of
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the three models is >0.8, which proves that the three models have

better prediction effects at the decadal scale. In contrast, the average

coefficients of determination (R2) of the M-C model were 0.593,

0.560, and 0.521 in Baoding, Xinji, and Handan, respectively, with

R2< 0.6, and the model predicted poorly. Meanwhile, during each

typical hydrological year, the F-R model consistently demonstrates

smaller RMSE and MAE in comparison with the PT and H-A

models. Furthermore, the F-R model exhibits a higher WI,

implying superior predictive accuracy for 10-day ET0 values across

varying hydrological years.

In conclusion, among the three models analyzed (PT, H-A, and

F-R), all show predictive ability under different typical hydrological

years, excluding the M-C model. The PT model demonstrates good

correlation at daily, monthly, and 10-day scales across different

regions. Specifically, the daily scale R2 in Baoding, Xinji, and

Handan are 0.710, 0.707, and 0.644, respectively; the monthly

scale R2 are 0.852, 0.852, and 0.789, respectively; and the 10-day

scale R2 are 0.806, 0.818, and 0.743, respectively. The H-A model

exhibits better correlation at different scales with daily scale R2

values in Baoding, Xinji, and Handan of 0.703, 0.718, and 0.664,

respectively. The monthly scale R2 are 0.900, 0.924, and 0.857, while

the 10-day scale R2 are 0.835, 0.885, and 0.799. However, the H-A

model has larger RMSE and MAE values compared with the PT and

F-R models, indicating higher prediction errors.
TABLE 2 Comparison the performances of different models under typical hydrological year at daily scale.

Hydrological
year type

Evaporation
model

Baoding Xinji Handan

R2 RMSE MAE WI R2 RMSE MAE WI R2 RMSE MAE WI

High flow year

PM — — — — — — — — —

PT 0.637 1.886 1.554 0.670 0.659 2.082 1.659 0.698 0.626 2.385 1.784 0.672

H-A 0.600 5.222 4.226 0.485 0.660 5.178 4.225 0.551 0.649 5.045 4.068 0.607

M-C 0.359 2.115 1.714 0.731 0.415 2.073 1.668 0.774 0.455 2.107 1.666 0.803

F-R 0.685 1.227 0.891 0.853 0.707 1.312 0.958 0.874 0.606 2.856 2.515 0.723

Median water year

PM — — — — — — — — —

PT 0.755 2.483 1.839 0.680 0.722 2.099 1.705 0.691 0.612 2.611 1.957 0.632

H-A 0.747 4.965 4.050 0.661 0.711 4.929 3.945 0.587 0.663 5.211 4.235 0.611

M-C 0.566 2.056 1.649 0.856 0.500 2.262 1.792 0.795 0.553 2.028 1.633 0.848

F-R 0.799 1.626 1.103 0.867 0.753 1.356 0.975 0.868 0.585 2.373 1.990 0.781

Low flow year

PM — — — — — — — — —

PT 0.695 2.161 1.606 0.698 0.727 1.899 1.424 0.738 0.597 2.922 2.186 0.601

H-A 0.715 5.249 4.293 0.598 0.749 5.334 4.454 0.573 0.623 4.739 3.803 0.651

M-C 0.486 2.105 1.577 0.819 0.496 1.979 1.530 0.819 0.329 2.624 2.032 0.741

F-R 0.724 1.441 0.990 0.867 0.768 1.166 0.787 0.908 0.632 2.151 1.820 0.821

Special dry year

PM — — — — — — — — —

PT 0.754 2.721 2.052 0.669 0.719 2.174 1.665 0.700 0.742 2.473 1.931 0.684

H-A 0.751 4.978 4.036 0.675 0.751 5.093 4.208 0.605 0.719 5.181 4.223 0.631

M-C 0.591 2.231 1.736 0.859 0.511 2.052 1.600 0.827 0.547 2.259 1.746 0.836

F-R 0.784 1.876 1.277 0.837 0.757 1.384 0.935 0.880 0.751 2.172 1.840 0.834
f
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The F-Rmodel shows good correlation at different scales with daily

scale R2 values in Baoding, Xinji, and Handan of 0.748, 0.746, and

0.644, respectively. The monthly scale R2 are 0.879, 0.877, and 0.822,

while the 10-day scale R2 are 0.840, 0.851, and 0.815. Compared with

other models, the F-Rmodel demonstrates higher R2 values, along with

lower RMSE and MAE. Additionally, its WI is consistently higher

across various time scales. Consequently, the F-Rmodel shows superior

applicability in the Haihe Plain region, particularly after correction,

making it more suitable for predicting ET0 in this area.
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3.5 FAO-24 Radiation improvement

The Bayesian estimation method is utilized to iteratively infer

the empirical parameters a and b in the F-R model, leveraging

meteorological data from Baoding City (1991–2014), Xinji City

(2000–2016), and Handan City (1991–2014). The process entails

computing posterior distributions of coefficient b using prior data,

followed by iteratively calculating coefficient a by incorporating

adjusted b values into the prior data. This iterative procedure refines
FIGURE 4

ET0 values of different models under typical hydrological year at monthly scale.
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model parameters, enhancing the accuracy of ET0 estimation. The

specific procedure is as follows:

In accordance with the original F-R model, the two parameters

can be expressed as:

                          b =
ET0 − a

D
D+Υ Rs

            (11)

    a = ET0 − b
D

D + Υ
Rs (12)

(2) The distribution of b and a values follows a normal

distribution. The coefficient b was calibrated using Equations 11-13

using day-by-day meteorological data for a typical hydrological year.

 E =
aο

cd 2 + bQ 0:812cd 2 + 0:812
(13)

where E is the mathematical expectation, aο is the corresponding

initial value, and   Q̂   is the estimated mean as well as the variance d̂ 2 .

Following the same procedure, the mathematical expectation of a is

calculated by Equation 12 and Equation 13. The obtained expectations

of parameters b and a are substituted into the F-R model in order to

obtain the Calibrated F-R model as shown in Table 5.
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3.6 Validation of improved F-R model

Following Shiri et al.’s recommendation (Shiri et al., 2015),

validation with a distinct dataset was employed to ensure unbiased

results. The original and calibrated models were evaluated using

meteorological data from Baoding and Handan (2015–2019) and

Xinji (2017–2021). ET0 values were computed for both monthly and

10-day periods derived from the daily values.

After comparing the error analysis results in Table 6 and Table 7,

it is evident that under a significance level of P < 0.01, R2 remained

unchanged. However, Figure 6 shows significant decreases in RMSE

and MAE across daily, monthly, and 10-day scales, accompanied by

further improvements inWI. In Baoding City, Xinji City, and Handan

City, the average coefficients of determination (R2) at the daily scale

are 0.632, 0.746, and 0.693, respectively. At the monthly scale, the

average R2 values are 0.769, 0.871, and 0.905, respectively, and at the

10-day scale, the average R2 values are 0.790, 0.838, and 0.852,

respectively. There is good correlation at all three scales. Comparing

the ET0 values before and after modification, the modified F-R model

reduced RMSE by 15.81%, 29.51%, and 24.66% at the daily, monthly,

and 10-day scales, respectively. MAE decreased by 19.04%, 34.47%,

and 28.52% at the daily, monthly, and 10-day scales, respectively,

whileWI increased by 5.49%, 8.48%, and 10.78% at the daily, monthly,
TABLE 3 Comparison the performances of different models under typical hydrological year at monthly scale.

Hydrological
year type

Evaporation
Model

Baoding Xinji Handan

R2 RMSE MAE WI R2 RMSE MAE WI R2 RMSE MAE WI

High flow year

PM — — — — — — — — —

PT 0.804 1.642 1.579 0.646 0.836 1.773 1.754 0.676 0.791 2.029 1.835 0.667

H-A 0.855 5.065 4.198 0.406 0.923 4.982 4.196 0.471 0.870 4.820 4.026 0.550

M-C 0.493 1.785 1.611 0.720 0.552 1.648 1.467 0.783 0.581 1.671 1.439 0.826

F-R 0.840 0.905 0.768 0.864 0.865 0.893 0.773 0.901 0.892 2.399 2.311 0.705

Median water year

PM — — — — — — — — —

PT 0.842 2.162 1.920 0.674 0.888 1.825 1.726 0.673 0.764 2.240 1.985 0.652

H-A 0.886 4.816 4.014 0.614 0.919 4.757 3.886 0.530 0.831 5.002 4.207 0.566

M-C 0.641 1.685 1.476 0.866 0.650 1.910 1.724 0.799 0.645 1.671 1.450 0.862

F-R 0.874 1.271 0.994 0.881 0.909 0.998 0.883 0.887 0.822 1.883 1.660 0.811

Low flow year

PM — — — — — — — — —

PT 0.839 1.842 1.692 0.711 0.851 1.612 1.485 0.743 0.729 2.513 2.314 0.611

H-A 0.893 5.058 4.275 0.551 0.933 5.183 4.419 0.517 0.796 4.056 3.759 0.586

M-C 0.608 1.608 1.294 0.848 0.621 1.645 1.417 0.836 0.369 2.164 1.823 0.746

F-R 0.860 1.015 0.822 0.904 0.875 0.784 0.631 0.937 0.870 1.564 1.391 0.854

Special dry year

PM — — — — — — — — —

PT 0.925 2.325 2.172 0.687 0.835 1.897 1.759 0.697 0.873 2.153 1.990 0.689

H-A 0.964 4.772 4.006 0.635 0.922 4.932 4.192 0.546 0.932 4.955 4.188 0.580

M-C 0.745 1.768 1.510 0.883 0.603 1.712 1.334 0.837 0.619 1.878 1.552 0.836

F-R 0.942 1.398 1.173 0.867 0.861 1.029 0.780 0.902 0.943 1.807 1.727 0.832
f
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and 10-day scales, respectively. Therefore, the modified model can be

effectively used for calculating reference crop evapotranspiration in the

Haihe Plain region.
4 Discussion

This study compared and evaluated the applicability of four

evapotranspiration models—Priestley-Taylor (PT), Hargreaves (H-

A), Mc-Cloud (M-C), and FAO-24 Radiation (F-R)—that use
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incomplete meteorological data. The Penman-Monteith (PM)

model’s ET0 values were used as a benchmark for comparison.

Overall, the simulation results highlight the superior performance

of the F-R model among the four models.

The F-R model calculates ET0 mainly based on solar radiation

data (Hauser, Gimon, Horin, & TX, 1999), which mainly uses the

actual sunshine duration to obtain the solar magnetic declination,

the atmospheric upper boundary solar radiation, and thus further

the actual solar radiation. By analyzing the results of this study,

under the condition of incomplete meteorological data, the
FIGURE 5

ET0 values of different models under typical hydrological year at the ten-day scale.
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simulated values of the F-R model at three scales of daily, monthly,

and decadal under different typical hydrological years in three areas

of the Haihe Plain before the modification have good correlation

with the standard values of the PM model, and the results of the

error analyses are also satisfactory. By further correcting the F-R

model calculations, as shown in Table 6 and Table 7, the R2 of the

corrected F-R model did not change at a significance level of P <

0.01, whereas the RMSE and the MAE in the study area decreased

substantially. Therefore, the predictions of the modified F-R model

were more satisfactory and can be used for the calculation of ET of

local reference crops.
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The use of historical data for model calibration may lead to

instability over time due to changing climate conditions. To

address this, a suitable calibration method is essential. In this

study, the simulated values of the Penman-Monteith (PM) model

were employed as standards for the comparative analysis of four

models: Priestly-Taylor (PT), Hargreaves (H-A), Mc-Cloud (M-

C), and FAO-24 Radiation (F-R). The F-R model was identified as

the most suitable for the Haihe Plain region with incomplete

meteorological data. Considering geographical differences in the

original F-R model’s applicability, a modification was performed

using the Bayesian principle. This method utilizes known data as

the prior distribution and recalculates data as the new posterior

distribution, improving the reliability of the calculation by

overcoming empirical data uncertainty and considering spatial-

temporal variability. The Bayesian approach ensures a systematic

and adaptive calibration method, enhancing stability and

reliability in different scenarios. Beck et al. introduced Bayesian

theory into model correction for the first time and clarified the

basic idea of the correction (Beck and Katafygiotis, 1998), and also

put forward a kind of adaptive MH algorithm-based Markov chain

Monte Carlo method based on the MH algorithm (Beck and Au,

2002). Cheung et al. introduced and improved the hybrid Monte

Carlo (HMCMC) method to solve the problem of Bayesian model
TABLE 4 Comparison the performances of different models under typical hydrological year at 10-day scale.

Hydrological
year type

Evaporation
Model

Baoding Xinji Handan

R2 RMSE MAE WI R2 RMSE MAE WI R2 RMSE MAE WI

High flow year

PM — — — — — — — — —

PT 0.744 1.700 1.549 0.936 0.897 1.806 1.661 0.934 0.752 2.120 1.781 0.919

H-A 0.739 5.103 4.205 0.422 0.944 5.014 4.199 0.490 0.809 4.852 4.025 0.575

M-C 0.466 1.875 1.617 0.729 0.718 1.748 1.559 0.777 0.522 1.823 1.584 0.814

F-R 0.787 0.980 0.780 0.862 0.916 0.940 0.803 0.902 0.831 2.463 2.313 0.723

Median water year

PM — — — — — — — — —

PT 0.822 2.239 1.836 0.920 0.840 1.887 1.708 0.930 0.711 2.342 1.946 0.910

H-A 0.854 4.830 4.017 0.629 0.881 4.779 3.891 0.549 0.766 5.059 4.214 0.582

M-C 0.634 1.770 1.520 0.868 0.597 2.022 1.751 0.794 0.625 1.735 1.521 0.863

F-R 0.861 1.352 1.001 0.879 0.871 1.074 0.891 0.882 0.734 2.024 1.792 0.801

Low flow year

PM — — — — — — — — —

PT 0.777 1.980 1.601 0.935 0.816 1.680 1.426 0.952 0.671 2.647 2.192 0.869

H-A 0.814 5.095 4.273 0.571 0.885 5.215 4.417 0.533 0.739 4.548 3.759 0.614

M-C 0.566 1.733 1.404 0.842 0.567 1.741 1.446 0.826 0.341 2.319 1.929 0.738

F-R 0.809 1.190 0.869 0.886 0.848 0.872 0.634 0.931 0.789 1.715 1.557 0.846

Special dry year

PM — — — — — — — — —

PT 0.882 2.416 2.048 0.912 0.809 0.352 1.671 0.932 0.835 2.238 1.937 0.921

H-A 0.935 4.800 4.007 0.652 0.881 1.123 4.190 0.566 0.884 4.995 4.194 0.608

M-C 0.705 1.877 1.591 0.877 0.562 0.021 1.497 0.830 0.596 2.016 1.634 0.835

F-R 0.903 1.509 1.175 0.858 0.844 0.166 0.813 0.898 0.907 1.862 1.730 0.844
f

TABLE 5 F-R correction model.

Study
area

a b Calibrated
F-R model

Baoding 0.15 0.74 ET0 = 0:15 + 0:74
D

D + Υ
Rs

� �

Xinji 0.13 0.69 ET0 = 0:13 + 0:69
D

D + Υ
Rs

� �

Handan 0.21 0.33 ET0 = 0:21 + 0:33
D

D + Υ
Rs

� �
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correction for high-dimensional uncertainty parameters (Cheung

and Beck, 2009). Currently, there is a recommended application

of the modified Hargreaves model using Bayesian estimation

method to calculate the ET of de-measured reference crops in

the Sichuan Basin area (Feng et al., 2017). The modification of the
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F-R model using the Bayesian principle in the experimental area

ensures the model’s applicability, providing a more accurate ET0

calculation. This enhanced model can serve as a scientific

foundation for future farmland moisture management in the

Haihe Plain area.
TABLE 6 Error analysis of the original F-R model.

Study area Year Daily scale Monthly scale Ten-day scale

R2 RMSE MAE WI R2 RMSE MAE WI R2 RMSE MAE WI

Baoding

2015 0.652 1.625 1.103 0.801 0.782 1.219 0.973 0.825 0.877 1.321 1.006 0.862

2016 0.609 1.580 1.097 0.781 0.725 1.321 0.956 0.788 0.849 1.363 0.991 0.823

2017 0.670 1.774 1.191 0.778 0.859 1.374 1.065 0.809 0.812 1.465 1.085 0.837

2018 0.630 1.575 1.060 0.824 0.778 1.097 0.908 0.856 0.727 1.211 0.965 0.888

2019 0.600 1.600 1.200 0.822 0.701 1.247 0.972 0.859 0.673 1.337 1.065 0.887

Xinji

2017 0.805 1.250 0.906 0.906 0.926 0.856 0.706 0.934 0.894 0.963 0.789 0.945

2018 0.743 1.267 0.910 0.894 0.880 0.798 0.670 0.934 0.849 0.894 0.685 0.945

2019 0.771 1.323 0.881 0.886 0.876 0.979 0.675 0.912 0.852 1.055 0.717 0.927

2020 0.754 1.179 1.145 0.910 0.903 1.023 0.658 0.960 0.856 1.050 0.700 0.957

2021 0.656 1.260 1.120 0.861 0.768 0.896 0.773 0.898 0.741 0.925 0.760 0.917

Handan

2015 0.675 2.043 1.699 0.842 0.909 1.465 1.345 0.874 0.810 1.677 1.490 0.778

2016 0.693 2.327 1.989 0.782 0.885 1.999 1.884 0.765 0.848 2.062 1.895 0.548

2017 0.751 2.172 1.845 0.834 0.943 1.807 1.727 0.832 0.907 1.869 1.741 0.715

2018 0.664 2.252 1.923 0.804 0.890 1.814 1.685 0.800 0.838 1.886 1.688 0.637

2019 0.681 1.985 1.660 0.853 0.896 1.408 1.290 0.897 0.856 1.492 1.345 0.837
frontier
TABLE 7 Error analysis of the calibrated F-R model.

Study area Year Daily scale Monthly scale Ten-day scale

R2 RMSE MAE WI R2 RMSE MAE WI R2 RMSE MAE WI

Baoding

2015 0.652 1.334 0.968 0.894 0.782 0.806 0.598 0.939 0.877 0.904 0.717 0.936

2016 0.609 1.305 0.939 0.877 0.725 0.898 0.748 0.918 0.849 0.939 0.759 0.916

2017 0.670 1.361 0.990 0.894 0.859 0.733 0.662 0.955 0.812 0.887 0.700 0.940

2018 0.630 1.451 1.060 0.887 0.778 0.888 0.670 0.929 0.727 1.017 0.799 0.921

2019 0.600 1.600 1.200 0.872 0.701 1.197 0.901 0.905 0.673 1.282 0.924 0.896

Xinji

2017 0.805 1.106 0.816 0.944 0.926 0.632 0.512 0.973 0.894 0.746 0.570 0.967

2018 0.743 1.251 0.900 0.923 0.880 0.762 0.499 0.954 0.849 0.856 0.637 0.950

2019 0.771 1.121 0.833 0.936 0.876 0.686 0.506 0.966 0.852 0.783 0.600 0.960

2020 0.754 1.117 0.934 0.918 0.903 0.934 0.674 0.945 0.856 1.042 0.736 0.939

2021 0.656 1.260 0.965 0.882 0.768 0.871 0.687 0.928 0.741 0.939 0.707 0.915

Handan

2015 0.675 1.728 1.218 0.822 0.909 0.939 0.656 0.914 0.810 1.324 0.904 0.862

2016 0.693 1.288 1.036 0.876 0.885 0.691 0.629 0.943 0.848 0.810 0.689 0.930

2017 0.751 1.365 1.014 0.886 0.943 0.667 0.547 0.958 0.907 0.854 0.668 0.941

2018 0.664 1.462 1.019 0.857 0.890 0.680 0.415 0.947 0.838 0.856 0.605 0.925

2019 0.681 1.884 1.244 0.801 0.896 1.296 0.811 0.866 0.856 1.416 0.967 0.853
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Different types of models have different sensitivities to

meteorological data and are adapted to different regions. The PT

model does not require wind speed and humidity data (Priestley and

Taylor, 1972), and by comparing with the standard values of the PM
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model, the overall PTmodel simulation values are lower than those of

the PMmodel, and the three scales of daily, monthly, and decadal are

all well correlated under different typical hydrological years in the

three regions of the Haihe Plain, and the error analysis. The results
A

B

C

FIGURE 6

The comparisons of RMSE, MAE, and WI before and after the F-R model calibrated; (A) RMSE; (B) MAE; (C) WI.
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are relatively satisfactory. It can be used to calculate the ET0 in the

Haihe Plain if the error is within the allowable range. In contrast to

the PM model method for calculating reference ET, the PT model

ignores the effect of water vapor deficit on reference ET, thus

generating the assumption that ET0 depends only on solar

radiation and temperature (Wu et al., 2021). This allows for PT

modeling where PM modeling is not possible due to lack of data

(Utset et al., 2004). It has been demonstrated that the simple and less

data-demanding PT model is a good choice in many climatic regions

(Jamieson, 1982; Pereira and Nova, 1992; Sau et al., 2004).

The M-C model is a simplified calculation method of ET0 based

on temperature (McCloud, 1955), which just uses the daily mean

temperature as meteorological data, and by comparing with the

standard value of PMmodel, the correlation of this model is low, R2

< 0.6, indicating that this model is not good at predicting in the sea–

river plain area. However, the M-C model is based on the daily

mean air temperature, which is easy to calculate and especially

suitable for areas with large differences in temperature variations

(Valipour, 2015). The H-A model is suitable for the lack of radiative

data and just uses the daily mean air temperature, daily maximum

and daily minimum air temperature, and the atmospheric upper

boundary solar radiation calculated through the daily ordinate. The

simulated values of this model are compared with the PM model.

The model simulated values are compared with the standard values

of the PM model, and although there is a high correlation, the

results of the error analysis are less satisfactory, with larger values of

RMSE and MAE, and the model is not effective in predicting in the

test area. However, many studies have confirmed that the H-A

model is also a good predictor in some regions, and model

optimization is continuously performed to better adapt to climate

change (Gavilán et al., 2006; Tabari and Talaee, 2011; Berti et al.,

2014; Cobaner et al., 2017). These calibrations are site-specific and

cannot be extrapolated to some sites with completely different

meteorological conditions.

This study warrants further validation, especially considering

the absence of measured ET0 data. While the PM model served as

the standard for calibrating the F-R model based on Bayesian

theory, it is essential to verify the conclusions with measured

data. Relying solely on model calculations, as highlighted by

Martı ́ et al (Martı ́ et al., 2015), may yield unreasonable or

incorrect conclusions. Therefore, incorporating measured ET0

data from lysimeters for calibration and evaluation is crucial.

Moreover, while Bayesian theory allows for updating model

parameters based on new sample data, it is important to note that

this method is purely mathematical and overlooks the physical basis

of the evapotranspiration process. Consequently, future research

should emphasize calibrating the model using measured solar

radiation data to enhance its accuracy.
5 Conclusions

In this study, we conducted a comparative analysis of four

evapotranspiration models using incomplete meteorological data

across various hydrological conditions to enhance ET0 estimation

accuracy. The results revealed consistent spatial distribution trends
Frontiers in Plant Science 15
among the models, with the F-R model demonstrating superior

accuracy and predictive performance, particularly in terms of R2

and WI. Furthermore, the calibrated F-R model, refined through

Bayesian theory, achieved higher accuracy, with R2 reaching 0.85

andWI reaching 0.9. The calibrated FAO-24 Radiation model offers

valuable insights for precise ET0 estimation and irrigation decision-

making in the Haihe Plain region, suggesting avenues for further

accuracy improvements in future research.
Data availability statement

The original contributions presented in the study are included

in the article/supplementary material. Further inquiries can be

directed to the corresponding authors.
Author contributions

XS: Writing – review & editing, Writing – original draft,

Visualization, Validation, Formal analysis, Data curation. BZ:

Writing – original draft, Methodology, Data curation. MD:

Visualization, Writing – original draft. RG: Writing – original

draft, Visualization. CJ: Writing – original draft, Formal analysis.

KM: Writing – original draft, Visualization. SG: Writing – original

draft, Methodology. LG: Writing – review & editing, Supervision,

Funding acquisition. WZ: Writing – review & editing, Supervision,

Funding acquisition. XG: Methodology, Writing – review &

editing, Supervision.
Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. This

material is based on work supported by the Key R&D projects in

Hebei Province (22326406D, 21327001D) and Foundation of State

Key Laboratory of North China Crop Improvement and Regulation

(NCCIR2021ZZ-24).
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1354913
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Sun et al. 10.3389/fpls.2024.1354913
References
Akumaga, U., and Alderman, P. D. (2019). Comparison of penman–monteith and
priestley-taylor evapotranspiration methods for crop modeling in Oklahoma. Agron. J.
111, 1171–1180. doi: 10.2134/agronj2018.10.0694

Alam, M. M., Akter, M. Y., Islam, A. R. M. T., Mallick, J., Kabir, Z., Chu, R., et al.
(2024). A review of recent advances and future prospects in calculation of reference
evapotranspiration in Bangladesh using soft computing models. J. Environ. Manage.
351, 119714. doi: 10.1016/j.jenvman.2023.119714

Allen, R. G. (1998). Crop Evapotranspiration-Guideline for computing crop water
requirements. Irrigation drain 56, 300.

Allen, R. G., Pruitt, W. O., Wright, J. L., Howell, T. A., Ventura, F., Snyder, R., et al.
(2006). A recommendation on standardized surface resistance for hourly calculation of
reference ETo by the FAO56 Penman-Monteith method. Agric. Water Manage. 81, 1–
22. doi: 10.1016/j.agwat.2005.03.007

Almorox, J., Quej, V. H., and Martı,́ P. (2015). Global performance ranking of
temperature-based approaches for evapotranspiration estimation considering Köppen
climate classes. J. Hydrology 528, 514–522. doi: 10.1016/j.jhydrol.2015.06.057

Beck, J. L., and Au, S.-K. (2002). Bayesian updating of structural models and
reliability using Markov chain Monte Carlo simulation. J. Eng. mechanics 128, 380–
391. doi: 10.1061/(ASCE)0733-9399(2002)128:4(380)

Beck, J. L., and Katafygiotis, L. S. (1998). Updating models and their uncertainties. I:
Bayesian statistical framework. J. Eng. mechanics 124, 455–461. doi: 10.1061/(ASCE)
0733-9399(1998)124:4(455)

Berti, A., Tardivo, G., Chiaudani, A., Rech, F., and Borin, M. (2014). Assessing
reference evapotranspiration by the Hargreaves method in North-Eastern Italy. Agric.
Water Manage. 140, 20–25. doi: 10.1016/j.agwat.2014.03.015

Boretti, A., and Rosa, L. (2019). Reassessing the projections of the world water
development report. NPJ Clean Water 2, 15. doi: 10.1038/s41545-019-0039-9

Cheung, S. H., and Beck, J. L. (2009). Bayesian model updating using hybrid Monte
Carlo simulation with application to structural dynamic models with many uncertain
parameters. J. Eng. mechanics 135, 243–255. doi: 10.1061/(ASCE)0733-9399(2009)
135:4(243)

Chia, M. Y., Huang, Y. F., Koo, C. H., and Fung, K. F. (2020). Recent advances in
evapotranspiration estimation using artificial intelligence approaches with a focus on
hybridization techniques—a review. Agronomy 10, 101. doi: 10.3390/
agronomy10010101

Choi, Y., Kim, M., O'Shaughnessy, S., Jeon, J., Kim, Y., and Song, W. J. (2018).
Comparison of artificial neural network and empirical models to determine daily
reference evapotranspiration. J. Korean Soc. Agric. Engineers 60, 43–54. doi: 10.5389/
KSAE.2018.60.6.043
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Yamaç, S. S. (2021). Reference evapotranspiration estimation with kNN and ANN
models using different climate input combinations in the semi-arid environment. J.
Agric. Sci. 27 (2), 129–137. doi: 10.15832/ankutbd.630303

Yong, S. L. S., Ng, J. L., Huang, Y. F., and Ang, C. K. (2023a). Estimation of
reference crop evapotranspiration with three different machine learning models
and limited meteorological variables. Agronomy 13, 1048. doi: 10.3390/
agronomy13041048

Yong, S. L. S., Ng, J. L., Huang, Y. F., Ang, C. K., Mirzaei, M., and Ahmed, A. N.
(2023b). Local and global sensitivity analysis and its contributing factors in reference
crop evapotranspiration. Water Supply 23, 1672–1683. doi: 10.2166/ws.2023.086

Zhang, J., Guan, K., Peng, B., Jiang, C., Zhou, W., Yang, Y., et al. (2021). Challenges
and opportunities in precision irrigation decision-support systems for center pivots.
Environ. Res. Lett. 16, 053003. doi: 10.1088/1748-9326/abe436
frontiersin.org

https://doi.org/10.1016/j.compag.2015.07.010
https://doi.org/10.1016/j.compag.2015.07.010
https://doi.org/10.1007/BF00650553
https://doi.org/10.1061/(ASCE)HE.1943-5584.0000366
https://doi.org/10.1016/j.agwat.2010.01.002
https://doi.org/10.1016/j.agwat.2023.108331
https://doi.org/10.1016/j.agwat.2003.12.003
https://doi.org/10.1007/s00704-014-1240-x
https://doi.org/10.1016/j.geosus.2021.09.002
https://doi.org/10.1016/j.agwat.2018.04.040
https://doi.org/10.15832/ankutbd.630303
https://doi.org/10.3390/agronomy13041048
https://doi.org/10.3390/agronomy13041048
https://doi.org/10.2166/ws.2023.086
https://doi.org/10.1088/1748-9326/abe436
https://doi.org/10.3389/fpls.2024.1354913
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

	Research on methods for estimating reference crop evapotranspiration under incomplete meteorological indicators
	1 Introduction
	2 Materials and methods
	2.1 Overview of the study area
	2.2 Data preparation
	2.3 Selection of typical hydrological years
	2.4 ET0 calculation method
	2.5 Modifying evapotranspiration models using Bayesian estimation
	2.6 Model performance statistics

	3 Results and analysis
	3.1 Selection of hydrological year
	3.2 Comparative analysis of daily ET0 values for different typical hydrologic years
	3.3 Comparative analysis of monthly ET0 values for different typical hydrologic years
	3.4 Comparative analysis of 10-day ET0 values for different typical hydrologic years
	3.5 FAO-24 Radiation improvement
	3.6 Validation of improved F-R model

	4 Discussion
	5 Conclusions
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References


