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Introduction: Field wheat ear counting is an important step in wheat yield

estimation, and how to solve the problem of rapid and effective wheat ear

counting in a field environment to ensure the stability of food supply and provide

more reliable data support for agricultural management and policy making is a

key concern in the current agricultural field.

Methods: There are still some bottlenecks and challenges in solving the dense

wheat counting problem with the currently available methods. To address these

issues, we propose a new method based on the YOLACT framework that aims to

improve the accuracy and efficiency of dense wheat counting. Replacing the

pooling layer in the CBAM module with a GeM pooling layer, and then

introducing the density map into the FPN, these improvements together make

our method better able to cope with the challenges in dense scenarios.

Results: Experiments show our model improves wheat ear counting

performance in complex backgrounds. The improved attention mechanism

reduces the RMSE from 1.75 to 1.57. Based on the improved CBAM, the R2

increases from 0.9615 to 0.9798 through pixel-level density estimation, the

density map mechanism accurately discerns overlapping count targets, which

can provide more granular information.

Discussion: The findings demonstrate the practical potential of our framework

for intelligent agriculture applications.
KEYWORDS

counting wheat ears, instance segmentation, density map, CBAM, GeM pooling
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fpls.2024.1354428/full
https://www.frontiersin.org/articles/10.3389/fpls.2024.1354428/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2024.1354428&domain=pdf&date_stamp=2024-05-01
mailto:YaoWei-hebau@hotmail.com
https://doi.org/10.3389/fpls.2024.1354428
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2024.1354428
https://www.frontiersin.org/journals/plant-science


Zhang et al. 10.3389/fpls.2024.1354428
1 Introduction

China is a populous country, a chronic shortage of food, and a

supply that is significantly smaller than the demand is the main

feature of the food market in China at this stage. As one of China’s

major food crops, wheat plays an important role in ensuring food

supply. In order to ensure national food security and cope with the

fluctuation of wheat consumption on the market, it is necessary to

predict the production of wheat in advance and formulate

corresponding measures and policies in order to keep the market

stable and meet people’s daily needs. Therefore, accurate estimation

of wheat production is important to meet the growing demand for

food, promote sustainable development of agriculture, and

maintain national food security. Field wheat ear counting is an

important step in wheat yield estimation, and how to solve the

problem of rapid and effective wheat ear counting in a field

environment to ensure the stability of food supply and provide

more reliable data support for agricultural management and policy

making is a key concern in the current agricultural field.

In the early days, traditional manual measurement methods

required manual counting along the wheat field, which was slow,

susceptible to human bias, and inefficient. Some methods are available

to evaluate crops in an experimental setting (Bi et al., 2010; Kun et al.,

2011; Qiongyan et al., 2017), but this ignores the effect of the complex

context of the natural environment on the effectiveness of the

evaluation. Image processing techniques have been used for wheat

ears recognition, but the methods mainly focus on texture features

(Anubha Pearline et al., 2019; Pérez-Rodrıǵuez and Gomez-Garcıá,

2019), color segmentation, morphology extraction and other feature

extraction methods. Feature extraction relies on manually designed

feature extractors, which are suitable for application to some specific

scenarios, so their generalization ability is poory.

With the rise of machine learning, in order to improve the

accuracy and robustness of recognition, researchers use

classification techniques such as support vector machines for

wheat counting. (Zhou et al., 2023) used a feature selection

algorithm based on the principle of compact separation (FS-CS)

to filter spectral and textural features extracted from time-series

UAV images, and a multilevel correlation vector machine (mRVM)

to classify the main phenological stages, which was tested in wheat

fields during two experimental seasons, and the experimental

results showed that the best estimation was generated with the

use of FS-CS and mRVM when the number of optimal features was

small. (Bao et al., 2023) in order to improve the accuracy of wheat

yield estimation, a wheat ears count method based on frequency

domain decomposition is proposed. A combination of multi-scale

support value filter (MSVF) and improved sampling contour

transform (ISCT) is used to decompose the wheat ears image in

the frequency domain, reduce the interference of irrelevant

information, and generate a subband image with richer

information components in the ear feature information, and

experiments show that compared with the traditional algorithm

based on the spatial domain, the method significantly improves the

accuracy of the wheat ears number, and provides the field of

accurate agricultural yield estimation provide guidance and

application. All of the above methods use data labeling, but it is
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labor intensive, so the researchers again proposed unsupervised

segmentation of the wheat ear. For example (Xu et al., 2020) used k-

mean clustering technique to automatically segment the images of

wheat ears counts collected by handheld devices for fast and

accurate wheat ears counts, and the recognition rate of wheat

reached up to 98.5%. Machine learning is able to learn target

features from given data to achieve better recognition, so the

accuracy of target feature selection determines the effectiveness of

this type of method, but it needs to be determined by the researcher

to determine the target features, which is subjective.

In recent years, deep learning has developed rapidly and has

proven to have significant advantages in the field of machine vision,

especially the application of convolutional neural network (CNN)

(Gu et al., 2018) in image analysis is starting to become mainstream,

such as image segmentation and target recognition (Jo et al., 2019;

Zhu et al., 2019). Deep learning techniques have achieved great

success in image recognition, natural language processing, and time

series analysis. In agriculture, these techniques can be applied for

identifying diseases, predicting crop growth, optimizing agricultural

production processes, etc., thus improving the efficiency and quality

of agricultural production. Deep learning methods are gradually

being used by most researchers to solve agricultural problems.

Nowadays, wheat ears detection algorithms have received

extensive research and attention. One of them (Zhao et al., 2022)

introduced a wheat ears detection algorithm based on the improved

YOLOv4 algorithm. In order to enhance the receptive field, an

additional spatial pyramid pool (SPP) block was added to YOLOv4

in the feature fusion part to extract multi-scale features. In order to

make more full use of the underlying information and to solve the

problem of poor detection of wheat ears, (Sun et al., 2022a)

proposes a wheat ears counting method based on the augmented

feature pyramid network of convolutional neural network, which

utilizes augmented feature pyramid network (AugFPN) for raw

information to perform Adaptive convergence makes full use of the

underlying information to solve the problem of poor detection of

wheat ears. Experiments on test set images show that the method

has an average error rate of 3.7% and an AP of 95.17%, which is

significantly better than other state-of-the-art methods. (Li et al.,

2022) an image wheat counting method based on Faster R-CNN

algorithm and applied to genetic research, realizes the automatic

counting of wheat images and applies the method to the task of

wheat counting in genetic research. The experimental results show

that the method can effectively perform wheat ears counting and

has some application value in genetic research. (Shen et al., 2023b)

proposes an enhanced YOLOv5 algorithm incorporating separable

convolution and attention mechanisms to cope with the challenges

posed by different wheat varieties, planting densities, lighting

conditions and complex backgrounds. Compared with YOLOv5,

the improved algorithm achieves 4.2% improvement in mAP and

1.3% improvement in FPS, and outperforms other YOLO series

algorithms and mainstream detection algorithms in processing

high-resolution images. These methods achieve accurate counting

of wheat ears through deep learning techniques, which improves the

accuracy and robustness of wheat ear detection.

On the other hand, some researches have introduced the attention

mechanism to improve the wheat detection algorithm. To address the
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problem of vanishing gradients during training (Li and Wu, 2022)

adding quadruple downsampling in YOLOv5 to improve the detection

effect of small targets and adding the CBAM attention mechanism in

the backbone network to solve the gradient disappearance problem

during the training process, and the results show that, compared with

the other methods, the model has a mAP of 94.3%, an accuracy of

88.5% and a recall of 98.1%, which is an obvious improvement. For

rapid detection of wheat (Zhaosheng et al., 2022) proposes a fast

method for wheat ears orthophoto detection based on YOLOX

algorithm for UAV aerial photography, which adds a channel

attention mechanism in the backbone and necks a Bidirectional

Convolutional Block Attention Module (BiFPN) structure, which

uses learnable weights to learn the importance of different input

features. Experimental results show that the method exhibits good

accuracy and efficiency in the task of wheat sheaf detection in aerial

wheat field images, providing a fast and feasible solution for wheat

sheaf detection in aerial UAV wheat fields. (Sun et al., 2022b)

introduced a high-performance wheat ears detection method based

on WDN (one-stage detection network), by adding an attention

module and a feature fusion module to the structural backbone

network, the authors realized a high-precision detection of wheat

ears, and the mAP metrics of the WDN model outperformed the

other models, reaching 90.3%. (Dong et al., 2022) utilized lightweight

backbone network with asymmetric convolution for feature extraction,

after which SPSA attention was used to select the focusing location and

generate more discriminative feature representations. The method

introduces both spatial and channel dimensions to the polarized self-

attention and employ disordered cells to effectively combine these two

attention mechanisms. Experimental results on Global Wheat

Detection Data (GWHD) show that the proposed methods have

better detection performance compared to other state-of-the-art

methods. By introducing the attention mechanism, these methods

are able to better focus on important regions of the wheat ears let,

improving detection accuracy, speed and adaptability. Therefore, these

improved methods provide a useful exploration and development

direction for the research and application of wheat ears

detection algorithms.

Some researchers have begun to use deep learning architectures

to improve the accuracy of segmentation-based wheat counting,

(Zaji et al., 2022) proposes a method for wheat ears localization and

counting using a hybrid UNet architecture. The method makes full

use of the encoder-decoder architecture and jump connections to

achieve accurate ear localization and counting by performing

effective feature extraction and contextual information transfer to

wheat ears. (Ma et al., 2020) proposes a semantic segmentation

method for accurate segmentation of winter wheat, and its method

uses the encoder-decoder structure and extended convolution, with

a segmentation quality of 0.7743, an F1 score of 87.25%, and a

structural similarity index of 0.8773, which is better than the

comparison method. (Zhang et al., 2022) proposes the automatic

dense wheat ears segmentation method named Wheat-Net, which

adopts an optimized hybrid cascade task model, and achieves a

high-density and accurate segmentation of wheat ears through a

multi-stage cascade structure and an attention mechanism,

providing an automated solution for wheat ears segmentation.

These studies have made significant progress toward accurate and
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efficient wheat ears segmentation, paving the way for improved

agricultural research and crop yield estimation. To effectively deal

with adhesion, (Shen et al., 2023a) proposes an improved Mask R-

CNN-based algorithm for unsound wheat kernel segmentation,

which achieves faster and more accurate unsound kernel

recognition by means of a bottom-up feature pyramid network

and by adding an Attention Mechanism (AM) module between the

feature extraction network and the pyramid network, and at the

same time effectively handles the sticking problem to achieve an

accuracy of 86% and a recall of 91%. The inference time of this

model on the test set is 7.83 seconds, which is significantly better

than other segmentation models and provides an important

foundation for wheat grading. Deep learning does not rely on

manual feature extraction and has a very strong learning

capability that improves the accuracy and robustness of

wheat counting.

However, there are still some bottlenecks and challenges in

solving the dense wheat counting problem with the currently

available methods. The dense target counting problem has many

difficulties. In dense scenes, targets often occlude each other, which

may result in some of them not being fully detected or accurately

counted. In addition, the shapes of dense targets are often irregular,

which increases the complexity of detection and counting.

Conventional detection and counting methods may perform

poorly when facing these situations. Complex background

environments are also a challenge, as some background elements

may be incorrectly recognized as targets, leading to false detections.

Therefore, dense target counting methods need to be highly

adaptable and able to cope with scenarios of varying densities and

complexities in order to improve the accuracy and robustness

of counting.

To address these issues, we propose a new method based on the

YOLACT (Bolya et al., 2019) framework that aims to improve the

accuracy and efficiency of dense wheat counting. The pooling layer

in the CBAM (Woo et al., 2018) module is replaced with the GeM

pooling layer so that the model learns the features better and retains

the spatial information of the features better. Then the density map

is introduced into the Feature Pyramid Networks(FPN), and the

feature maps of different scales output by the FPN are converted

into density maps of the same dimensions and combined with the

Protonet head to further improve the accuracy of the detection

results. The Protonet branch is linearly combined with additional

prediction head networks to generate the final mask.

Our proposed YOLACT-based method has significant potential

for the dense target counting problem, and these improvements

work together to make our method better able to cope with the

challenges in dense scenarios and improve the effectiveness and

reliability of wheat counting. In the next sections, we describe our

method in detail as well as the experimental results.

In summary, our contributions in this paper are as follows:
1) We introduce the CBAM attention module in the backbone

network of YOLACT. This module helps increase the

model’s attention to features, thus improving the

performance of dense target counting. We replace the

pooling layer in the CBAM module with the GeM
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Fron
pooling layer, which provides more flexibility and allows

better capture of target features, especially in dense scenes.

By adjusting the hyperparameters of GeM pooling, we

enable adaptive pooling according to different densities of

the target scene, improving the feature representation.

2) To cope with the dense target counting problem, we

introduce the density map mechanism. By applying loss

to the feature map and performing back propagation, our

method better understands the target distribution,

especially in dense scenes. This mechanism reduces

leakage and false detection, improving the accuracy

of counting.

3) Experiments on the GWHD, WEDD, and ESD datasets

validate our method’s effectiveness in dense wheat ear

counting, achieving mAP scores of 64.41%, 61.62%, and

65.31%, respectively. Our approach enables accurate target

capture in dense scenes and significantly improves counting

performance compared to existing methods.
2 Materials and methods

2.1 Materials

2.1.1 Data collection
In this study, three datasets were used to validate the performance

of the model, including two public datasets and one self-built dataset

named Experimental Station Dataset(ESD). The Global Wheat

Detection Dataset (GWHD) (David et al., 2021), containing 6500

RGB images (1024 × 1024 pixels) and 275187 wheat heads from 16

institutions distributed in 12 countries, including Europe (France,

UK, Switzerland), North America (Canada), Oceania (Australia) and
tiers in Plant Science 04
Asia (Japan, China). The images collected vary widely, including

different varieties, different collection methods and different growing

conditions. Therefore the wheat samples in this dataset are diverse

and typical. See Table 1 for specific information. Another public

dataset is the Wheat Ears Density Dataset(WEDD) (Madec et al.,

2019), containing 240 RGB images, was collected from Gréoux-les-

Bains (France, 43.7°N, 5.8°E) using a 6000 x 4000 pixel Sony ILCE-

6000 digital camera, taken from the direction of the lowest point view

at 2.9 m above the ground. Ground sampling distances ranged

between 0.010 - 0.016 cm/pixel, and the area of individual images

ranged between 0.25 m² and 0.56 m².

To verify the generalization ability of the wheat counting model,

we also acquired wheat images in the field. The acquisition site was

Xinji Experimental Station (ES,37°4’N, 115°1’E) of Hebei Agricultural

University, with a field trial area of 0.1ha, and a two-factor split-zone

test set up for irrigation and nitrogen application. The irrigation

standard was the crop water requirement (CWR) calculated based on

the Cropwat model, with normal irrigation (100% CWR, denoted by

W100), mild water stress (The irrigation rate and N application rate

were orthogonal to each other), and each plot was sampled three

times and the results were averaged. During shooting, the equipment

was positioned perpendicular to the ground at a 90-degree angle,

approximately one meter above the ground. Images with obvious

defects or blurriness were excluded to ensure the quality of the

training data. The original image resolution was 4624 × 3472 pixels,

which was then uniformly cropped to 1024×1024 pixels. In the end,

216 high-quality images of wheat ears were obtained.

We selected 1000 images from the GWHD dataset, 230 images

from the WEDD dataset, and 216 images from the ESD, processed

them to the same resolution of 1024 x 1024, and divided the

processed dataset into training, validation, and test sets in an

8:1:1 ratio, ensuring a balanced and representative distribution for

each set. A sample dataset is shown in Figure 1.
TABLE 1 Dataset information.

Sub-
dataset

Country YEAR Lat Long Camera Distance to ground (m)

UTokyo_1 Japan 2018 36.0 N 140.0 E 2*Canon G9 X mark II 1.8

UTokyo_2 Japan 2016 42.8 N 143.0 E 2*Olympus 850Sony DSC-HX90V 1.7

Arvalis_1 France 2017 43.7 N 5.8 E Sony alpha ILCE-6000 2.9

Arvalis_2 France 2019 43.7 N 5.8 E Sony RX0 1.8

INRAE_1 France 2019 43.5 N 1.5 E Sony RX0 1.8

USask_1 Canada 2019 52.1 N 106 W FLIR Chameleon3 USB3 2

RRes_1 UK 2016 51.8 N 0.36 W Prosilica GT 3300 Allied Vision 2.2

ETHZ_1 Switzerland 2018 47.4 N 8.6 E Canon EOS 5D mark II 3

NAU_1 China 2018 31.6 N 119.4 E Sony RX0 2

UQ_1 Australia 2016 27.5 S 152.3 E Canon 550D 2

WEDD France 2017 43.7 N 5.8 E Sony ILCE-6000 2.9

ESD China 2022 37.4 N 115.1 E Redmi K40 Pro 1
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2.1.2 Data annotation
In this paper, we use labelme (https://github.com/wkentaro/

labelme) annotation software to annotate the dataset. The outline of

each wheat ears is marked into a polygon by manual annotation,

and the outlines of all wheat ears in each image are marked as their

groundtruth labels. After that, the corresponding JSON files were

generated, which included information such as the location and

species label of each instance. After processing the dataset is stored

in the format of COCO dataset.

2.1.3 Generation of density maps
The feature maps of different scales output by Feature Pyramid

Networks (FPN) (Lin et al., 2017) are converted into density maps of

the same scale. The process of generating a density map usually

consists of the following steps: first, for each target, the (x,y)

coordinates of the center of the target are obtained by obtaining

the annotation information of the json file to determine its precise

location; then, for each target, a Gaussian distribution centered on the

target location is created on the density map, and these Gaussian

distributions are superimposed on top of each other, and this

superposition process maps the information about the distribution

of the successive targets onto the density map. Map resulting in a

density map used to more accurately characterize the distribution of

targets in the image, with the value of each pixel indicating the density

estimate of the presence of a target in the vicinity of that location and

the generation formula is as shown in Equation 1:

D(a, b) =o
N

i=1

1
2ps2 exp   −

(a − ai)
2 + (b − bi)

2

2s 2

� �
(1)
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where N is the number of targets, (ai ,bi) is the central

coordinate of the i target, and s is the standard deviation of the

Gaussian kernel function, which is used to control the ambiguity of

the density map. The meaning of the formula is that on each pixel

position (a, b) of the feature map, the distance from the center

position of all targets is calculated, and then the density value is

calculated according to the Gaussian kernel function. Finally, the

density value of all targets is added up to get the final density mapD.
2.2 Methods

In this paper, an improved YOLACT (Bolya et al., 2019) model

is proposed, which aims to improve the accuracy and performance

of object detection. We improve the backbone of YOLACT by

introducing the CBAM (Woo et al., 2018) attention mechanism and

the GeM (Radenović et al., 2018) pooling layer, and optimize the

detection performance by introducing density map mechanism.

The network structure proposed in this paper is shown in Figure 2.

2.2.1 YOLACT
Specifically, the CBAM module includes two sub-modules:

channel attention and spatial attention. The former weights

features by learning the importance of channels, and the latter

weights features by learning the spatial correlation of features. In

this way, the model can learn the feature representation of the target

more accurately. Meanwhile, we replace the pooling layer of

YOLACT with the GeM pooling layer. Traditional pooling

operations usually use fixed-size windows to downsample features,
FIGURE 1

GWHD, WEDD, and sample views of our collected datasets.
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but this may lead to the loss of spatial information of features. In

contrast, the GeM pooling layer can better preserve the spatial

information of features by adaptively adjusting the size of the

pooling window, thus improving the performance of the model.

Secondly, the density map is introduced into FPN and combined with

the detection head. The density map is generated based on the

distribution of the target, which can provide more accurate target

information. By fusing the density map with the detection head, we

can better consider the distribution of the target in the target

detection process, and further improve the accuracy of the

detection results. The YOLACT is a one-stage real-time instance

segmentation model that splits an instance into two parallel tasks.

One branch is Protonet, which uses a full convolutional network to

generate a series of prototype masks. The other branch is to add an

additional prediction header network through the object detection

branch, generating a set of prediction boxes, category information,

and mask coefficients. Finally, the two branches are linearly

combined to generate the final mask. The YOLACT network

consists of three branches: backbone network, detection branch and

mask branch. The YOLACT loss function is divided into three parts:

classification loss Lcla, detection box regression loss Ldetection and

mask loss Lseg with the weights 1, 1.5, and 6.125 respectively. The

formula is defined as shown in Equation 2:

Ltotal = lLdetection + lLseg + lLcla (2)

The object detection loss consists of two parts: the Objectness

Score loss and the Bounding Box Localization loss. Given N prior

boxes and C categories (including the background category), the

object detection loss can be expressed as shown in Equation 3:

Ldetection = Lobj + Lbox (3)
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Objectness Score Loss function formula is as shown in Equation 4:

Lobj =o
N

i=1
o
S2

j=1
binary _ cross _ entropy(pobji,j , p̂

obj
i,j ) (4)

where pobji,j , the predicted target presence probability of the i-th

prior box at the j-th position in the feature map, and p̂ obj
i,j is the

corresponding real target presence label (1 means the target is

present, 0 means the target is not present).

Bounding box localization loss function formula is as shown in

Equation 5:

Lbox =o
N

i−1
o
S2

j=1
smooth _ L1 _ loss(tboxi,j , t̂ boxi,j ) (5)

where, tboxi,j is the bounding box position prediction value of the

i-th prior box at the j-th position in the feature map, and t̂ boxi,j is the

corresponding true bounding box position label. The segmentation

loss uses the cross-entropy loss function, which is used to measure

the difference between the prediction of the network for each pixel

segmentation mask and the true mask. Given P feature points and K

classes, the segmentation loss can be expressed as shown in

Equation 6:

Lseg =o
P

i=1
o
K

k=1

cross _ entropy(mseg
i,k , m̂

seg
i,k ) (6)

where, mseg
i,k is the segmentation mask prediction value of the k-

th class corresponding to the i-th feature point, and m̂ seg
i,k is the

corresponding true segmentation mask label.

The classification loss again uses the cross-entropy loss

function, which is used to measure how different the network’s

prediction for each target instance class is from the true class label.
FIGURE 2

Improved network structure based on density.
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Given P feature points and K classes, the classification loss can be

expressed as shown in Equation 7:

Lcla =o
P

i=1
o
K

k=1

cross _ entropy(cclsi,k , ĉ
cls
i,k ) (7)

where cclsi,k is the category prediction value of the k-th category

corresponding to the i-th feature point, and ĉ clsi,k is the corresponding

true category label.

2.2.2 Attention module
The accuracy of wheat detection is seriously affected by the

overlap between wheat sheaves and the highly cluttered

background. Therefore, we introduce the CBAM(Convolutional

Block Attention Module) (Woo et al., 2018) attention module in

backbone. The original CBAM module is shown in Figure 3. This

module integrates spatial attention and channel attention

mechanisms to selectively highlight information-rich features and

suppress irrelevant or redundant information. The spatial attention

mechanism allows CBAM to adaptively adjust the weights of the

feature maps through spatial attention, enabling the network to focus

on the salient regions of the wheat ears and ignore background noise.

Meanwhile, the channel attention mechanism adaptively recalibrates

the importance of different channels by capturing the dependencies

between channels, enabling the network to emphasize information-

rich channels and weaken irrelevant ones. By combining spatial and

channel attention, CBAM can effectively capture local and global

contextual information, thus improving feature representation

and distinguishability.

2.2.3 Improved attention module
In this paper, we propose a method to modify CBAM by

replacing all pooling layers with GeM Pooling, a GeM-based

pooling method that adaptively integrates spatial information, the

specific improvement is shown in Figure 4. GeM pooling layers can

be represented as shown in Equation 8:

GeM(x) =
1

H · Wo
H

i=1
o
W

j=1
xpi,j

 !1
p

(8)
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where GeM(x) is the output of the GeM pooling layer, x is the

input feature map, and H and W are the height and width of the

feature map. The p is the hyperparameter of GeM, which controls

the power in summation. Specifically, when p = 1, the GeM Pooling

layer degenerates into average pooling, that is, the values of all

elements in the feature map are averaged. When p = ∞, the GeM

pooling layer tends to select larger eigenvalues to highlight more

significant features.

By using GeM pooling it is possible to capture finer information

and preserve spatial detail than traditional pooling layers, making it

possible to focus more precisely on spatial regions and better focus

on the features of the target.

2.2.4 Density map
We propose a new method for detecting and counting

overlapping wheat ears using the concept of density estimation.

We introduce a density-based method to estimate the local density

of wheat ears in an image. By generating a density map, the location

information of the target wheat ears can be observed more clearly,

then the distribution of wheat ears is more accurately reflected. In

order to integrate the density map into YOLACT, a new loss

function is introduced as shown in Equation 9:

MSE =
1
No

N

i=1
(di − gti)

2 (9)

where N denotes the total number of pixels in the density map,

di denotes the predicted density pixel value, and gti denotes the

actual density pixel value, the value returned by the mean-square

error(MSE) reflects the difference between the generated density

map and the ground-truth, the smaller the MSE is, the closer the

predicted density map is to the actual density map, and the bigger

the MSE is, the farther away from the ground-truth.

Back propagation of the loss of the density map by the network

drives the network to generate accurate density maps that are

constantly close to the ground-truth. By co-optimizing the target

detection and the loss of the density map, the network learns to use

the density information and adaptively adjusts the detection

strategy to show better performance when facing dense targets.
FIGURE 3

Original CBAM structure.
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2.2.5 Implementation details
All experiments in this paper are carried out under the PyTorch

deep learning framework, and the system environment is 20.04.1-

Ubuntu. The computer hardware configuration is 2080Ti 11GB

graphics card, Intel(R) Core(TM) i9-9900X CPU @ 3.50GHz

processor, pytorch version is 1.8.1, and python version is 3.8.8.

In this paper, we use stochastic gradient descent (SGD)

algorithm to train the network, with the momentum coefficient

set to 0.9, the initial learning rate to 0.001, the batch size to 8, and

the input image to 1024×1024×3 (RGB). For the CBAM attention

module, we set the initial values of P in the GeM pool layer to 11

and 19 for channel attention and spatial attention, respectively.

Backbone is resnet-101, and the pre-trained weights from the

COCO dataset are used to speed up the convergence.

2.2.6 Evaluation metrics
To validate the accuracy and effectiveness of our proposed

method, we use root mean square error (RMSE), Bias and

coefficient of determination R² as evaluation metrics to measure

the performance of model counting. The formulas are as shown in

Equation 10:

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
no

n

i=1
(yi − ŷ i)

2

s
  Bias =

1
no

n

i=1
(yi − ŷ i)  

R2 = 1 −o
n
i=1(yi − ŷ i)

2

on
i=1(yi − y)2

(10)

where yi denotes the ground-truth (the number of targets

actually observed), ŷ i is the predicted value (the number of

targets predicted by the model) denotes the ground-truth of the i-

th observation, and n is the sample size. The RMSE measures the

degree of difference between the actual observations and the

predicted values. It is the result of squaring, averaging, and taking

the square root of the prediction error, so it can be considered as the

standard deviation of the prediction error. The Bias indicates that

the forecast value deviates from the ground-truth on average, and a

positive Bias indicates that the forecast value is high, while a

negative Bias indicates that the forecast value is low.

on
i=1(yi − ŷ i)

2 is the sum of squares of residuals (the sum of

squares of residuals’ deviations), representing the difference
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between observed and predicted values. on
i=1(yi − y)2 is the total

sum of squares (total deviation squared), which represents the

difference between the observed value and the ground-truth.

In addition this paper uses precision (P), recall (R) and average

precision (AP), to evaluate the performance of the segmentation

model as shown in Equation 11.

R =
TP

TP + FN
 P =

TP
TP + FP

 AP =
1
Rj j or∈R

APr 

mAP =
1
No

N

i=1
APi

(11)

where TP (True Positive) denotes the number of samples whose

model correctly predicts positive cases, FN (False Negative) denotes

the number of samples whose model incorrectly predicts negative

cases, and FP (False Positive) denotes the number of samples whose

model incorrectly predicts positive cases. Rj j denotes the total

number of true targets in the dataset. R is the set of real targets,

containing all real targets in the dataset. APr is the Average Precision

of a single target, indicating the accuracy of the predicted results for a

single target. It is a measure of the prediction quality of a target by

calculating the area under the precision-recall curve of the target.N is

the number of samples, which indicates the total number of samples

in the dataset. APi is the average accuracy of the i-th sample, which

indicates the accuracy of the prediction result for the i-th sample.
3 Experimental results and discussion

3.1 Comparison of the proposed method

In order to evaluate the counting performance, we use the test

set of three sets of data, GWHD, WEDD and ESD datasets for

testing. The specific results are shown in the Table 2. We show the

improved model with Mask R-CNN (He et al., 2017), the original

YOLACT (Bolya et al., 2019), YOLO v5, and two methods Blend

Mask (Gao et al., 2022) and Cacade Mask (Zhang et al., 2022). And

three evaluation metrics are used to evaluate our model. RMSE is a

measure of the error between the predicted value and the ground-

truth, which indicates the mean of the prediction error of the model

and is more sensitive to large errors, so the smaller the metric is,
FIGURE 4

Improved CBAM structure.
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the more it indicates that there are no certain images in our test data

that have too large errors. Due to the introduction of density

estimation to optimize detection results, our model has the best

results in all three test sets, indicating that the improved model has

better generalization ability. Density estimation was previously

commonly used for crowd counting, and applying this method to

wheat ear counting means that we have transformed the technology

originally applicable to crowds into a tool to solve the wheat ear

counting problem, further verifying the effectiveness of this method.

In the three datasets, GWHD has the best performance with an

RMSE of 1.29. Although Mask R-CNN and Cascade Mask R-CNN-

based (Zhang et al., 2022) also have good performance, our model

has a considerable advantage in terms of prediction speed. Bias is

the systematic difference between the predicted value and the

ground-truth. It represents the systematic discrepancy, whether

the model consistently overestimates or underestimates the target

variable. Minimizing bias is essential for improving the accuracy of

predictions, and achieving a value closer to zero is indicative of

better performance. Our model still achieves the best performance,

with results of 0.8, 0.8, and 0.9 in the three datasets. This indicates

that the overall results predicted by our model are very close to

ground-truth, with no over or under-counting. The R² measures the

linear relationship between predicted and ground-truth, and

the closer it is to 1 indicating that the model is able to account

for the greater amount of dependent variable variability, and the

residuals account for the greater amount of total variability. Our

model performs well, with the best result reaching R² of 0.9798 on

the GWHD dataset.
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3.1.1 Evaluation of segmentation performance
We used the same test images to evaluate the segmentation

accuracy of the model using the evaluation metrics from the COCO

dataset. The mAP denotes the average performance of the model

under multiple IoU thresholds, and mAP50 and mAP75 are

denoted as the values of mAP under thresholds of 0.50 a 0.75,

respectively. The results are shown in Table 3. From the results, our

model performs very well in terms of segmentation accuracy.
3.1.2 Visual analysis of segmentation methods
We tested each dataset individually and categorized the test

images into four Levels based on different degrees of density, and

the results for each dataset are shown as Figures 5–7, respectively. It is

clear from these images that Level 1 and Level 2 shows that our

method performs better relative to the other methods when the target

density is low but there are some targets that are similar to the

background (these targets may have similar color or morphology to

the background, and sometimes wheat leaves in the background may

be incorrectly identified as ears of wheat) or when the targets are

occluded by wheat leaves. Due to our improved CBAM attention

module, GeM pooling is resistant to noise and outliers. It uses a

power-of-mean calculation, where outliers have less impact on the

model, and pools multiple feature maps into a single representation

when performing feature fusion. In contrast, other methods suffer

from some false detection or omission problems in these cases.

In Level 3 through Level 4 results, when the targets are very

dense, our method performs better due to the density map loss
TABLE 3 Comparison of instance segmentation results for various approaches on multiple datasets.

Methods GWHD vWEDD ESD

mAP mAP50 mAP75 mAP mAP50 mAP75 mAP mAP50 mAP75

Mask R-CNN (He et al., 2017) 63.49 90.3ss5 79.16 60.35 88.76 78.96 62.29 90.62 80.34

BlendMask (Gao et al., 2022) 62.35 88.61 78.36 60.76 87.63 77.61 63.65 88.05 77.05

Cacade Mask (Zhang et al., 2022) 62.64 88.74 79.47 60.41 86.46 77.05 61.43 87.65 77.26

YOLACT (Bolya et al., 2019) 63.43 89.96 80.81 60.74 85.61 77.49 62.15 88.09 80.32

Ours 64.41 90.45 81.14 61.62 89.96 80.35 65.31 91.32 82.35
fron
TABLE 2 Comparison of counting results for different methods on multiple datasets.

Methods GWHD WEDD ESD FPS

RMSE Bias R² RMSE Bias R² RMSE Bias R²

Mask R-CNN (He et al., 2017) 1.52 1.2 0.9601 1.56 -0.9 0.9596 1.98 1.1 0.9541 7.96

BlendMask (Gao et al., 2022) 1.95 -1.3 0.9486 1.92 1.3 0.9432 1.89 1.2 0.9489 10.76

Cacade Mask (Zhang et al., 2022) 1.48 1.0 0.9523 1.53 -0.9 0.9541 1.61 -1.1 0.9511 6.54

YOLACT (Bolya et al., 2019) 1.83 1.2 0.9516 1.92 1.0 0.9547 2.49 -1.6 0.9416 13.52

YOLO v5 2.49 1.5 0.9364 2.12 1.5 0.9475 2.01 1.5 0.9517 20.51

Ours 1.29 0.8 0.9798 1.35 0.8 0.9716 1.45 0.9 0.9689 12.15
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mechanism we introduced in training. In dense scenes, density map

loss allows the model to better capture the distribution of targets.

This helps to reduce the number of missed and false detections, thus

improving the detection performance. From the results, the

introduced density map branch has a significant advantage in

dense target detection. At the same time, the improved CBAM

attention module also provides better performance in cases where

the target is similar to the background or is occluded. The

combination of these two aspects enables our method to perform

well in scenes with different densities.
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3.2 Ablation study

In order to validate the effectiveness of our proposed model

improvement in the wheat ears segmentation and counting task, we

performed the validation on three different datasets: the GWHD,

the WEDD, and Experimental Station Dataset(ESD), which cover

different kinds of wheat ears images, including different lighting,

viewing angles, and occlusion situations.

For the overall performance evaluation of segmentation, we also

used the mAP metric, which can synthesize the performance of the
FIGURE 5

Test results for the self-constructed dataset, where blue boxes indicate False Positive and yellow boxes indicate False Negative. Levels 1 to 4 have
increasing density.
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model under different confidence thresholds Table 4. The experimental

results show that YOLACT has the best mAP performance with the

addition of Improved CBAM as well as the addition of density

branches, and its mAP value is significantly higher than the other

combinations. The two metrics, mAP50 and mAP75, which represent

the segmentation performance at confidence thresholds of 0.5 and 0.75,

respectively. The results show that our model also achieves the best

performance in the three datasets. This indicates that the segmentation

accuracy of the model is significantly improved after the introduction

of the improved attention module and density module.

In the counting task, we compared the performance of different

models on wheat counting using RMSE, Bias and R² as certified
Frontiers in Plant Science 11
evaluation metrics. The results are shown in Table 5. The results

show that YOLACT+Improved CBAM+Density has the smallest

RMSE value, the smallest Bias value and the highest R² value on all

datasets, which improves the counting accuracy. Especially, the

counting results are equally stable and robust at high densities. This

implies that by incorporating an improved attention module into

the model backbone and introducing a density branch after the FPN

can achieve better overall performance on the ear segmentation and

counting tasks.

The validation results on the three datasets consistently show

that our proposed model improvement scheme achieves significant

performance improvement on the wheat ears counting task. By
FIGURE 6

Test results for the WEDD dataset, where blue boxes indicate False Positive and yellow boxes indicate False Negative. Levels 1 to 4 have
increasing density.
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introducing the improved attention module and density branching,

we are able to better capture instances of wheat ears in the image

and count the ears more accurately.
3.3 Discussion

3.3.1 The effectiveness of GeM in
image processing

Generalized mean pooling (GeM) is a commonly used pooling

technique in deep learning architectures, which stands out

compared to traditional pooling methods such as max pooling or
Frontiers in Plant Science 12
average pooling due to its adaptability and enhanced representation

power. As shown in Table 4, without any attention mechanism

added to the model, the mAP in the GWHD, WEDD, and ESD

datasets is merely 63.43%, 60.74%, and 62.15%, respectively.

Introducing the unimproved CBAM leads to an increase in mAP

by 0.37%, 0.21%, and 0.81%. This improvement arises from CBAM

allowing for broader feature coverage over the objects of interest,

facilitating better extraction of crucial feature information from the

images. Upon replacing all pooling layers with GeM pooling, the

mAP sees further enhancement, reaching 63.98%, 61.01%, and

63.16%. Compared to the initial two models, the performance

boost in mAP after transitioning to GeM is significant. This is
FIGURE 7

Test results for the GWHD dataset, where blue boxes indicate False Positive and yellow boxes indicate False Negative. Levels 1 to 4 have
increasing density.
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attributable to GeM dynamically adjusting pooling behavior based

on data features, effectively reducing feature map dimensionality

while preserving essential spatial information. GeM exhibits

robustness against overfitting and lower sensitivity to minor input

variations, thus facilitating better adaptation to the feature

distributions across different datasets and tasks.

3.3.2 The effectiveness of density map
mechanisms in data analysis

Inspired by crowd counting, density map mechanisms are

typically used for crowd counting. Wheat ears, similar to crowds,

exhibit high density and may suffer from occlusion or overlap. By

introducing density map estimation, we aim to optimize

detection performance.

In the original YOLACT model, there are two branches: one for

object detection and the other for instance segmentation. The object

detection branch outputs category, bounding box information, and

k mask coefficients for each object. The instance segmentation

branch outputs k prototypes (mask prototype images) for the

current input image. For each object, the k mask coefficients are

multiplied by the k prototypes, and the results are summed. Then, a

sigmoid non-linear function is applied to generate the final masks,

resulting in instance segmentation for the object. We integrate

density map estimation into the model’s detection branch. For each

target, we obtain the central target coordinates and perform

Gaussian smoothing on the two-dimensional coordinates of

wheat in the image, mapping them onto a density map. The

density map is fused with the detection head according to the

target distribution. The network is trained with loss on the density

branch, and back propagation increases the accuracy of the density

map. Finally, the density map is linearly combined with the original

object detection branch, enhancing detection performance.

Specifically, as shown in Table 4, after improving CBAM without

adding the density mechanism, the RMSE on three datasets is 1.57,

1.65, and 2.05, respectively. However, after introducing the density

mechanism, the RMSE decreases by 0.28, 0.3, and 0.5. This

improvement is attributed to the density map providing more

accurate target information, leading to more precise detection by

the detection branch.

3.3.3 Model effectiveness
Due to our improvements to the original YOLACT model,

where we replaced all pooling layers with GeM pooling, we can
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better capture crucial information within feature maps by

combining and generalizing global max-pooling and global

average-pooling. This adaptation allows our model to

accommodate different tasks, data distributions, and even enables

application in temporal feature aggregation. By incorporating

density map mechanisms into the model, it exhibits enhanced

detection capabilities in dense scenes, showcasing superior

performance when handling dense targets. Specifically, as shown

in Table 3, the Mask R-CNN achieves mAP scores of 63.49%,

60.35%, and 62.29% on three datasets respectively, while the

original YOLACT model achieves mAP scores of 63.43%, 60.74%,

and 62.15%. In contrast, our model achieves mAP scores of 64.41%,

61.62%, and 65.31%, demonstrating performance improvements

across all datasets and outperforming other models.
3.3.4 The reasons for performance differences
across different datasets

This paper integrates three datasets, including two publicly

available datasets and one custom dataset. The performance

differences across these datasets arise from various factors related

to the datasets themselves, such as differences in the variety of crops

harvested, harvesting methods, growing conditions, data

distribution, data quality, and domain adaptation issues.

For instance, in the GWHD dataset, as presented in Table 4, the

original YOLACT model achieves an mAP of 63.43%. After

introducing GeM and density map mechanisms, the mAP increases

to 64.41%. This improvement can be attributed to the dataset

containing a diverse range of wheat images, covering different

varieties, geographical locations, climate conditions, and growth

stages of wheat plants. Our model demonstrates more precise

detection of various wheat images, benefiting from GeM’s ability to

capture critical local and global features, thereby enhancing the

representation capability of the model. In the WEDD dataset, the

original YOLACT model achieves an mAP of 60.74%, while our

improved model achieves an mAP of 61.62%, resulting in an

improvement of 0.88%. The difference is due to the characteristic

of the dataset where the background and wheat ears share similar

colors. The improved model applies the concept of density estimation

for detection and counting, enabling accurate detection even in

complex backgrounds and minor color variations. In actual wheat

fields, wheat ears typically have similar colors to surrounding

vegetation or soil. Therefore, training the dataset with similar

background colors helps simulate real-world environments and
TABLE 4 Ablation experiment of segmentation metrics.

CBAM Improved CBAM Density GWHD WEDD ESD

mAP mAP50 mAP75 mAP mAP50 mAP75 mAP mAP50 mAP75

63.43 89.96 80.81 60.74 85.61 77.49 62.15 88.09 80.32

✓ 63.71 90.08 81.02 60.95 86.15 78.12 62.96 90.35 80.94

✓ 63.98 90.12 81.04 61.01 86.59 78.53 63.16 90.56 81.13

✓ ✓ 64.04 90.39 81.10 61.23 88.86 79.52 64.85 91.21 81.56

✓ ✓ 64.41 90.45 81.14 61.62 89.96 80.35 65.31 91.32 82.35
fron
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improves the model’s generalization ability in practical applications.

In the ESD dataset, the original model achieves an mAP of 62.15%,

whereas the improved model’s mAP increases to 65.31%. This

indicates the effectiveness of our improvements with CBAM and

density map integration. Data collected at different time periods

capture the changes and evolution of the same objects in the same

area, enhancing the dataset’s timeliness and comprehensiveness.
4 Conclusion

The main problem of the dense wheat ears segmentation

counting task is that the targets and weeds are often occluded from

each other in complex backgrounds, resulting in some targets not

being completely segmented. In order to solve the problem of dense

wheat ears segmentation and counting in complex environmental

background, this paper proposes a wheat ears segmentation model

based on density graph. Through ablation experiments and

performance evaluation, the following conclusions are drawn:
Fron
1) Replacing the pooling layer of the CBAM module with the

GeM pooling layer further improves the segmentation

performance of the model in the dense wheat ears

segmentation and counting task. The GeM pooling layer

can be automatically adjusted according to the size and

density of the target area, so that the model can handle

targets of different scales and densities without manually

adjusting the pooling parameters. The improved attention

mechanism reduces the RMSE from 1.75 to 1.57, compared

to the original CBAM. This improvement facilitates a more

focused analysis of the spatial distribution of features,

leading to reduced information loss in the spatial

arrangement of targets.

2) Based on the improved CBAM, the R2 increases from 0.9615

to 0.9798 through pixel-level density estimation, the density

map mechanism accurately discerns overlapping count

targets, which can provide more granular information.

The results show that with these key modifications, the

density map-based YOLACT model further improves the

accuracy of segmentation counting of dense wheat ears.
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TABLE 5 Ablation experiment of counting metrics.

CBAM Improved CBAM Density GWHD WEDD ESD FPS

RMSE Bias R² RMSE Bias R² RMSE Bias R²

1.83 1.2 0.9516 1.92 1.0 0.9547 2.49 1.6 0.9416 13.52

✓ 1.75 1.1 0.9595 1.83 1.0 0.9609 2.21 1.5 0.9549 13.21

✓ 1.57 1.0 0.9615 1.65 0.9 0.9653 2.05 1.4 0.9592 13.25

✓ ✓ 1.35 0.9 0.9686 1.43 0.9 0.9681 1.98 1.2 0.9612 12.34

✓ ✓ 1.29 0.8 0.9798 1.35 0.8 0.9716 1.45 0.9 0.9689 12.15
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