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Canopy height serves as an important dynamic indicator of crop growth in the

decision-making process of field management. Compared with other commonly

usedcanopyheightmeasurement techniques, ultrasonic sensors are inexpensive and

can be exposed in fields for long periods of time to obtain easy-to-process data.

However, the acoustic wave characteristics and crop canopy structure affect the

measurement accuracy. To improve the ultrasonic sensormeasurement accuracy, a

four-year (2018−2021) field experiment was conducted on maize and wheat, and a

measurement platform was developed. A series of single-factor experiments were

conducted to investigate thesignificant factorsaffectingmeasurements, including the

observation angle (0−60°), observation height (0.5−2.5 m), observation period (8:00

−18:00), platform moving speed with respect to the crop (0−2.0 m min−1), planting

density (0.2−1 time of standard planting density), and growth stage (maize from three

−leaf to harvest period and wheat from regreening to maturity period). The results

indicated that both the observation angle and planting density significantly affected

the results of ultrasonic measurements (p-value< 0.05), whereas the effects of other

factors on measurement accuracy were negligible (p-value > 0.05). Moreover, a

double-input factorcalibrationmodelwasconstructedtoassesscanopyheightunder

different years by utilizing the normalized difference vegetation index and ultrasonic

measurements. The model was developed by employing the least-squares method,

and ultrasonic measurement accuracy was significantly improved when integrating

themeasuredvalueofcanopyheights and thenormalizeddifferencevegetation index

(NDVI). The maize measurement accuracy had a root mean squared error (RMSE)

ranging from 81.4 mm to 93.6 mm, while the wheat measurement accuracy had an

RMSE from 37.1mm to 47.2mm. The research results effectively combine stable and

low-cost commercial sensors with ground-based agricultural machinery platforms,

enabling efficient and non-destructive acquisition of crop height information.
KEYWORDS

ultrasonic sensor, canopy height, maize, wheat, normalized difference vegetative index,
calibration mode
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1 Introduction

Crop height is an essential agriculture parameter (Yuan et al.,

2018) closely related to yield (Bablu and Ritchie, 2014), above-

ground biomass (Pittman et al., 2015), and lodging (Singh et al.,

2019). The measurement of crop height in traditional agronomic

practices primarily relies on manual methods, which has problems

such as random deviations, large time consumption, and low

efficiency. Ultrasonic sensors can be used to obtain crop height

information through non-contact methods (Barmeier et al., 2016).

Ultrasonic sensors’ data is easy to process, and this type of sensor is

distinguished by its cost-effectiveness, ease of portable installation

(Jeon et al., 2011), and suitability for prolonged exposure in field

environments, particularly when compared with light detection and

ranging (LiDAR) (Yuan et al., 2019; Dou et al., 2021) and

unmanned aircraft system (UAS) imagery (Gai et al., 2015; Jiang

et al., 2016).

Ultrasonic sensors are widely used in the field of distance

measurement, and this type of sensor was used in phenotyping

studies on maize (Li et al., 2020; Aziz et al., 2004), wheat (Pittman

et al., 2015; Scotford and Miller, 2016), rice (Shibayama et al., 1985),

sorghum (Shibayama et al., 1985), and soybean (Pittman et al., 2015).

However, ultrasonic sensor measurements have been found to

underestimate canopy height in many studies (Fricke et al., 2011;

Yuan et al., 2018; Sui and Baggard, 2018). In related studies, using

ultrasonic sensors to measure canopy height, the RMSE was 13−340

mm. Chang et al. (2017) and Farooque et al. (2013) found that the

ultrasonic measurement errors of blueberry canopy height were in the

range of 13−57 mm. The measurement error of soybean canopy

height was about 30 mm in the ultrasonic experiment conducted by

Kataoka et al. (2002). Sui and Baggard (2018) found that the

ultrasonic measurement errors of soybean or cotton canopy heights

were in the range of 31−58 mm. Yuan (2019) obtained wheat canopy

height using static ultrasonic measurements with an RMSE of 340

mm. Aziz et al. (2004) compared ultrasonic measurements with

manual measurements of maize canopy height, and found the

fitted regression line with R2 of 0.41. Combining the results of

previous studies with the field measurements in this study, the

measurement error of wheat and maize (the RMSE of 340

−976mm) is larger than that of other crops. Considering that maize

and wheat are major food crops, it makes a lot of sense to conduct

research on them. Thus, it is necessary to study the ultrasonic

measurements accuracy on canopy to improve the use of ultrasonic

sensors in agricultural management systems.

The measurement of canopy geometry using ultrasonic sensors is

based on the time-of-flight method. This type of sensor emits acoustic

pulse signals during operation and forms reflected echoes on the

reflective surface of the measured object (Manual-Senix-TSPC-

Family, 2020). In some measurement situations, when the reflective

surface has an irregular shape and a large surface roughness, it

interferes with the formation of reflected echoes, ultimately

affecting the ranging results (Ma and Shen, 1983; Jeon et al., 2011).

Owing to the dense-gap structure and irregular reflective surface of

the plant canopy (Shibayama et al., 1985; Mckerrow and Harper,

2002; Nan et al., 2019), the ultrasonic measurements of observation
Frontiers in Plant Science 02
targets such as grasslands, shrubs, and forests may deviate from the

actual canopy height (Sui and Baggard, 2018; Aziz et al., 2004; Nan

et al., 2019). Based on the principle of sound wave propagation,

ultrasonic waves have directionality (Feng, 1999). Meanwhile, when

the measurement target is too close to the sensor, the successive

emitted ultrasonic waves can interfere with the reception of the signal.

Thus, ultrasonic sensors have measurement blind spots (Pan, 2006).

Moreover, when ultrasonic waves propagate in various media, they

are attenuated via scattering, absorption, and diffusion. When there is

relative motion between the sound source and the observation target,

a Doppler frequency shift also occurs (Feng, 1999), and the speed of

sound changes owing to varying air pressure, temperature, and

humidity. Therefore, many factors affect the measurement accuracy

of ultrasonic sensors. However, it is unknown which factors can

significantly interfere with the actual measurement results in the field.

To date, some researchers have conducted relevant ultrasonic

experiments on canopy measurements. Andújar et al. (2012) used

ultrasonic sensors for the detection of weeds in cereal crops and

concluded that the density of plants may influence the reflected

intensity of ultrasound. Barmeier et al. (2016) measured the height of

barley using ultrasonic sensors and found that high speed movement

during measurement, leaf angle, leaf size and canopy coverage area

may have affected the measurements. Llorens et al. (2011) found the

well correlation between ultrasonic measurements and leaf area

index. Nan et al. (2019) found little difference in the relative error

distribution at different distances (0.8−1.2 m) Shibayama et al. (1985)

and Fricke et al. (2011) found that the ultrasonic reflection signal was

highly correlated with canopy leaf inclination angle, blade area, and

leaf density. At the same time, considering that vegetation index such

as normalized difference vegetation index (NDVI) can provide a

more intuitive status of canopy cover (Fawcett et al., 2020) to

researchers, many scholars have tried to combine spectral

reflectance sensors with distance measurement devices that can be

used for monitoring canopy physical characteristics such as canopy

height (Schirrmann et al., 2017; Singh et al., 2019), above ground

biomass (Liu et al., 2022; Yue et al., 2017), and leaf area index (Bian

et al., 2023; Liu et al., 2023). Few studies have focused on identifying

the major factors affecting ultrasonic measurement accuracy through

field experiments or on proposing specific calibration methods for

improving the accuracy of ultrasonic measurement.

Therefore, it is necessary to conduct ultrasonic sensor experiments

on the canopy of crop populations in the field to determine the factors

(such as environmental factors, sensor measurement methods, crop

growth stages and planting status) that influence the measurements. In

addition, because the environmental conditions offield experiments are

not entirely controllable, a single-factor experiment can be performed

to determine the factors that significantly affect the ultrasonic

measurement results. Then an ultrasonic measurement calibration

model can be established based on these influencing factors. Hence,

research objectives were to (1) construct a system to acquire canopy

information(ultrasonic and NDVI data) stably and efficiently based on

a center pivot, (2) determine the main factors affecting the

measurement of canopy height by ultrasonic sensors through multi-

year field experiments on maize and wheat, and (3) establish a

calibration model to improve the accuracy of ultrasonic measurements.
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2 Materials and methods

2.1 Setting up the canopy height
measurement platform

A canopy height measurement system was installed on a center

pivot (Figure 1) in this study. The main components were

integrated into a waterproof control cabinet, including an

ultrasonic sensor (ToughSonic TSPC−15, Senix Corporation, Inc.

USA), a multispectral reflectance sensor (SRS−NDVI, METER

Group, Inc. USA), and a data logger (CR300, Campbell Scientific,

Inc. USA). The ultrasonic sensors have a Field of View (FoV) of 14°

and a measurement range of 0.25−9.1 m (accuracy is better than

0.5% of target distance). The ultrasonic transmission frequency is 75

kHz. The ultrasonic sensor used in this experiment had a rotating

base (Figure 1) to adjust observation direction. The multispectral

reflectance sensor (measurement bands of red in the range 640−660

nm and near-infrared in the range 800−820 nm) consisted of up-

looking and down-looking probes. The up-looking probe was

pointed vertically to the sky without any shading object and had

a field of view of 180° to receive radiation from the sky. The down-

looking probe pointing (Figure 1) was vertical to the canopy and

had a FoV of 36° to receive radiation from the canopy. The

multispectral reflectance sensor acquired observational data once

per second and sent the average value to the laptop every 15 s

during the measurement.
2.2 Experiment factor determination and
field measurements

2.2.1 Experiment site and crop cultivation
The experiment was conducted at the Tongzhou Experimental

Station of China Agricultural University (Beijing, China, 39°41’59”

N, 116°41’01” E) from 2018 to 2021. The organic matter content in

the 0−40 cm layer was 12.3 g kg−1 and the soil type was sandy loam.

The main physicochemical properties of root zone soil (0−100 cm)
Frontiers in Plant Science 03
such as bulk density was 1.5 g cm−3, ammonium nitrogen content

was 3.4 mg kg−1, nitrate nitrogen content was 10.1 mg kg−1,

available phosphorus was 26.2 mg kg−1, available potassium was

149.8 mg kg−1, and pH was 8.3.

The maize variety used was Nongda 86 and the wheat variety

was Nongda 211. The maize seeding rate was set at 37.5 kg ha−1 with

a row spacing of 60 cm and plant spacing of 20 cm. The wheat

seeding rate was 277.5 kg ha−1 with a row spacing of 15 cm. Both

maize and wheat were fertilized uniformly based on local fertilizer

management. For maize, the total amounts of nitrogen, phosphorus

(P2O5), and potassium (K2O) applied were 225, 105, and 95 kg ha
−1,

respectively. All phosphorus and potassium fertilizers and 45 kg

ha−1 of nitrogen were applied as basal fertilizers. The remaining

nitrogen was applied at the sixth-leaf stage (72 kg ha−1) and twelve-

leaf stage (108 kg ha−1). For wheat, the total amounts of nitrogen,

phosphorus (P2O5), and potassium (K2O) applied were 278, 150,

and 90 kg ha−1, respectively. All phosphorus and potassium

fertilizers and 68 kg ha−1 of nitrogen were applied as basal

fertilizers. The remaining nitrogen was applied at the regreening

(84 kg ha−1), jointing (84 kg ha−1) and filling stages (42 kg ha−1).

Plant growth in maize (Siebers et al., 2017) and wheat (Livingston

et al., 2016) was categorized into vegetative and reproductive stages.

In this experiment, the maize (harvested as silage) growth stages

were divided into three categories: early vegetative (V3−V6), late

vegetative (V7−V12), and reproductive (VT−R). The wheat growth

stages were subdivided into vegetative (regreening to jointing),

reproductive (heading to early filling), and maturation (late filling

to maturity) stages. Time division of each growth stage are shown in

the Table 1.

2.2.2 Field measurements of the maize and
wheat canopy

The requirement for the canopy height measurement (Liu et al.,

2023) is obtaining the natural height of the first fully expanded leaf

(before maize/wheat heading) or the ear excluding the awn (after

maize/wheat heading). The calculation method for ultrasonic

measurement (Ma and Shen, 1983) of canopy height is as follows:
FIGURE 1

Experimental setup and sensor configuration.
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CH = L −
1
2
c� tr (1)

c =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gP0Tair

0:00348P0 − 0:00134hr Psb

s
(2)

where CH is the canopy height (mm), L is the vertical distance from

the ultrasonic sensor to the ground surface (mm), c is the

propagation speed of ultrasonic waves in the air medium (m s−1),

tr is the time interval from sending signal of the ultrasonic sensor to

receiving reflected signal of observed canopy(s), and g is the air

constant. Where P0 is the atmospheric pressure (Pa), Tair is the air

temperature (°C), hr is the air relative humidity (%), and Psb is the

saturated water vapor partial pressure (Pa).

The measurement accuracy of ultrasonic sensors is affected by

several factors (Jeon et al., 2011; Nan et al., 2019) during the field

experiments. As shown in Equation (1), sound speed and ultrasonic

reflection time are the main factors affecting measurement

accuracy. The ultrasonic wave has directionality and attenuates

during propagation in air. Furthermore, a Doppler shift occurs

when there is relative motion between the sound source and the

observed target. Hence, the sensor’s observation angle (angle

between the sensor observation direction and the vertical

downward direction), observation height (distance from the

sensor to target canopy in observation direction), and moving
Frontiers in Plant Science 04
speed (the sensor moving speed with respect to target canopy)

have the potential to be factors that significantly affect the

measurement results. The factors affecting the speed of sound in

Equation (2) are atmospheric pressure, temperature, and humidity

in the plain area under normal air conditions. The overall terrain of

cropland in the North China Plain is flat and the atmospheric

pressure remains stable, making it challenging to adjust. Hence,

atmospheric pressure was not considered in this study. In addition,

the changes in temperature and humidity of the field environment

can be controlled by observation periods (the measuring time

during a day). Moreover, changes in canopy coverage (planting

density and growth stage) may affect the continuity of its acoustic

wave reflection surface. The experiment was conducted under no-

wind conditions to avoid wind interference with the canopy height

and airflow during ultrasonic propagation.

Based on above assumptions, this study conducted a single-

factor experiment to filter out the significant influencing factors that

cause deviations. The specific combinations and values of

experimental parameters are presented in Table 2. In this table,

observation angle (q) as selected at 0°, 15°, 30°, 45°, and 60° in the

range of 0−60°, and the canopy heights were calculated from the

raw data obtained at different observation angles using the formula

by CH = L − 1
2 c� tr � cosq. The planting density (D) used the

normal seeding rate (277.5 kg ha−1 of wheat, 37.5 kg ha−1 of maize)

as the standard planting density (d). The values of d ranged from
TABLE 1 Time division of each important growth stage of maize and wheat in experiment.

Experiment
year

Early vegetative Post vegetative Reproductive

VE–V6 (DD/MM) V7–V14 (DD/MM) VT–R (DD/MM)

Maize

2018 07/07–03/08 04/08–18/08 19/08–30/09

2019 02/07–30/07 31/07–14/08 15/08–29/09

2020 04/07–01/08 02/08–19/08 20/08–05/10

Experiment
year

Vegetative Reproductive Maturation

Regreening
–Jointing (DD/MM)

Heading
–Early-filling (DD/MM)

Late-filling–Maturity (DD/MM)

Wheat

2019 19/03–30/04 01/05–14/05 15/05–20/06

2020 14/03–01/05 02/05–13/05 14/05–17/06

2021 16/03–03/05 04/05–16/05 17/05–18/06
VE is emergence stage, V6 is sixth-leaf stage, V7 is seventh-leaf stage, V14 is fourteen-leaf stage, VT is tasseling stage, and R is harvesting stage.
TABLE 2 Single-factor experimental parameters used in this study.

Parameters q (°) D H (m) t v (m min–1)

q 0–60 d 1.0 12:00–14:00 2

D 0 (0.2–1.0) d 1.0 12:00–14:00 2

H 0 d 0.5–2.5 12:00–14:00 2

t 0 d 1.0 8:00–18:00 2

v 0 d 1.0 12:00–14:00 0–2
q (observation angle) is 0°, 15°, 30°, 45°, and 60°, D (planting density) is 1.0d (d, standard planting density: the wheat seeding rate is 277.5 kg ha–1, the maize seeding rate is 37.5 kg ha–1), 0.8d,
0.6d, 0.4d, and 0.2d, H (observation height) is 0.5, 1.0, 1.5, 2.0, 2.5 m, t (observation period) is selected from 8:00–10:00, 10:00–12:00, 12:00–14:00, 14:00–16:00, and 16:00–18:00, and v (moving
speed) is 0, 0.5, 1.0, 1.5, and 2.0 m min–1.
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0.2 d to 1.0 d, increasing in increments of 0.2d and specifically

including 0.2 d, 0.4 d, 0.6 d, 0.8 d, and 1.0 d. The observation heights

(H) were selected at intervals of 0.5 m within the range of 0.5 m to

2.5 m, specifically at 0.5 m, 1.0 m, 1.5 m, 2.0 m, and 2.5 m. The

observation periods (t) were selected from the time intervals of

8:00–10:00, 10:00–12:00, 12:00–14:00, 14:00–16:00, and 16:00–

18:00. The moving speeds (v) were selected as 0, 0.5, 1.0, 1.5, and

2.0 m s–1, within the range of 0–2.0 m min –1.

A series of data were measured for a more comprehensive

description of canopy cover status. Data types include the total area

of green leaves per unit land surface area (leaf area index, LAI), the

normalized difference vegetation index (NDVI), the measured value

of the canopy height by ultrasonic sensor (CHm) and the actual

value of the canopy height (CHa). The sampling date is listed

in Table 3.

LAI was calculated from crop images using a canopy image

analysis software (Guanceng Fenxi.V1.0, Fansheng Technology.

China), and the canopy images of crops under clear and cloudless

skies without intense sun exposure at different growth stages were

obtained using a canopy image analyzer (DC−2000, Fansheng

Technology. China). This canopy image analyzer is similar to the

LAI2200, and DC−2000 analyzer calculates LAI from light

measurements made with a “fish-eye” optical sensor (148° of FoV).

Measurements made above and below the canopy were used to

calculate canopy light interception at five zenith angles, from which

LAI was computed using a model of radiative transfer in vegetative

canopies. The measurement position was selected within 2 m×2 m of

the measuring area of the ultrasonic sensor. Following the instruction

manual for row crops, ground measurements were made along

diagonal transects between the rows (Fang et al., 2014). Two

repeats were conducted for each measurement, with one reading

taken above the canopy and six readings taken (uniform distribution)

below the canopy. For below canopy measurements, ensure that the

distance between the leaves and the “fish−eye” optical sensor was at

least 4 times the maximum width of the leaves. All LAI values

obtained in the 2 m×2 m area were averaged to obtain the LAI value

for each measurement position.

NDVI is relatively mature and is widely used to observe plant

canopies (Tucker, 1979). The calculation Equations (3–5) formula is
Frontiers in Plant Science 05
as follows:

NDVI =
RNIR − RRED

RNIR + RRED
(3)

RNIR =
rdown−NIR
rup−NIR

(4)

RRED =
rdown−RED
rup−RED

(5)

where RNIR is the reflectivity data in the near-infrared band, RRED is

the reflectivity data in the red band, rdown-NIR is the radiation

intensities of the canopy in the near-infrared band, rdown-RED is

the radiation intensities of the canopy in the red bands, rup-NIR is the

radiation intensities of the sky in the near-infrared, and rup-RED is

the radiation intensities of the sky in the red bands.

CHm and CHa were calculated for canopy height measurements

as follows Equations (6, 7):

CHm = L − lMV (6)

CHa = L − lAV (7)

where L is the total distance from the ultrasonic sensor to the soil

surface below the canopy, lMV the distance from the canopy surface

measured by the ultrasonic sensor, and lAV the manually measured

distance between the ultrasonic sensor and the canopy surface.

Additionally, engineering tape (Autlock 5 m, Bosch of Shanghai,

Inc. China) was used for manual measurements.

The transplanted canopy and in-situ canopy were used as

different observation platforms to meet the requirements of

parameter changes in different single-factor experiments.

(1) Measurement with transplanted canopy.

Crop density needs to be flexibly changed to perform single-

factor experiments on planting density. Therefore, a crop-fixing

platform was constructed and the experiment was conducted in

2019. The structural composition of this platform included a plant

fixing plate with an area of 2 m × 2 m and a bottom support frame

(Figure 2). The fixed plate had grooves determined according to the

spacing of the crop rows, and these grooves were used for
TABLE 3 Sampling dates of each growth stage in maize and wheat fields.

Sampling year
Sampling date (DD/MM)

Early vegetative Post vegetative Reproductive

Maize

2018 01/08 08/08, 14/08 19/08, 08/09, 21/09

2019 11/07, 17/07, 28/07 31/07, 04/08 15/08

2020 18/07, 30/07 08/08, 15/08 20/08

Sampling year
Sampling date

Vegetative Reproductive Maturation

Wheat

2019 04/04, 20/04 03/05, 14/05 25/05

2020 19/04 12/05 22/05

2021 07/04, 21/04 14/05 27/05
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transplanting the root systems of the crop plants. The number of

fixed crop plants in the groove was determined by the planting

density. A thin layer of soil was covered over the surface of the fixed

plate to restore the actual observation environment after the canopy

was transplanted. In addition, to ensure the freshness and stable

shape of the transplanted crop plants during the observation period,

the experiment was conducted under weak sunlight conditions, and

the soil around the crop roots was regularly watered every half hour.

A circular hole with a diameter of 8 cm was formed in the bare soil

position between the grooves of the fixed plate to facilitate the fish-

eye lens to observe the canopy from the bottom of the plant upward.

Single-factor experiments at different viewing angles were also

conducted using this platform. Three sets of canopy fixed plates

at the same growth stage were measured separately as replicates of

the observation experiment on the transplanted canopy. For each

replicate, three manual measurement points were uniformly and
Frontiers in Plant Science 06
randomly selected on the fixed platform to obtain the CHa, and the

ultrasonic sensor was used to continuously observe each manual

measurement point for 3 min to obtain the CHm. In addition, both

CHa and CHm were calculated by averaging the measurement

point data.

Ultrasonic sensors were initially designed to measure

continuous solid and liquid surfaces in the industrial sector

(Manual-Senix-TSPC-Family, 2020). To verify the original

measurement reliability of this type of sensor, the crop canopy

was replaced with a bare soil slab (referred to as “bare-soil slab”) for

height measurement under each experimental condition.

(2) Measurement with in-situ canopy.

Figure 3 shows that the field in each treatment was divided into

three experimental plots of approximately 2 m × 2 m located on the

scan path of the measurement system. A single-factor experiment

was performed for H, t, T, and v in 2019. The spacing between
FIGURE 3

Schematic diagram of the in-situ canopy observation experiment.
FIGURE 2

Schematic diagram and scene photographs of the crop fixing platform.
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adjacent experimental plots is 0.5−1.0 m. A uniform distribution of

three to seven measurement points was selected randomly in each

plot during the experiment. The data acquisition methods for CHa

and CHm were the same as those used in the transplanted canopy

observation experiment.

In the single-factor experiment of v, the system completed CHm

acquisition from the start site to the end site at a specific moving

speed (Figure 3). Manual measurements were taken every 25 cm on

the scan path, and the average value was taken as the value of CHa.

Moreover, three scans (Scans 1, Scans 2, and Scans 3) were

conducted for each case to study the repeatability (Walter et al.,

2019) of the ultrasonic measurement. The measurements of Scans 1

and Scans 2 were used to compare the repeatability in the same

direction, and the measurements of Scans 1 and Scans 3 were used

to compare the repeatability in the opposite direction.

In addition, field measurements were carried out on maize

(2018, 2019, and 2020) and wheat (2019, 2020, and 2021) for several

years to investigate the general applicability of the ultrasonic system

for in-situ canopy height.
2.3 Experimental data analysis

The Pearson correlation coefficient (r) between the relative error

(percentage of the absolute error value over the true value) and the

experimental parameters was calculated using the SPSS software

(IBM Corp., Armonk, NY, USA) to explore the correlation between

changes in the single environmental factor and measurements.

Analysis of variance (ANOVA) was used in the same software to

evaluate the effects of single-factor experimental parameters on the

ultrasonic measurements. In addition, before performing ANOVA,

the normality of the samples was verified using the Shapiro-Wilk

normality test, and the variance homogeneity of the samples was

verified using the Levene test.

In this study, a CHm calibration model was established using the

multiple regression method in Origin 8.5 software (OriginLab,

Northampton, MA, USA), and the output value of the calibration

model was the calibration value of canopy height (CHc). The

coefficient of determination R2, and root mean square error

(RMSE) were used for model evaluation by Equations (9, 10). The

variance inflation factor (VIF) was chosen as the indicator of

multicollinearity to avoid variables with severe multicollinearity

from distorting the estimation of the regression model (Doi, 2019).

It is calculated as follows in Equation 8:

VIF =
1

1�R2
i

(8)

where R2
i is based on the variance of the ith independent variable

around its mean that is explained by the other independent variables

in the model. When the VIF > 10 (Miles, 2014), it indicates that the

collinearity between the variables is too strong, so that the model

cannot be reasonably constructed using these variables.

R2 = 1 −o
n
i=1(CHc i − CHa i)

2

on
i=1(CHc i − CHa)

2 (9)
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RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

i=1(CHc i − CHa i)
2

n

s
(10)

In the above formula: CHa =
1
n (o

n

i=1
CHa i), CHci is the value of

the i-th CHc data, CHa i is the value of the i-th CHa data, n is the

number of samples.
3 Results and analysis

3.1 Original measurement reliability and
repeatability of ultrasonic sensor

It was necessary to verify the original measurement reliability of

the ultrasonic sensor before conducting the crop canopy

experiment. The results (Supplementary Figure S1) show that the

correlation between the measured values and the actual height of

the bare-soil slab had R2 values larger than 0.99 because a bare and

flat soil surface has a much better smoothness than a crop canopy

surface. And the average relative error of measurements was less

than 0.51%. The above data indicates that the ultrasonic sensor had

good measurement reliability.

Supplementary Figure S2 shows high repeatability of the

ultrasonic sensor during the data collection period for

measurement results. Data collection movements in the same and

opposite directions showed no significant differences in the

measurements. The R2 values were higher than 0.97, the slopes

were close to 1, and the intercept values for all measured fits were

below 5 mm.
3.2 Correlation between the actual and
measured values of canopy height

Figure 4 shows that maize had significantly better linear fitting

results for all growth stages than that of wheat. This is because the

maize plant leaves had not yet wilted and shed in large numbers

during the silage harvesting stage. Moreover, CHm (33.2−1462.1

mm for maize, 51.4−758.0 mm for wheat) and CHa (155.5−2984.3

mm for maize, and 7.4−450.7 mm for wheat) showed consistency to

some extent. However, the value obtained using the ultrasonic

sensor was much lower than the actual value (measurement

accuracy RMSE=374.5−976.3 mm) and was not suitable for direct

use. Therefore, further experiments are required to determine the

influencing factors, and the measurement results must be calibrated.
3.3 Experiment parameter
correlation analysis

The changing trends in the main canopy parameters with the

growth and development of canopies are shown in Figure 5. V3−VT

is part of the vegetative growth stage of maize. The canopy coverage

increased during these stages as the leaves grew. The LAI increased

from 0.103 to 3.979, and the NDVI increased from 0.062 to 0.863. In

addition, the canopy height of the maize plants increased from 161 to
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A

B

FIGURE 4

Relationship between the actual value of canopy height (CHa) and the measured value of canopy height (CHm) by ultrasonic sensor during all
sampling growth stages from 2018 to 2021 of maize (A) and wheat (B). The dashed lines indicate the best fit line.
A B

FIGURE 5

Variation in trends of the leaf area index (LAI), normalized difference vegetation index (NDVI), and actual value of canopy height (CHa) in each
observed crop growth stage of maize (A) and wheat (B).
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2421 mm as the plants grew. For wheat, the greening to heading

stages are part of the vegetative growth stage, and there was a similar

trend for the change in each parameter, as for maize. Wheat canopy

height (from 83 to 628 mm), LAI (from 0.905 to 2.307), and NDVI

(from 0.375 to 0.821) show the gradually increasing trend. The wheat

heading to maturity stages belong to the reproductive growth stage,

and the wheat height stops growing and leaves begin to fade during

this time. There was no change in the wheat canopy height, whereas

the LAI decreased to 0.291, and the NDVI decreased to 0.158.

The canopy structures during the maize VT and wheat heading

stage were relatively complete and stable. Therefore, variables such

as q, D, H, t, and v were analyzed during these stages (Table 4). The

data at the significance level indicate that in the observation height

range of 0.2−2.0 m, observation periods of 8:00−18:00, and moving

speed of 0−2.0 m min−1, changes in H, t, and v had no significant

effect on measurements. However, T, q, and D significantly affected

measurements within the observation angle range of 0−60° and

planting density range of 0.2 d−d. Hence, the growing period, the

angle at which the sensor was placed, and the crop planting density

were the key variables influencing ultrasonic measurement. In

addition, the influences of atmospheric pressure, temperature,

humidity, sound wave attenuation, and moving speed within a

certain range in this experiment can be neglected in the field.

Figures 6A and B show that with an increase in the observation

angle, the relative errors of measurement were reduced in an orderly

manner, and the downward trend became more obvious. Figures 6A

and C show that the relative error for maize from V3 to V9 continued

to decrease from 0.877 to 0.274. VT had the smallest relative error

among the growth stages with a range of 0.246−0.568. Figures 6B and

D show that the relative error of wheat in the regreening to maturity

stages first decreased and then increased with a variation range of 0.223

−0.621. The relative error in the heading stage was the lowest within

each period, ranging from 0.238 to 0.445. This is because the canopy

coverage was highest during the VT of maize and heading stage of

wheat during experiment. Similarly, themeasurement accuracy showed

the same trend for different canopy densities (Figures 6C, D). As the

planting density increased from 0.2d to 1.0d, the relative error range of

maize decreased from 0.667−0.950 to 0.561−0.862, and that of wheat

decreased from 0.661−0.894 to 0.445−0.627.
3.4 Establishment and assessment of the
canopy height measurement
calibration model

From the above analysis, it can be determined that planting

density and observation angle are the main factors affecting the

ultrasonic measurements. Because the measurement error from

observation angle can be reduced by fixing the observation

direction, it is necessary to study the measurement changes

caused by crop planting density. Figure 5 indicates that the NDVI

correlates well with LAI, and this vegetation index is relatively

mature and widely used in canopy measurement (Tucker, 1979).
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Hence, it is possible to use the NDVI to study the main factors

affecting ultrasonic measurements.

The wheat leaves in the mature stage withered when the canopy

height tended to be stable, and this situation did not comply with

the trend that canopy height increased with increasing coverage

(Figure 4B). In addition, crop height is stable during the late growth

stages, and observing canopy height before these stages is more

practical for production (Scotford and Miller, 2004; Aziz et al., 2004;

Walter et al., 2019). Therefore, only the crop growth stage prior to

leaf withering was studied when calibrating ultrasonic

measurements to reduce the complexity of verification.

Empirical calibration models were constructed using all data from

the in-situ canopy experiments. These data were divided into training

set and validation set by random sampling method (Shao et al., 2022;

Shao et al., 2023; Zhang et al., 2023). Taking the four-year data as a

whole when dividing these sets can enrich the year-differences of data

set, and this method of data processing can improve the adaptability of

themodel to different years andmake themodel more robust. Stratified

random sampling method (Zhu et al., 2020) was used in this study and

all data from each growth stage was randomly divided into training and

validation sets in a ratio of approximately 3 to 1. In all data, there were

403 groups of maize data in total (303 groups in the training set and

100 groups in validation set), and 286 groups of wheat data in total (216

groups in the training set and 70 groups in validation set). The

statistical characteristics of the sample data are shown in

Supplementary Table. S1. The single-factor and double-factor

calibration models were constructed based on above data and the

method of multiple non-linear regression (Berthold and Hand, 2006),

and the output was CHc. In the single-factor model, only CHm was

considered as input. For the double-factor model, the input parameters

were CHm and NDVI. In this study, both NDVI and CHm (R2 of 0.64

−0.71 between them) increased with crop growth, but due to the

growth difference between years and the saturation effect (the plant

height was still increasing when the canopy coverage reached its limit)

of NDVI, the variance inflation factor of maize and wheat (the VIF of

2.78−3.45) were within an acceptable range. Therefore, it is reasonable

to build the model based on the above research. When establishing the

calibration model, the equations (Table 5) were first obtained based on

the training set, and then the model were evaluated based on the

validation set (Figures 7A, B). For both maize and wheat, the R2 value

of the double-factor model was consistently higher than that of the

single-factor model. For example, the determination coefficient of the

linear fitting equation in the model evaluation results increased from

0.986 to 0.989 for maize, and from 0.925 to 0.964 for wheat when using

double-factor models. Meanwhile, there were decreases in the RMSE

(100.1 mm to 89.1 mm) for maize and the RMSE (58.0 mm to

40.1 mm) for wheat.

Then, CHm was calibrated based on all data from the in-situ

canopy experiments (maize N=403, wheat N=286), and the results

before and after using the double-factor model are shown in

Figures 7C and D. The accuracy of ultrasonic measurements was

significantly improved by using the double-factor calibration model

in Table 5. The measurement accuracy RMSE of maize decreased
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TABLE 4 One-way analysis of variance (ANOVA) to investigate the effects of the growth stage (T), observation angle (q), planting density (D),
observation height (H), observation time (t), and moving speed (v) of maize and wheat on the measurement value of canopy height by ultrasonic
sensor (CHm).

Maize Source Sum of squares df Mean square Significant level

T

Between groups 1969070.341 4 492267.585 < 0.001 (***)

Within groups 7335.111 10 733.511

Total 1976405.452 14

q

Between groups 1172021.991 4 293005.498 < 0.001 (***)

Within groups 64394.062 10 6439.406

Total 1236416.054 14

D

Between groups 124095.121 4 31023.780 0.012 (*)

Within groups 54417.105 10 5441.710

Total 178512.226 14

H

Between groups 8170.696 4 2042.674 0.297

Within groups 14413.311 10 1441.331

Total 22584.007 14

t

Between groups 11178.284 4 2794.571 0.376

Within groups 23627.825 10 2362.782

Total 34806.109 14

v

Between groups 15456.620 4 3864.155 0.393

Within groups 33995.154 10 3399.515

Total 49451.774 14

Wheat Source Sum of squares df Mean square Significant level

T

Between groups 192533.594 4 48133.399 < 0.001 (***)

Within groups 1123.690 10 112.369

Total 193657.284 14

q

Between groups 99800.448 4 24950.112 < 0.001 (***)

Within groups 6368.467 10 636.847

Total 106168.916 14

D

Between groups 58847.060 4 14711.765 < 0.001 (***)

Within groups 4879.657 10 487.966

Total 63726.717 14

H

Between groups 1396.842 4 349.211 0.261

Within groups 2253.948 10 225.395

Total 3650.790 14

t

Between groups 2464.383 4 616.096 0.436

Within groups 5953.447 10 595.345

Total 8417.830 14

v

Between groups 780.660 4 195.165 0.483

Within groups 2090.498 10 209.050

Total 2871.158 14
F
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T is growth stage, maize growth stages include the three-leaf stage (V3), six-leaf stage (V6), nine-leaf stage (V9), twelve-leaf stage (V12), and tasseling stage (VT), and wheat growth stages include
the regreening, jointing, heading, filling, and maturity stages. Treatments in rows followed by different letters differed significantly based on an F-test, and the significance of each correlation is
indicated as *P< 0.05, ***P< 0.001, and NS (not significant) P > 0.05.
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from 967.3 mm to 87.3 mm, and the RMSE of wheat decreased from

216.7 mm to 42.0 mm.
3.5 Accuracy evaluation of calibration
model within different years

The actual value of canopy height and NDVI of maize (V6, V9,

and VT) and wheat (jointing and pre-filling) are shown in Figure 8.

Maize canopy height increased from 735−1042 mm to 2134−2810
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mm during the V6−VT period. The NDVI of maize increased from

0.42−0.66 in V6 stage to 0.76−0.92 in VT stage as leaves grew. The

CHa of wheat was lower than that of maize, and increased from 298

−449 mm in the jointing stage to 533−716 mm in the early-filling

stage. The CHa and NDVI fluctuations observed during the early-

filling stage were similar to those observed during the jointing stage.

The double-factor model (Table 5) output for each year based

on the experiment data (Table 3) is shown in Figure 9. The RMSE

values for maize (Figure 9) was diminished from a range of 894.1

−1042.6 mm to 81.4−93.6 mm after calibration. Similarly, the

RMSE for wheat (Figure 10) decreased from 221.0−231.2 mm to

37.1−43.4 mm. There was no obvious difference in calibration

effects between different years.

Figure 11 displays the residuals before and after calibration of

canopy height measurements during growth stages of maize (V6, V9,

and VT stages) and wheat (jointing and early-filling stage). The residual

of CHm was smaller in higher canopy coverage. Considering the

jointing stage of wheat as an example (Figure 11D), the mean

residuals of CHm were 2019 (112 mm)<2020 (125 mm)<2021

(132 mm). Furthermore, maize (102−1491 mm) exhibits a greater

CHm residual than wheat (21−372 mm), owing to its lower planting

density and higher overall canopy height. After the double-factor

model calibration, the mean CHa residuals of maize decreased from

307−1334 mm to 47−91 mm, the mean CHa residuals of wheat

decreased from 113−268 mm to 26−49 mm, and there was no

obvious difference in the calibration results in different years.
A B

C D

FIGURE 6

Variation in trends of relative error in the measurement value of canopy height by ultrasonic sensor (CHm) under different observation angles (q) and
planting densities (D) for maize (A, C) and wheat (B, D).
TABLE 5 Nonlinear regression models based on the in-situ canopy
experiment data (maize N=303, wheat N=216).

Crop
Input
factor

Calibration model formula

Maize

CHm(x1) CHc=46.548 + 2.944x1–0.000669x1
2 R2 = 0.987

CHm(x1),
NDVI(x2)

CHc=118.07 + 2.321x1–183.474x2–
0.000657x1

2
+ 201.804x2

2

+0.685x1x2

R2 = 0.989

Wheat

CHm(x1) CHc=6.76 + 2.654x1–0.002767x1
2 R2 = 0.927

CHm(x1),
NDVI(x2)

CHc=–99.398 + 0.806x1 + 274.845x2–
0.000579x1

2
+ 463.433x2

2

–0.028x1x2

R2 = 0.961
The output parameter of the model is the canopy height calibration value (CHc), and the input
factors include the canopy height measurement value by ultrasonic sensor (CHm) and the
vegetation normalization index (NDVI) at the same observation location.
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4 Discussion

4.1 The parameters influencing ultrasonic
measurements and research innovations

The ultrasonic sensor is a device with good stability and

repeatability in distance measurement, but it has relatively low
Frontiers in Plant Science 12
precision in measuring maize or wheat canopy height. The

experiment results show that the observation height (0.2-2.0 m),

observation period (8:00-18:00) and relative moving velocity (0-2.0 m

min-1) have no significant effect on measurement results (P≥0.05). It

can be seen that the effect of distance change on canopy height is

negligible in real conditions, although this will cause a change in the

observed area, and the sound attenuation increases with the increase
A B

C

D

FIGURE 7

Calibrations before and after using the double-factor model based on the in-situ canopy experiment data (A) number of maize samples N=100.
(B) number of wheat samples N=70. (C) number of maize samples N=403. (D) number of wheat samples N=286) from 2018 to 2021. .
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of propagation distance. At the same time, although ambient

temperature changes can significantly affect ultrasonic propagation

(Scotford and Miller, 2004), the built-in temperature compensation

module (-40−70 °C) guarantees that temperature changes (16-38 °C)

during the experiment will not interfere with the ultrasonic sensor

measurements. Barmeier et al. (2016) found that relative moving

velocity affects ultrasound measurements, which is contrary to the

conclusions of this study. This is due to the fact that the center pivot

system cannot move at a high speed (at a low speed of 0-2.0 m min-1)

and the flat pavement in the experiment can effectively avoid the

vibrations and oscillations of the ultrasonic system. Of course, it is
Frontiers in Plant Science 13
possible to try to include stabilization devices in subsequent studies

based on this conclusion. In addition, the results showed that the

growth period (V3-R of maize, green—pre-filling stage of wheat),

observation angle (0-60°), and planting density (0.2-1.0 times of the

standard planting density) had significant effects on ultrasound

measurement (P<0.05). Combined with Figures 4 and 5, the above

results can be attributed to the change in canopy coverage within the

sensor's field of view. Studies have shown that only a plane with

sufficient area at a suitable angle can effectively reflect the ultrasonic

signal (McKerrow and Harper 2002; Andújar et al., 2012). In this

experiment, maize plants were widely spaced, wheat leaves were
A B

C D

FIGURE 8

Actual values of canopy height and NDVI under each water treatment during typical crop growth stages of maize (A, B) and wheat (C, D).
A B C

FIGURE 9

The scatter-fit plot before and after calibration of maize in 2018 (A), 2019 (B), and 2020 (C). CHc (in red) is the calibrated value of canopy height by
calibration model, and CHm (in yellow) is the measured value of the canopy height by ultrasonic sensor.
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narrow, and their leaves grow obliquely. As a result, at low leaf

densities, the effective signal of the sound wave was reflected by the

lower canopy leaves or soil, resulting in measurements lower than the

actual canopy height. This rationale explains why Sui and Baggard

(2018) and Chang et al. (2017) obtained relatively accurate

measurements for soybean (the RMSE of 58 mm), cotton (the

RMSE of 31 mm), and blueberry (the RMSE of 23 mm). The

leaves of these crops are more horizontally oriented and denser

than those of maize and wheat. This orientation and density

effectively reflect acoustic signals, as noted by Yuan et al. (2018).

Some scholars (Aziz et al., 2004; Farooque, 2013; Chang et al.,

2017) have measured the performance of ultrasonic sensors in the
Frontiers in Plant Science 14
laboratory or with the crops in a single growth period, and some

influencing factors in their research have been measured and

analyzed. However, few studies have identified the main factors

influencing ultrasound measurements in the field environment

through continuous and systematic multi-year maize and wheat

experiments, as in the present study. At present, most of the crop

field research on ultrasonic sensors is mainly focused on the direct

application without calibration in field. For example, Sui and

Baggard (2018) integrated a variety of sensors (including

ultrasonic sensors and infrared temperature sensors) into a center

pivot system to measure the soybean canopy, but their experiment

did not consider using spectral reflectance data to further assist the
A B C

FIGURE 10

The scatter-fit plot before and after calibration of wheat in 2019 (A), 2020 (B), and 2021 (C). CHc (in red) is the calibrated value of canopy height by
calibration model, and CHm (in yellow) is the measured value of the canopy height by ultrasonic sensor.
A

D E

B C

FIGURE 11

The residual box plots before and after calibration during typical crop growth stages of maize (A–C) and wheat (D, E). CHc is the calibrated value of
canopy height by calibration model, and CHm is the measured value of the canopy height by ultrasonic sensor.
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ultrasonic sensor in obtaining more accurate measurements. Of

course, the reason why they did not conduct such a study may also

be related to the fact that the experimental crop was soybean, but

this is more indicative of the importance of the research on maize

and wheat in this study. Therefore, based on their meaningful

and valuable research foundation, this study attempts to combine

NDVI and ultrasonic data to accurately measure the canopy

height of maize and wheat. Similarly, Pittman et al. (2015) built a

tractor-based platform with an ultrasonic sensor, the NDVI sensor,

and the laser sensor, but their model of alfalfa canopy height was

constructed using only ultrasonic and laser data. In addition, many

scholars have obtained more accurate ultrasonic measurements by

continuously and repeatedly measuring the same experimental plot

(Scotford and Miller, 2004) or taking the 95.5-100th percentile

(Jimenez-Berni et al., 2018; Madec et al., 2017; Sun and Li, 2016),

but these operations will affect the measurement efficiency or the

integrity of the original data. In summary, the content of this study

can serve as a further supplement and improvement in their

research. In this study, we attempted to introduce the canopy

coverage into the calibration model. It is possible for the methods

of fitting with empirical formulas (Section 3.4) to compensate for

the errors caused by ultrasound. The calibration model achieved

satisfactory results in the measurement of canopy height in maize

and wheat, and the calibration results for different years and growth

periods had satisfactory accuracy (Section 3.5), which shows the

reliability and applicability of this model.

Moreover, it is necessary to analyze the propagation and

reflection mechanism of ultrasonic signals under complex canopy

conditions to improve the adaptability of the model to different

regions and crops. Therefore, it is important to use more advanced

image or laser point cloud techniques to understand the distribution

of the leaves, and to optimize the measurement results in

combination with more accurate mathematical models. In addition,

due to the rapid technological innovation, there are other methods of

measuring canopy height in addition to ultrasonic technology, such

as LiDAR or UAS imagery technology. Therefore, in the following

section, a comparative analysis of various measurement methods is

presented to further clarify the characteristics of the calibrated

ultrasonic measurement method.
4.2 Comparison of ultrasonic with other
canopy height measurement techniques

In addition to ultrasonic measurements, the technologies widely

used in canopy height measurement include LiDAR (Jimenez-Berni

et al., 2018; Walter et al., 2019) and UAS imagery (Friedli et al.,

2016; Madec et al., 2017). Among them, LiDAR is based on the

principle of time of fly (Sun et al., 2017). The canopy height was

obtained by converting the raw data from LiDAR into a three-

dimensional (3D) point cloud. This technique has achieved good

measurement accuracy in various researches, and for example, the

measurement accuracy of rye (Busemeyer et al., 2013), barley (Tilly

et al., 2015), rice (Tilly et al., 2014), cotton (Sun and Paterson,
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2017), and pea (Underwood et al., 2017) is 24 mm, 30−60 mm,

50 mm, 35−65 mm, and 46 mm respectively. UAS Imagery uses a

UAS platform with a high−resolution camera. This technique

retrieves a digital surface model (3D point cloud) of the canopy

from multiple photographs using the triangulation principle (Yuan

et al., 2018) and estimates plant height based on this principle. This

method is also widely used in the measurement of barley (Bendig

et al., 2014), sorghum (Malambo et al., 2018), shrub (Dıáz-Varela

et al., 2015; Fraser et al., 2016) and forest (Dandois and Ellis, 2013;

Puliti et al., 2015) canopy height, and the measurement accuracy of

UAS imagery on above canopy types is 100, 120−240, 80−200, and

400−1400 mm respectively.

After conducting a comparison, researchers (Yuan et al., 2018;

Yuan, 2019) found that the ultrasonic measurements had the lowest

accuracy, the LiDAR measurements had the highest accuracy

(Madec et al., 2017), and the UAS imagery measurements had the

moderate accuracy. This is because LiDAR has the high resolution

(3−5 mm) and the strong penetration (Madec et al., 2017). LiDAR

can directly generate a fine canopy 3D point cloud (Friedli et al.,

2016) from the raw measurements obtained via top-down scanning

(Walter et al., 2019). The UAS imagery indirectly generates 3D

point clouds using a large number of overlapping canopy images at

different angles. UAS requires a high flight altitude to increase the

measurement range and prevent propeller airflow from disturbing

the canopy. Due to the limited penetration ability of UAS imagery

when photographing canopy (Yuan et al., 2018), this technique

cannot accurately identify canopy features such as wheat ears or

corn male ears. Some scholars (Grenzdörffer, 2014; Bareth et al.,

2016; Van der Voort, 2016) have got the similar conclusion that

UAS lacks effective canopy top reconstruction capacity. As a result,

the accuracy of UAS imagery was lower than that of lidar data.

Compared to the above two methods, ultrasonic sensors are affected

by the large deviation in the direction of reflection of leaves when

using ultrasonic measurements (Yuan et al., 2018) although they

have the resolution of 0.172 mm. The top of the canopy of maize or

wheat cannot form a continuous plane. Therefore, the error in the

ultrasonic measurement value is relatively large.

In this study, it was verified that the calibration model reached

the RMSE (ultrasonic measurement error) of 87.3 mm for maize

and 42.0 mm for wheat. Other studies have also taken

measurements of the same crop canopy. The measurement

accuracy of LiDAR for maize is 50−170 mm (Li et al., 2015; Hu

et al., 2023: Anthony et al., 2014) and 17−50 mm for wheat is (Virlet

et al., 2016; Jimenez-Berni et al., 2018; Yuan et al., 2018). The

measurement accuracy of UAS imagery for maize is 90−190 mm

(Varela et al., 2017; Malambo et al., 2018) and 30−90 mm for wheat

(Holman et al., 2016; Madec et al., 2017; Yuan et al., 2018). The

calibrated ultrasonic measurement accuracy was already at the same

level as the measurement accuracy of the above technique after

comparing the above results. Considering that lidar is expensive

(Fricke and Wachendorf, 2013), and UAS has limited payload and

flight time (Deery et al., 2014). In addition, the processing of large

amounts of point cloud data is cumbersome (Singh et al., 2016), and

special software is required for accurate information evaluation
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(Gebbers et al., 2011; Llorens et al., 2011). In contrast, ultrasonic

sensors are a relatively low−cost (Sui et al., 2012) and user−friendly

(Madec et al., 2017). The ultrasonic output is easy to handle and its

relatively low cost allows users to use multiple sensors in parallel

(Andújar et al., 2012). The installation on the platform of ground

−based agricultural machinery, allows the sensing equipment to

remain on site, and enables quick and rapid canopy measurements.

These systems facilitate the timely implementation of key

management decisions. Hence, the established calibration models

in this study have effective application values.
4.3 Limitations and suggestions

A four-year field experiment of the ultrasonic sensor was

conducted based on of the field data in this study. The

constructed ultrasonic calibration model was verified as suitable

for canopy height measurements (maize/wheat) in different years

and the constructed system can acquire CHm and canopy NDVI

data stably and efficiently based on a center pivot. Although the use

of spectral sensors inevitably increases the cost, the price of this type

of sensor combination is still lower than that of LiDAR. Additional

observational indicators such as spectral data indicate that more

comprehensive and real-time crop growth information can be

obtained. These indicators can help ultrasonic measurement

systems to play a more important role in the field of non

−destructive prediction of important crop growth parameters

such as leaf area index and aboveground biomass (Scotford and

Miller, 2004; Fricke and Wachendorf, 2013; Pittman et al., 2015).

Compared with the UAS, the ultrasonic measurement system built

by the ground-based platform does not have an advantage in the

data throughput of canopy information acquisition (Yuan et al.,

2018). However, this disadvantage can be compensated by the ease

with ultrasonic data. The relatively slow measurement speed allows

for sufficient data processing time for platforms such as center pivot

irrigation machines. These data processing time make it possible for

the system to make flexible and timely management decisions. In

follow-up research, researchers can try to efficiently combine the

measurement system with the agricultural machinery platform

toward the field management goal of “canopy measurement−data

processing−decision implementation”.

Future research should focus on improving canopy height

measurements throughout the growth cycle of most field crops.

Cost comparison tests can be carried out under field conditions.

These tests help to determine the types of sensors that are suitable

for long-term monitoring. In addition, it is important to conduct

the research on the optimal configuration of multi-type sensor

combinations. These tests can help to improve the observation

efficiency of multi-sensor systems.

It is undeniable that LiDAR and UAS Imagery possess

numerous irreplaceable measurement advantages. The use of fine

imaging or 3D cloud mapping technology facilitates further analysis
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of the reflection propagation principle of ultrasonic signals in

complex crop canopy structures. Therefore, combining ultrasonic

systems with various remote sensing technologies (e.g., LiDAR,

UAS, and satellites) to complement the advantages of multi-source

data is another important research direction (Schirrmann

et al., 2017).
5 Conclusion

In this study, the CHm values of maize and wheat were obtained

using a self-built ultrasonic ranging system. In addition to

maintaining good measurement stability and repeatability, this

system has proven to be a long-term field measurement device.

Moreover, combined with the canopy height measurement

experiment, the canopy coverage significantly affected the

ultrasonic measurement results (P< 0.05). Under the conditions

of changing the observation height within 0.2−2.0 m, the

observation period within 8:00−18:00, and the relative moving

speed within 0−2.0 m min−1, the canopy height measurements

were not significantly affected (P > 0.05).

Furthermore, the canopy coverage represented by the NDVI is

an important parameter for constructing nonlinear regression

models. With this parameter, these empirical models can be quite

useful for ultrasonic measurements of canopy height within

different years. After calibration, the measurement accuracy

RMSE decreased from 967.3 mm to 87.3 mm for maize canopy

height, and the RMSE decreased from 216.7 mm to 42.0 mm for

wheat. The results of this study can be applied to large-scale

agricultural machinery platforms and can provide technical

support for real-time field management.
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