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Research on non-destructive and
rapid detection technology of
foxtail millet moisture content
based on capacitance method
and Logistic-SSA-ELM modelling
Zhichao Qiu1, Gangao Li1, Zongbao Huang2, Xiuhan He1,
Zilin Zhang1, Zhiwei Li1,2* and Huiling Du3*

1College of Agricultural Engineering, Shanxi Agricultural University, Jinzhong, China, 2College of
Information Science and Engineering, Shanxi Agricultural University, Jinzhong, China, 3Department of
Basic Sciences, Shanxi Agricultural University, Jinzhong, China
Moisture content testing of agricultural products is critical for quality control,

processing efficiency and storage management. Testing foxtail millet moisture

content ensures stable foxtail millet quality and helps farmers determine the best

time to harvest. A differential capacitance moisture content detection device was

designed based on STM32 and PCAP01 capacitance digital converter chip. The

capacitance method combined with the back-propagation(BP) algorithm and the

extreme learning machine(ELM) algorithm was chosen to construct an analytical

model for foxtail milletmoisture content, temperature, and volume duty cycle. This

work performs capacitance measurements on foxtail millet with different moisture

contents, temperatures, and proportions of the measured substance occupying

the detection area (that is, the volumetric duty cycle). On this foundation, the

sparrow search algorithm (SSA) is used to optimize the BP and ELM models.

However, SSA may encounter problems such as falling into local optimization

solutions due to the reduction of population diversity in the late iterations. As a

consequence, Logistic algorithm is introduced to optimize SSA, making it more

appropriate for solving specific problems. Upon comparative analysis, the model

predicted using the Logistic-SSA-ELM algorithm was more accurate. The results

indicate that the predicted values of prediction set coefficient of determination

(RP), prediction set root mean square error (RMSEP) and prediction set ratio

performance deviation (RPDP) were 0.7016, 3.7150 and 1.4035, respectively. This

algorithm has excellent prediction performance and can be used as a model for

detection of foxtail millet moisture content. In view of the important role of foxtail

millet moisture content detection in acquisition and storage, it is particularly

important to study a nondestructive and fast online real-time detection method.

The designed capacitive sensor with differential structure has well stabilization and

high accuracy, which can be further studied in depth and gradually move towards

the general trend of agricultural development of smart agriculture and

precision agriculture.
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1 Introduction

Foxtail millet is a major food crop in China, and how much

water it contains after harvest is related to various aspects such as

yield issues, sales price and storage with processing, while at the

same time, it is also an essential indicator of the quality of the foxtail

millet. Excessive moisture content of foxtail millet can easily lead to

mold, germination, deterioration and other problems, so that it

loses its commodity value, reduces the nutritional value, and even

causes hidden food safety hazards; while too low a moisture content

will interfere with the nature of the processing and storage, increase

energy consumption, and negatively affect the efficiency of

production (Qian et al., 2018; Zeyu et al., 2021). Therefore, the

determination of foxtail millet moisture content is an integral part

of grain science and technology and processing production. To this

end, this paper designs a differential capacitance sensor which can

detect moisture content online in real time. This can be used to infer

the foxtail millet quality within a small area based on the online

real-time detection results and further develop towards modernized

precision agriculture. In this regard, it is of great significance to

conduct accurate online real-time measurement of foxtail millet

moisture content.

At present, the research of online moisture content detection

system in foreign countries is relatively mature, but the domestic

research on this aspect started late, and the application is few.

However, after many years of experimental analysis, domestic

scholars have also achieved some obvious results in moisture

content detection. Liu Jin et al. designed a portable grain

moisture content detection device based on a microstrip

microwave sensor. The results show that when microwave

attenuation, phase shift and temperature are selected as inputs to

the Random Forest Algorithm model, the prediction results show

the best accuracy and stability, with a maximum average absolute

error of 0.55 per cent and a maximum standard deviation of 0.41

per cent. The device can be well applied to the moisture content

detection of three kinds of grains: rice, soybean and wheat. The

designed portable grain moisture content detection device is small

in size, light in weight, fast and accurate in detection results, and

provides important reference significance for real-time

measurement of agricultural products and the development and

application of intelligent agricultural equipment (Jin et al., 2023).

Zhang Y et al. introduced a new approach based on near-infrared

(NIR) hyperspectral imaging for the detection of moisture content

in maize seeds and investigated the extraction of the centre of mass

region using averaged spectra. The evidence suggests that the PLSR

model built by extracting the average spectrum from the center-of-

mass region performs well and has a high potential (Zhang and

Guo, 2020). Based on the principle of dielectric properties of wheat,

An Xiaofei et al. designed an on-line moisture detection device for

combine harvester, which realized fast and stable on-line detection

of wheat moisture content under the operating conditions of

combine harvester. The test results showed that the online

detection error of moisture content was within 3% under static

conditions. Under the dynamic change conditions in the field, a

moisture detection model based on dielectric constant and

temperature factor was established, and the correlation coefficient
Frontiers in Plant Science 02
between measured and detected values reached 0.92, and the online

detection error was less than 5 per cent. The method of dynamic

continuous sampling and static intermittent measurement

significantly improves the accuracy of on-line detection of

moisture content, and provides a rapid measurement means for

realizing accurate wheat production (Xiaofei et al., 2022). Wang

Xiao et al. designed and processed a microstrip patch antenna to

achieve non-contact, real-time and high-precision water content

detection using rice as the detection object. Using both contact and

non-contact detection methods, the relationships among rice water

content, bulk density, detection height and resonance frequency,

return loss and phase were investigated. The detection sensitivity of

the proposed microstrip antenna is characterised by resonance

frequency, return loss, and phase as 600 kHz/%, 0.149 dB/%, and

1100 kHz/%, respectively, and the minimum average relative error

of detection is 0.026%, 0.083%, and 0.028%, respectively. The results

demonstrate that the microstrip antenna has special advantages in

grain moisture content detection, which provides an important

reference for real-time moisture content detection during grain

storage and transport (Xiao et al., 2021). By determining the

hyperspectral reflectance and water content of summer maize

leaves, Zheng Zhikang et al. constructed spectral indices in any

two bands using the original and converted spectra and analysed the

relationship between spectral indices and leaf water content. The

results showed that the spectral reflectance in the short-wave

infrared band decreased with the increase of leaf water content,

and the constituent bands of the optimal spectral indices were

mainly located in the short-wave infrared band, among which the

ratio spectral indices based on the first-order derivative spectra (R1

563/R1 406) and the normalised spectral indices [(R1 563 - R1 406)/(R1

563 + R1 406)] had the best correlation with leaf water content, with

correlation coefficients of 0.83 in absolute value. The multifactor

regression model was simulated better than the single-factor

regression model, and the sparrow search-based random forest

regression model had the highest accuracy, with a validation set

coefficient of determination (R2) of 0.78, and root-mean-square

error (RMSE) and relative error (RE) of 1.14 per cent and 1.09 per

cent, respectively. In this study, a remote sensing estimation model

was established by analysing the relationship between maize leaf

water content and hyperspectral reflectance to provide a basis for

water management of summer maize production in Guanzhong

region (Zhikang et al., 2023).

The significance of using physical modelling i.e. capacitive

sensors combined with algorithms to predict moisture content in

this study is to achieve real-time monitoring and prediction of

moisture content, which can provide real-time data support in

multiple fields. It can help to improve the efficiency of resource

utilization, reduce costs, and achieve the goal of sustainable

development, thus providing important information and

application value in a variety of fields. The common methods of

measuring moisture content mainly include direct drying oven

method, resistance method, ray method, microwave method (Lin

et al., 2022), near infrared method (Chen et al., 2017), capacitance

method (Fridh et al., 2018; Deng et al., 2020; Oommen and Philip,

2023), etc. Drying oven method which measures moisture content

has accurate measurement results, but this method is time-
frontiersin.org
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consuming and not easy to realize on-line real-time detection,

normally the measurement results of this drying method are used

as the standard results (jing et al., 2018). Resistance method of

measuring moisture content is inexpensive and has a rapid test

speed, but it is limited by the influence of material distribution,

which leads to low signal strength and low accuracy (Shibiao et al.,

2019). Ray method of measuring moisture content detects with fast

speed, wide range and excellent penetrability, which can quickly carry

out non-destructive testing of the moisture content of the measured

substance. However, there are radiation hazards in the ray, and the

equipment is costly, which is not favourable to the agricultural testing

environment (Yitong et al., 2021). Microwave method of measuring

water content has low energy consumption, high testing speed and

superior anti-interference ability. Nevertheless, the lower limit of

detection is insufficiently low, which may easily cause standing wave

interference. Meanwhile, the measured value is associated with the

composition of materials, and different varieties need to be calibrated

individually (Chenyu, 2023). Near infrared method to measure the

moisture content analytic rate is fast, no damage to the test sample,

but the detection accuracy is affected by the test sample particle size,

density and other factors (Leblon et al., 2013).

Considering the shortcomings of the above methods, this paper

applied the capacitance method and designed a differential

capacitance sensor to measure the moisture content. The

capacitance method for measuring water content provides

relatively low cost, with a fast response time and comparatively

simple structure, which can satisfy the accuracy requirements. The

principle is according to varying dielectric constants of foxtail millet

with different moisture content, there will be a difference in the

capacitance value when passing through the two sides of the pole

plate (Yin, 2018; Nath and Ramanathan, 2020; Hao et al., 2021; Lev

et al., 2021; Danyang et al., 2022; Shekhar and Prasad, 2023).

Analyse the change of capacitance value when the moisture
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content of foxtail millet, ambient temperature, and volumetric

duty cycle are varied. And then, a relevant mathematical model is

established, and the model is used as a benchmark in order to

calculate the moisture content of the foxtail millet.

A graphical abstract of this paper is shown in Figure 1 below:
2 Material and methods

2.1 Experimental materials

The test site was Taigu District, Jinzhong City, Shanxi Province,

which has a warm temperate continental climate. Spring has a

higher temperature than fall, while summer is warm, hot and rainy,

as well as long and cold in winter. In this experiment, Zhangza

foxtail millet planted in Taigu District, Jinzhong City, Shanxi

Province was used as the sample, which was collected at the

beginning of October, 2022. Since the experiment tested the

moisture content of the cereal granules, the earhead was required

to be threshed as shown in Figure 2. Wherein, Figure 2A shows the

state of the foxtail millet ears, and Figure 2B shows the state of the

foxtail millet ears after threshing. The harvested foxtail millets were

randomly divided into 48 samples of 720g each. Simultaneously,

each sample was placed in a plastic self-sealing bag (size 240 mm ×

350 mm) so as to prevent the evaporation of water. Thereafter, they

were stored at room temperature of 22°C.

A total of 16 different gradients of moisture content were

formulated for this study and each of them was divided into three

samples for testing experiments, summarizing a total of 48 foxtail

millet samples. The initial moisture content of the harvested foxtail

millets was measured to be 14.42% using a rapid moisture meter

(Model HM-101X, Shanghai Hegong Scientific Instrument Co.,

Ltd., precision 0.001g). Weighing was done using a balance
FIGURE 1

Graphical abstract.
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(Model ACS-30, Shanghai Kaishi Electronics Co., Ltd., 10g

divisional value) with 720g for the each portion. In order to

prepare the samples with different moisture contents of the

gradient, the weighed foxtail millet samples were taken out first.

After that, the samples that are higher than the initial moisture

content were obtained by spraying deionized water, and the samples

that are lower than the initial moisture content were obtained by

placing them in an electric thermostatic blower drying oven (GZX-

GF101-2-BS-II/H type, Shanghai Yuejin Medical Equipment Co.,

Ltd., max. temperature 300°C) in various times, set the temperature

to 105°C. And cool them down to room temperature. Using the

rapid moisture meter again, the remaining 15 kinds of moisture

content were measured as 5.64%, 8.36%, 8.62%, 11.65%, 12.04%,

12.17%, 13.57%, 15.99%, 16.26%, 17.65%, 19.52%, 21.51%, 22.58%,

23.27%, and 23.52%, respectively. Ultimately, a sum of 16 kinds of

foxtail millet samples with different moisture contents were

acquired and numbered. For ensuring uniform water absorption

in each sample, the prepared samples were put into plastic self-

sealing bags. They were set in a room temperature environment at

22°C for 1 to 2 days. During this period, the samples were removed

3 to 4 times a day, stirred thoroughly, then poured back into the bag

and sealed well again. This ensures that the moisture in each sample

is individually distributed evenly.
2.2 Differential capacitance sensor
detection principle

In this study, a capacitive sensor with differential structure is

designed to be constructed on the basis of a capacitive sensor with

parallel plate structure. Differencing is the method of subtracting

the two adjacent values in a series of output data to obtain the

amount of change in the two adjacent values. In the process of data

analysis, only the results after differencing are analysed. This means
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that only changes between successive data are analysed, ignoring

trends or seasonality formed through the accumulation of the data

itself. Thus, the role of differencing is to mitigate irregular

fluctuations between the data and make their fluctuation curves

smoother. It is also capable of minimizing the negative impact of

external disturbances, such as environmental factors, on the

measured capacitance value. The differential handling of the data

yields an increment of the data rather than the data itself, and

generally the data will be more stable after first-order differencing,

so the differenced data is used for analysis (Heming et al., 2019).

Since water and foxtail millet have distinct dielectric properties,

variations in the capacitance values detected by the sensor arise

when foxtail millets with different moisture contents fill the

detection area.

While the foxtail millets fulfil the analyzed moisture content

condition, the sensor output capacitance C is:

C =
Se0er
d

(1)

Where, S is the relative area of the pole plate in m2; e0 is the

vacuum dielectric constant, which is specified in the International

System of Units as e0 =8.854187818×10-12 F/m; er is the relative

permittivity of the foxtail millets in the detection area; d is the pole

plate spacing in m.

The inter-polar plate medium is composed of air and foxtail

millets, while the foxtail millets contain varying amounts of water,

so that the total volume V can be expressed as:

V = Vcereal + Vwater + Vair (2)

er =
Vcereal

V
ecereal +

Vwater

V
ewater +

Vair

V
eair (3)

Where, Vcereal is the volume occupied with dry foxtail millets in

the detection area in m3; Vwater is the volume occupied with
A

B

FIGURE 2

The state of foxtail millet before and after threshing. Figure (A) shows the state of the foxtail millet ears. Figure (B) shows the state of the foxtail millet
ears after threshing.
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moisture in the detection area in m3; Vair is the volume occupied

with air in the detection area in m3; ecereal is the relative permittivity

of dry foxtail millets; ewater is the relative permittivity of moisture;

eair is the relative permittivity of air. Substituting Equation 3 into

Equation 1 to get Equation 4 which can be written as:

C =
Se0
d

(
Vcereal

V
ecereal +

Vwater

V
ewater +

Vair

V
eair) (4)

e =
Vair

V
(5)

Here, e is the foxtail millet pore ratio in the detection area.

According to the formula for the calculation of moisture content, it

is known that the moisture content W of the foxtail millet can be

written as:

W =
rwaterVwater

rcerealVcereal + rwaterVwater
� 100% (6)

Where, rcereal is the dry foxtail millet density in kg/m3 and rwater
is the moisture density in kg/m3.

Once the capacitive sensor dimensional structure is specified, S,

e, and d are determined. Furthermore, rcereal , rwater , e0, ecereal , ewater ,
and eair are determined by the substance itself and are known

values. In this study, rcereal =600kg/m3, rwater =10³kg/m³, ecereal =3,
ewater =81, eair =1.00053. Thus A, B, D, and F can be expressed as:

A =
Se0rwater(1 − e)(ecereal − ewater)

drcereal
(7)

B =
rwater
rcereal

(8)

D =
Se0
d

(1 − e)ewater (9)

F =
Se0
d

eeair (10)

According to Equations 4–10, the capacitance C can be

expressed as the following equation:

C = A(
W

1 −W
+ B) + D + F (11)

In the formula, A, B, D and F are all structural constants of

the sensor.

From Equation 11, it can be observed that the value of moisture

content of the foxtail millet can be derived from the value of

capacitance C.

During the capacitive sensor functioning, the relative dielectric

constants ecereal , ewater , and eair are associated with the temperature

(Jinwu et al., 2021). Therefore, for this affecting factor, it should

be considered.

At room temperature, the relative dielectric constant of foxtail

millets is 2.5 to 4.5, while the relative dielectric constant of water is 81.

Obviously, when the moisture content of the foxtail varies, there will

be a consequent change in its relative dielectric constant, which will

affect the capacitance value. It can be seen that both are positively
Frontiers in Plant Science 05
proportional to each other. When foxtail millets with different

moisture content are placed in the detection area, er is different,

which in turn affects the capacitance value of the output in the

detection area, and the moisture content of the foxtail millets can be

estimated according to the corresponding mathematical model.
2.3 System design

An electrode line is drawn from each of the two pole plates on

each side of the detection area, and from each of the other two pole

plates that form a differential structure with it, to connect to the

PCAP01 capacitive-digital converter chip. The chip covers a

measurement range from a few fF to several hundred nF with

high measurement accuracy, low power consumption and

extremely fast measurement speed. As a result, it has a wide

range of applications.

(1) Differential capacitance sensor design.

The designed differential capacitive sensor is composed of two

pieces of brass plates 150mm long and 100mm wide as well as two

pieces of brass plates 100mm long and 50mm wide, both 2mm

thick. This structure consists of two pairs of pole plates with a total

of two capacitance detection areas. One way is the detection

capacitance and the other way is the reference capacitance, that is

to say, it constitutes a differential structure. The designed

differential structure capacitance sensor can attenuate the

interference and enhance the detection accuracy of the sensor

with high sensitivity and fine stability. The principle of the

capacitance sensor as shown in Figure 3.

(2) Distribution of the sensor electric field.

Edge effects in electric fields refer to the phenomenon of the

existence of charges or electric fields at the edges or margins of

electrodes (Wei et al., 2022). At the edges of the electrodes, there is

an increase or decrease in charge density due to uneven charge

distribution on the electrode surface. This affects the potential and

electric field distribution throughout the electrode. Again, changes

in charge density can make the electric field stronger or weaker at

the edges, causing the electric field distribution to appear more

sophisticated at the edges, which in turn affects the performance of

the electrodes and the measurement results.

In view of this above, the electric field simulation of the

designed differential structure capacitance sensor is carried out

using ANSYS software. The primary steps of the simulation are as

follows: utilize SolidWorks to establish the model, create a new

electric field analysis in Workbench, and import the model; add

copper material in Engineering Data Sources; enter the model

module, add environment variables; build local coordinate system

of the new model, modify the model’s coordinate system and the

material; carry out mesh delineation, and its Element Size is 5mm;

apply the current load, Magnitude is set to 4uA; then install the air-

domain magnetic flux parallel boundary conditions; set the current

density to view the result model, and the electric field strength of the

whole result, and lastly, perform the solution. The result is displayed

in Figure 4. From the solution results, it can be seen that the

differential capacitive sensor electric field distribution is fairly

uniform, while getting uniform electric field distribution, the
frontiersin.org
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differential structure still cripples the influence of external

interference, which can broaden the application field.
2.4 Data processing and sample
set division

This study focuses on the effect of foxtail millet moisture

content, ambient temperature, and volumetric duty cycle on

capacitance. The above proportioned foxtail millets with moisture

content ranging from 5.64% to 23.52% were subjected to ambient

temperatures of 15°C, 22°C and 33°C, with the volume duty cycle

set to 0, 1/6, 1/4, 1/3 and 1/2, respectively. The capacitance values

collected for each sample at three temperatures and five volume

duty cycles, separately, were detected using the designed sensor.

Parallel experiments were conducted in each group and repeated

three times, which not only prevented the generation of chance
Frontiers in Plant Science 06
errors, but also observed the stability of the sensors during

detection. Observe the acquired data so as to search for some

abnormal data owing to the test operation and instrumentation, and

re-test them after eliminating them. Eventually, 720 sets of

capacitance data were obtained. Wherein, the capacitance value

data for performing model training is obtained by the following

steps: firstly, the output capacitance of foxtail millets with different

moisture content in the detection area of the larger size pole plate is

recorded. Secondly, the output capacitance of air detected by the

smaller size pole plate is recorded. Finally, the two simultaneous

output capacitance signals are differenced to obtain the training

data for the final model. Generally, when performing model

construction, the dataset is divided into training set, validation set

and test set. However, in this study, the dataset is directly divided

into training and testing sets due to the fact that too much

segmentation in a smaller dataset results in a smaller training set,

which may lead to overfitting (Ashtiani et al., 2021). In order to
FIGURE 4

Electric field distribution of differential capacitive sensor.
FIGURE 3

Schematic diagram of differential capacitance sensor.
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provide sufficient training data, this study uses a test set to evaluate

the performance of the model. Randomly selected 3/4 of the

collected data as the training set for model establishment, and the

other 1/4 of the data as the prediction set. The results of their

division are shown in Table 1.
2.5 Modeling methodology and
evaluation indicators

The Extreme Learning Machine (ELM) algorithm and the

Backpropagation algorithm (BP) are both common machine

learning algorithms that are capable of handling complex

nonlinear relationships. Therefore, they are able to show excellent

performance in many practical problems. At the same time, it is

flexible and scalable, and can be adapted to a variety of different

problems and tasks. And the performance and complexity of the

model can be improved by adding hidden layers or adjusting the

network structure. In some cases, both algorithms have superior

generalisation capabilities and are able to accurately predict or

classify unseen data. Therefore, they are a vital choice of algorithms

in the field of machine learning. In this study, these two algorithms

are selected for modelling according to the characteristics of the

specific problem and dataset, combined with the actual application

scenarios and requirements, and weighed and compared to finally

select the optimal model.

Extreme Learning Machine (ELM) is a rapid, simplistic and

efficacious artificial neural network algorithm. The ELM initializes

the connection weights between the input and hidden layers in a

random manner, and then maps the input signals to the hidden

layers using a high-dimensional nonlinear function. After the

mapping is complete, the ELM quickly learns the weights of the

output layer by least squares or regularization methods to

approximate the objective function (Li and Wu, 2022; Qiaoyun

et al., 2023). Compared with traditional neural networks, ELM does

not require iterative weight adjustment, has fast training speed and

well generalization ability.

Back Propagation (BP) is a popular algorithm which is used to

train neural networks. The BP algorithm is based on the gradient

descent method, where the weights and biases of the neural network

are updated through continuous iterations thereby minimizing the

loss function. The BP algorithm first calculates the predicted output

of the network through forward propagation, then calculates the

error between the predicted output and the actual output through

back propagation and passes that error back to the network. The

gradient of each layer is calculated in accordance with the chain rule

and the weights are updated (Chen et al., 2022b; Li et al., 2022;
Frontiers in Plant Science 07
Zhijun et al., 2022; Lihua et al., 2023). This process is iterated until

the loss function is minimized.

Sparrow Search Algorithm (SSA) is a population optimization

algorithm. Based on observing the local optimal solution of the

target problem, the SSA algorithm iteratively searches for the global

optimal solution, which has the characteristics of global exploration

and local optimization (Dong et al., 2022; Yan et al., 2022; Yue et al.,

2023). Through the global search strategy and the ability to

regenerate the initial solution, the sparrow search algorithm can

help ELM and BP algorithms to jump out of the local optimal

solution and discover a better combination of weights. Moreover,

the sparrow search algorithm can also optimize the current solution

through local search, and gradually improve the accuracy of the

weight (Gao et al., 2022). Taken together, the sparrow search

algorithm is more flexible in the global and local optimization

process and has the advantages of fewer iterations, faster

convergence speed and higher search efficiency.

During the search for food in sparrow populations, populations

are laid out in synergy in the form of predators, followers, and early

warners. The n×d dimensional vector population consisting of n

sparrows is represented by a matrix, which can be expressed as

follows in Equation 12:

X =

X11 X12 … X1d

X21 X22 ⋯ X2d

⫶ ⫶ ⫶ ⫶

Xn1 Xn1 ⋯ Xnd

0
BBBBB@

1
CCCCCA (12)

Where, Xij is the jth dimensional position of the ith sparrow; n is

the number of individual sparrows in this sparrow population; d is

the dimension of the variable space of the objective function. The

fitness of the sparrow population can be expressed as follows in

Equation 13:

Fx =

f ((X11 X12 ⋯ X1d ))

f ((X21 X22 ⋯ X2d ))

⫶

f ((Xn1 Xn2 ⋯ Xnd ))

0
BBBBB@

1
CCCCCA (13)

Where, f is the individual fitness of the sparrow.

The SSA algorithm in the merit seeking process, the discoverer

with higher fitness will have priority in acquiring food during the

iterative search process. Since discoverers provide foraging search

direction for the entire population, discoverers have a larger search

range than joiners (Tang et al., 2023). In the iterative process, the

finder position update formula is as follows in Equation 14:

Xt+1
Fi,j =

Xt
Fi,j · exp ( −

i
aT )    R < ST

Xt
Fi,j + Q        R ≥ ST

(
(14)

Where, t is the current number of iterations; T is the maximum

number of iterations; XFi,j is the position of the ith sparrow in the j-

th dimension. a∈ (0, 1] are uniform random numbers. R∈[0, 1] and
ST∈[0.5, 1] are the early warning values and safety values,

respectively. Q is a random variable obeying a normal

distribution. When R<ST, no natural enemies are found in the
TABLE 1 Statistics of foxtail millet moisture content data set.

Data set NSa XVb(%) NVc(%) AVd(%) SDe(%)

Training set 540 23.52 5.64 15.2467 5.5087

Prediction set 180 23.52 5.64 15.95247 5.1262
NSa, Number of samples; XVb, Maximum value; NVc, Minimum value; AVd, Average value;
SDe, Standard deviation.
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vicinity of the population and the foraging environment is safer. At

this point the discoverer can conduct an extensive search. When

R≥ST, part of the sparrows in the population have detected the

predator and started to alert the other sparrows in the population.

The population tunes into an anti-predator mode and needs to seek

a safe area as soon as possible (Chen et al., 2022a).

For joiners, whose behavioural characteristics are influenced by

the discoverer, the location update formula as Equation 15:

Xt+1
Ji,j =

Q · exp −
Xt
L−X

t
Ji,j

i2

� �
     i > 0:5n

Xt+1
P + Xt

Ji,j − Xt+1
P

��� ��� · L · A+ i ≤ 0:5n

8><
>: (15)

Where, XP is the current optimal position in which the

discoverer is located; XL is the current global worst position; L is

a matrix of dimension 1×d and all elements are 1; A is a matrix of

dimension 1×d and each element of which is randomly 1 or -1, and

A+=AT(AAT). While i>0.5n, the ith joiner is less acclimatized and

does not receive food, is in a very starved state, which requires flying

to other regions in order to replenish its energy. While i ≤ 0.5n, the

ith joiner will forage randomly in the vicinity of XP.

Throughout the population, some of the sparrows serve as early

warning scouts, responsible for spreading warning signals to the

entire population, and thereby leading the population to a new safe

area. Sparrows accounting for 10% ~20% of the total population are

randomly selected in each generation of the population to perform

the early warning function, and their location update formulas are

as follows in Equation 16:

Xt+1
Di,j =

Xt
B + b · Xt

Di,j − Xt
B

��� ���    fi > fg

Xt
Di,j + K ·

Xt
Di,j−X

t
Lj j

(fi−fw)+e

� �
     fi ≤ fg

8>><
>>: (16)

Where, XB is the current global optimal position; fi is the fitness

of the current sparrow individual; fg as well as fw are the current

global optimal and worst sparrow individual fitnesses, respectively.

b is a step control parameter that obeys a normally distributed

random number with variance 1 and mean 0. K∈[-1, 1] is a random
number, an infinitesimal constant, mainly to avoid zeros in the

denominator of the fraction. While fi>fg, the sparrow is at the edge

of the population and is vulnerable to predators. While fi≤fg, the

sparrow in the middle of the population realizes the danger, which

requires approaching other sparrows in the population so as to

reduce the probability of predation (Xue and Shen, 2020).

Sparrow search algorithm (SSA) may encounter some problems

in solving optimization problems such as getting stuck in the local

optimal solution, failing to find the global optimal solution,

convergence may be slower, requiring more iterations to reach

the optimal solution, and the performance is highly dependent on

the selection of parameters like the generation of the initial solution

and the scope of the search, and some other issues, which can be

optimized by Logistic algorithms (Wanli et al., 2019; Dingjie et al.,

2021; Xin et al., 2021). Logistic chaotic mapping is a typical

representative of chaotic mapping, which is more extensively

applied due to its simple mathematical form. Logistic chaotic

mapping is used to particle swarm algorithm, which can optimize
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the initial population. The mathematical expression is as follows in

Equation 17:

Yn+1 = aYn(1 − Yn) (17)

Here, Yn∈[0, 1] and a∈[0, 4] are the Logistic parameters.

As a gets closer to 4, the range of values of Y is more nearly

evenly distributed over the entire [0, 1] region. When a is taken as 4,

the system is in a completely chaotic state and the uniformity of the

mapping distribution reaches an extreme value. That is, with the

initial condition Y0, the sequence generated by the Logistic mapping

is non-periodic and non-convergent. Outside this range, the

sequence must converge to a particular value. With the increase

of a, the value of Y tends to be uniformly distributed in the interval

[0, 1] (Andi et al., 2021). Applying Logistic chaotic mapping to SSA

increases the homogeneity of the initial solution distribution,

enhances the optimization efficiency and traversal uniformity, as

well as improves the population search capability. In addition, it

also overcomes the shortcomings of the swarm intelligence

algorithm to a certain extent, such as the reduction of population

diversity when approaching the optimal solution, the tendency to

fall into the local optimum, and the reduction of search accuracy.

In summary, the Logistic algorithm can optimize the problems

encountered by SSA in finding the global optimal solution,

accelerating the convergence speed and optimizing the parameter

selection, improving the optimization ability and efficiency of SSA

so that it is more suitable for solving specific problems (Wang et al.,

2021; Zhang et al., 2022).

In order to strengthen the accuracy and stability of the

prediction model, Logistic algorithm is used to optimize Sparrow

Search Algorithm (SSA), and then Back Propagation (BP)

algorithm and Extreme Learning Machine (ELM) algorithm are

optimized again individually. After that, the input and output layers

are modeled and analysed. Using the test set correlation coefficient

R as the model evaluation index, the inverse estimation model that

can accurately predict foxtail millet moisture content was preferred

after comparative analysis. Ambient temperature, volumetric duty

cycle, and detected capacitance values were used as independent

variables, and foxtail millet moisture content was used as the

dependent variable to establish a prediction model. The

evaluation metrics of the prediction model are correlation

coefficient (R), root mean square error (RMSE) and relative

percent deviation (RPD). The expressions are given in the

following Equations 18–20. A larger correlation coefficient R of

the prediction model indicates a higher correlation. The smaller the

RMSE of the prediction model is, the better the prediction effect of

the model is. When RPD< 1.4, the constructed model is regarded as

unreliable. When 1.4< RPD< 2.0, the constructed model is regarded

as relatively reliable. When RPD > 2.0, the constructed model is

regarded as having high reliability and can be taken into account for

model analysis (Tian et al., 2023). In this study, when using the

ELM algorithm, the number of hidden layers was set to 100, the

number of populations was set to 20, and the maximum number of

iterations was set to 20. When using the BP algorithm, the number

of nodes in the input layer was set to 3, the number of nodes in the

output layer was set to 1, the number of nodes in the hidden layer
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was set to 5, the number of populations was set to 20, and the

maximum number of iterations was set to 20, and the target error

for the training of the neural network was 0.01.

R = oN
i=1(xi − �x)(yi − �y)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

oN
i=1(xi − �x)2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
oN

i=1(yi − �y)2
q (18)

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
No

N

i=1
(yi − ŷ i)

2

s
(19)

RPD =
1ffiffiffiffiffiffiffiffiffiffiffiffi

1 − R2
p (20)

Where, xi is the moisture content data; �x and �y are the average

values of the corresponding variables; yi is the actual value; ŷi is the

predicted value; N is the number of samples.
3 Results and analysis

3.1 Effect of moisture content on foxtail
millet capacitance

The capacitance variation curves for foxtail millets with different

moisture contents at the same temperature (22°C) and the same

volume duty cycle (1/3) are shown in Figure 5. This is due to the fact

that the capacitance of different samples is affected variously by the

moisture content of the wet base, which is mainly manifested by the

fact that the higher the moisture content of the wet base of the foxtail

millet sample, the higher the capacitance. Foxtail millet moisture

content refers primarily to the amount of internal free water. While

the moisture content is low, the foxtail millets are mainly bound

water inside, the intensity of cellular respiration is weak, the

intracellular ionic movement is not active, and the effect of

moisture on the capacitance is not significant. Along with the

increase of moisture content, the free water content increases and

eventually extends to the outside to form a multilayer molecular

membrane, and the dipole moment then becomes larger. At the same

time, cellular respiration is strengthened and internal ionic activity is

enhanced, at which time the capacitance tends to increase (Pan et al.,

2016; Chengjie et al., 2021; Guangyu et al., 2021; Xianglin et al., 2022).

The specific relationship is shown in Equation 21:

C = 0:30744W + 17:28085 (21)

Where C denotes the capacitance value and W denotes the

foxtail millet moisture content.
3.2 Effect of temperature and volume duty
cycle on foxtail millet capacitance

Figure 6 shows the curves on the effects of volumetric duty cycle

(which can also be called volumetric concentration) and

temperature for the foxtail millet capacitance.
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It can be seen from Figure 6A that at a certain temperature (22°

C) and constant moisture content, the foxtail millet capacitance has

an increasing trend as the volume duty cycle increases. This is due

to the fact that the density of the foxtail millet increases when it is

squeezed, with a consequent increase in the amount of foxtail millet

per unit volume, and more electric field energy can be stored, so that

the measuring instrument will measure a greater capacitance

(Zhiheng et al., 2019; Wenchuan et al., 2023).

It can be seen from Figure 6B that at the same duty cycle (1/3),

when the moisture content is constant, the value of the foxtail millet

detection capacitance gets larger with the increase in temperature as

a whole. The tendency to change is more pronounced in the high

moisture content samples than in the low moisture content samples.

The reason for this is that the rising temperature causes ionization

of water molecules and the ion concentration goes up, which will

accelerate the steering polarization of water molecules under the

action of electric field. In the meanwhile, the rise in temperature

enhances the thermal motion of water molecules, accelerating the

orientation motion of polar molecules and the Brownian motion of

free water within the foxtail millet. The generating polarization

effect is greater than the thermal motion effect, which results in an

increase in the relative dielectric constant of the foxtail millet, and

therefore leads to an increase in its detection capacitance value.
3.3 Modeling and comparative analysis

In order to verify the reasonableness of the optimization

algorithm, this study chooses six benchmark functions, i.e., F1,

F2, F3, F4, F5, and F6, for testing, and sets the relevant parameters

of the Logistic-SSA algorithm and the SSA algorithm to the same

values. In this test, the population size is set to 30 and the number of

iterations is set to 20 to compare and analyse the performance of the

SSA algorithm before and after the improvement of the SSA

algorithm using the Logistic algorithm.
FIGURE 5

The relationship among moisture content and capacitance values.
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The functional expressions for the six selected benchmark

functions are given in Equations 22–27 below:

f1(x) =on
i=1x

2
i (22)

f2(x) =on
i=1 xij j +

Yn

i=1 xij j (23)

f3(x) =on
i=1(oi

j=1xj)
2

(24)

f4(x) = maxi xij j, 1 ≤ i ≤ nf g (25)

f5(x) =on−1
i=1 100(xi+1 − x2i )

2 + (xi − 1)2
� 	

(26)

f6(x) =on
i=1( ⌊ xi + 0:5 ⌋ )2 (27)

Figure 7 below shows the iteration curves of the SSA algorithm

and the Logistic-SSA (LCSSA) algorithm tested with the six

benchmark functions presented above. It can be intuitively seen

that the introduction of the optimization algorithm significantly

improves the initial solution, improves the problem of SSA falling

into local optimization, and at the same time reduces the minimum

fitness value. Overall, the improved algorithm is closer to the ideal

optimal solution, can better jump out of the local optimization, and

effectively improves the performance of the optimization search.

In order to select the best detection model, the logistic-SSA

algorithm and the SSA algorithm were used to optimize the BP and

ELM algorithms, separately, for predicting the moisture content of

the foxtail millets. The training set samples, and prediction set

samples were randomly grouped in the ratio of 3:1. Using the

empirical formula, as shown in Equation 28, to determine the

number of nodes h in the hidden layer, the optimal prediction is

searched for. In this case, the number of nodes in the input layer is

set to 3 and the number of nodes in the output layer is set to 1.

h =
ffiffiffiffiffiffiffiffiffiffiffiffi
m + n

p
+ a (28)
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Where, m is the number of nodes in the input layer, n is the

number of nodes in the output layer and a is a constant between 1

and 10.

The temperature, volumetric duty cycle, and detection capacitance

values were selected as independent variables for modelling and

analysis, and the moisture content of the foxtail millet was chosen

as the dependent variable to structure the model. The R, RMSE, RPD

of the training set and prediction set for the foxtail millet moisture

content estimation using Logistic-SSA-BP algorithm were 0.6404,

4.0130, 1.3020, and 0.5908, 4.8262, 1.2394, respectively. The R,

RMSE, RPD of the training set and prediction set for the foxtail

millet moisture content estimation using Logistic-SSA-ELM algorithm

were 0.8022, 3.2887, 1.6751 and 0.7016, 3.7150, 1.4035, respectively.

The prediction accuracy is significantly improved compared to both

SSA-BP algorithm, BP algorithm and SSA-ELM algorithm, ELM

algorithm. The use of differential capacitance sensors combined with

deep learning algorithms can realize real-time and accurate detection

of the foxtail millet moisture content, providing data support for

precision agriculture, which is conducive to improving the quality and

yield of foxtail millets. The results of the prediction accuracy of the

established models are illustrated in Table 2, where it can be seen that

both the Logistic-SSA-ELM algorithm and Logistic-SSA-BP algorithm

have remarkably improved the prediction accuracy of the foxtail millet

moisture content. The Logistic SSA-ELM algorithm has a good

prediction effect on the moisture content of foxtail millet, which can

be predicted to a certain extent.

From the prediction results of different models in Table 2, the

accuracy of the foxtail millet moisture content prediction model that

was established using the Logistic-SSA-ELM algorithm was optimal.

The predicted results of RP were 0.0007 and 0.0190 higher than that of

SSA-ELM and ELM respectively, reaching 0.8022. In comparison to

SSA-ELM and ELM, RMSEP were reduced by 0.0923 and 0.184

respectively, reaching 3.2887. As compared to SSA-ELM and ELM,

RPDC improved by 0.0458 and 0.0888 respectively, reaching 1.6751.

Overall, the Rc and RPDc values of the optimised model are improved

over the original model and the RMSEc value is reduced over the
A B

FIGURE 6

Effect of volume duty cycle and temperature on foxtail millet capacitance. Figure (A) demonstrates the volume duty cycle versus capacitance. Figure
(B) demonstrates temperature versus capacitance.
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original model. The accuracy of the constructed model was high, and

it could be used for rapid detection of moisture content in field foxtail

millets. Using differentially structured capacitive sensors for moisture

content measurement in foxtail millets is feasible and enables rapid

on-line detection that can be extended to a wider range of applications.
T
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The Figure 8 exhibits the comparison diagram between the true

values and the predicted values which are obtained by using

different algorithms. Wherein, Figure (A) shows a graph on the

comparison of the true values and the predicted values output using

the BP algorithm. Figure (B) shows a graph on the comparison of
ABLE 2 Modeling results based on different algorithms.

Models Training set Prediction set

RC RMSEC RPDC RP RMSEP RPDP

BP 0.6035 4.1662 1.2541 0.5349 5.0542 1.1835

SSA-BP 0.6366 4.0295 1.2966 0.5835 4.8577 1.2314

Logistic-SSA-BP 0.6404 4.0130 1.3020 0.5908 4.8262 1.2394

ELM 0.7763 3.4727 1.5863 0.6826 3.8120 1.3683

SSA-ELM 0.7895 3.3810 1.6293 0.7009 3.7200 1.4021

Logistic-SSA-ELM 0.8022 3.2887 1.6751 0.7016 3.7150 1.4035
A B

D

E F

C

FIGURE 7

The iterative curves of SSA vs. LCSSA with 6 benchmark functions. Figure (A) shows the SSA and LCSSA iteration curves for the F1 function. Figure (B) shows
the SSA and LCSSA iteration curves for the F2 function. Figure (C) shows the SSA and LCSSA iteration curves for the F3 function. Figure (D) shows the SSA
and LCSSA iteration curves for the F4 function. Figure (E) shows the SSA and LCSSA iteration curves for the F5 function. Figure (F) shows the SSA and LCSSA
iteration curves for the F6 function.
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the true values and the predicted values output using the SSA-BP

algorithm. Figure (C) shows a graph on the comparison of the true

values and the predicted values output using the Logistic-SSA-BP

algorithm. Figure (D) shows a graph on the comparison of the true

values and the predicted values output using the ELM algorithm.

Figure (E) shows a graph on the comparison of the true values and

the predicted values output using SSA-ELM algorithm. Figure (F)

shows a graph on the comparison of the true values and the

predicted values output using Logistic-SSA-ELM algorithm.

The above data processing and predictive modelling were done

using Matlab software (USA, MathWorks) and plotted using Origin

2018 software.
4 Conclusion

In this paper, a differential capacitance sensor was designed in

order to analyse foxtail millet under the influence of moisture

content, ambient temperature, and volumetric duty cycle factors

with the relationship to the measured capacitance value. Combining

Logistic-SSA-BP and Logistic-SSA-ELM algorithms for model

prediction of foxtail millet water content. The results indicate that

the model predicted using the Logistic-SSA-ELM algorithm is more

accurate. Meanwhile, it can also be seen that using differential

capacitance sensors to detect the moisture content of grains is

effective and has potential.
Frontiers in Plant Science 12
The pattern of change in the capacitance of foxtail millets at

different moisture contents, ambient temperatures, and volume duty

cycles was explored. In the moisture content range of 5.64% to 23.52%,

the capacitance values increased with the increase in moisture content

of the foxtail millets. In the temperature range of 15°C to 33°C, the

foxtail millet capacitance increased with the increase of ambient

temperature. In the volume duty cycle range of 0 to 1/2, the foxtail

millet capacitance increased with the increase of volume duty cycle.

The findings revealed that moisture content, ambient temperature and

volumetric duty cycle have a notable effect on the capacitance values.

Logistic algorithm is introduced to optimize the Sparrow Search

Algorithm (SSA), and then Back Propagation (BP) algorithm and

Extreme Learning Machine (ELM) algorithm were optimized again

respectively. The experimental results suggest that the ELM model

optimized based on the Logistic-SSA algorithm is selected as the

detection model of foxtail millet moisture content, and the

predictive performance is satisfactory. The predicted results for

RC, RMSEC, RPDC and RP, RMSEP, RPDP are 0.8022, 3.2887, 1.6751

and 0.7016, 3.7150, 1.4035 respectively. As seen, the predictive

model has a high degree of accuracy. The method proposed in this

paper can further improve the detection accuracy of the foxtail

millet moisture content detection model, furthermore, this method

provides thoughts and theoretical references for the prediction of

moisture content of other crops. However, if the foxtail millet

contains other conductive substances, such as metal particles,

these substances may cause distortion of the capacitance
A B

D E F

C

FIGURE 8

Plot of true vs. predicted values. Figure (A) shows a graph on the comparison of the true values and the predicted values output using the BP
algorithm. Figure (B) shows a graph on the comparison of the true values and the predicted values output using the SSA-BP algorithm. Figure (C)
shows a graph on the comparison of the true values and the predicted values output using the Logistic-SSA-BP algorithm. Figure (D) shows a graph
on the comparison of the true values and the predicted values output using the ELM algorithm. Figure (E) shows a graph on the comparison of the
true values and the predicted values output using SSA-ELM algorithm. Figure (F) shows a graph on the comparison of the true values and the
predicted values output using Logistic-SSA-ELM algorithm.
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measurement results. Therefore, care needs to be taken to avoid

interference from conductive substances during the measurement.

At the same time, capacitance measurement requires good electrode

contact to ensure accurate measurement results. If the electrodes

have poor contact or are loose, the measurement results may show

large deviations.
5 Discussion

This paper presents a method for modelling differential

capacitive sensors using Logistic-SSA-ELM algorithm. The

method effectively reduces the influence of environmental

disturbances on the measurement results and improves the

measurement accuracy and reliability. Compared with other

methods, capacitance sensors are highly sensitive, real-time,

inexpensive, and capable of capturing small capacitance changes,

providing a reliable means of accurately measuring foxtail millet

moisture content, and providing strong support for improving

agricultural production efficiency and resource utilisation. In

addition, the study combines knowledge of electrical engineering

and food science to provide a comprehensive study on the

measurement and modelling of foxtail millet moisture content.

An international audience may be interested in the novel

algorithms and interdisciplinary applications of this study, as it

has potential applications in food science and electrical engineering.

However, this research has not yet been integrated with some

mechanical devices such as combine harvesters for overall

practical applications. Moreover, if the foxtail millet contains

more impurities, dust, etc., it will interfere with the capacitance

measurement results and may cause errors in the experimental

results. These aspects need to be explored further to ultimately

move towards modern agriculture. This research provides a viable

approach to agricultural production that can help improve the

efficiency and quality of foxtail millet production. Using the

capacitance method, in combination with the designed

capacitance sensor, provides an advanced and reliable solution for

the measurement of moisture content in foxtail millet. This

technology has great potential to promote modernisation of

agriculture, increase the efficiency of agricultural production and

enable smart agriculture. Through enabling precision

measurements, it provides a new way to manage the quality and

optimise the yield of foxtail millets, laying the foundation for

sustainable agriculture and precision farming.
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