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Stress phenotyping analysis
leveraging autofluorescence
image sequences with
machine learning
Sruti Das Choudhury 1,2*†, Carmela Rosaria Guadagno 3†,
Srinidhi Bashyam 2, Anastasios Mazis 1, Brent E. Ewers 3,
Ashok Samal 2 and Tala Awada 1,4

1School of Natural Resources, University of Nebraska-Lincoln, Lincoln, NE, United States, 2School of
Computing, University of Nebraska-Lincoln, Lincoln, NE, United States, 3Department of Botany,
University of Wyoming, Laramie, WY, United States, 4Agricultural Research Division, University of
Nebraska-Lincoln, Lincoln, NE, United States
Background: Autofluorescence-based imaging has the potential to non-

destructively characterize the biochemical and physiological properties of

plants regulated by genotypes using optical properties of the tissue. A

comparative study of stress tolerant and stress susceptible genotypes of

Brassica rapa with respect to newly introduced stress-based phenotypes using

machine learning techniques will contribute to the significant advancement of

autofluorescence-based plant phenotyping research.

Methods: Autofluorescence spectral images have been used to design a stress

detection classifier with two classes, stressed and non-stressed, using machine

learning algorithms. The benchmark dataset consisted of time-series image

sequences from three Brassica rapa genotypes (CC, R500, and VT), extreme in

their morphological and physiological traits captured at the high-throughput

plant phenotyping facility at the University of Nebraska-Lincoln, USA. We

developed a set of machine learning-based classification models to detect the

percentage of stressed tissue derived from plant images and identified the best

classifier. From the analysis of the autofluorescence images, two novel stress-

based image phenotypes were computed to determine the temporal variation in

stressed tissue under progressive drought across different genotypes, i.e., the

average percentage stress and the moving average percentage stress.

Results: The study demonstrated that both the computed phenotypes

consistently discriminated against stressed versus non-stressed tissue, with

oilseed type (R500) being less prone to drought stress relative to the other two

Brassica rapa genotypes (CC and VT).
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Conclusion: Autofluorescence signals from the 365/400 nm excitation/emission

combination were able to segregate genotypic variation during a progressive

drought treatment under a controlled greenhouse environment, allowing for the

exploration of other meaningful phenotypes using autofluorescence image

sequences with significance in the context of plant science.
KEYWORDS

autofluorescence imaging, stress detection, machine learning-based classifier, high
throughput plant phenotyping, drought stress, genotypic variation, Brassica rapa
1 Introduction

The development of novel genotypes and implementation of

sustainable climate smart practices for resilient agroecosystems

are crucial for mitigating the effect of climate change (Climate

Change, 2022). Efforts to better understand the complex

interactions between genotypes and their natural and managed

environment are also relevant for enhancing plant selection and

breeding practices and implementing precision nature and

technology-based climate-smart solutions that are aimed to

enhance productivity, efficiency, sustainability, and resilience of

the agroecosystems (Granier et al., 2006; Reynolds et al., 2019;

Yang et al., 2020; Fu and Jiang, 2022; Güney et al., 2023). Despite

genetic and molecular advances in plant research, rapid and

accurate quantification of expressed plant phenotypes remains a

bottleneck (Evans and Lawson, 2020). High-throughput plant

phenotyping (HTPP) has been increasingly used in agricultural

research to inform the selection of desirable plant traits for

breeding purposes and to study their interaction with the

environment (Yang et al., 2020). Image-based HTPP platforms

facilitate the quantification of holistic (i.e., whole plant) and

component (i.e., cell to organ level) phenotypes by repeated

non-destructive measurements of a large number of individuals

in a relatively short time (Das Choudhury et al., 2018; Das

Choudhury et al, 2019). The use of machine learning algorithms

and artificial neural networks has made the large available

heterogeneous images from HTPP platforms computationally

tractable (Goodfellow et al., 2016; Goodfellow et al, 2005; Singh

et al., 2016). Moreover, the availability and accessibility to

different imaging sensors and the opportunity for a combined

integrated analytical approach have led to the development of

novel applications for image-based HTPP (Pasala and Pandey,

2020; Yang et al., 2020). One such line of research is the study of

plant responses to stresses and the introduction of image-based

classifiers for stress detection (Das Choudhury et al., 2023).

When plants are exposed to radiation, they can either absorb,

transmit, or reflect photons (Vogelmann and Bjorn, 1986).

Luminescence refers to the molecules’ capacity to absorb light

and then re-emit it at a longer wavelength (i.e., lower energy).

This occurs due to the return of electrons from an excited to ground
02
state. If this re-emission happens almost instantaneously, this is

known as fluorescence (Valeur and Berberan-Santos, 2011). When

plants receive electromagnetic UV or short-wave visible radiation,

they emit fluorescence that can be recorded on the extended

electromagnetic spectrum of visible light (400-720 nm), peaking

at about 440 nm (blue), 520 nm (green), 690 nm (red), and 720 nm

(far-red) (Buschmann et al., 2001; Lichtenthaler and Buschmann,

2001) (Figure 1A). Chlorophyll a fluorescence has been widely

studied and used in phenotyping due to its connection to

the photosynthetic rate and photosystem II efficiency (Baker,

2008; Murchie and Lawson, 2013). But chlorophyll a is not the

only fluorophore occurring in plants. Other chlorophylls and their

catabolites (e.g., porphyrins), as well as lignin, alkaloids, terpenoids,

and several phenolic compounds, such as anthocyanins and

flavonoids, participate in the emission of (auto)fluorescence

(endogenous from plant tissue) (Donaldson, 2020; Barboza da

Silva et al., 2021) (Figure 1B). Several functions have been

attributed to this phenomenon, from visual cue for pollinators to

safety valve for absorbed UV radiation (Garcı ́a-Plazaola
et al., 2015).

In this research, we used high-throughput imaging, computer

vision-based algorithms, and machine learning to detect and

analyze changes in autofluorescence during a progressive drought

experiment in the species Brassica rapa, a globally cultivated crop

with extreme intraspecific diversity, making it an excellent test case

for image analysis. The accuracy of HTPP-derived data was recently

tested for an inter-varietal substitution population of a close relative

of B. rapa, rapeseed (Li et al., 2020). We specifically analyzed the

power of HTPP–derived autofluorescence data to detect leaf tissue

impacted by drought stress and evaluate if the autofluorescence

images are able to pick up any genotypic variation in drought

resistance over time. We examined the response of three genotypes

of B. rapa (a Chinese Cabbage, CC, an oilseed variety, R500; and a

vegetable turnip type, VT), characterized by large variation in their

life cycle, morphological and physiological traits (Figure 2)

(Edwards et al., 2011; Edwards et al., 2012; Edwards et al., 2016;

Pleban et al., 2020).

To test the use of HTPP–derived autofluorescence data for

drought stress detection in B. rapa and to obtain stress phenotypes

that computationally separate stressed vs. non-stressed leaf tissue,
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we: 1) pre-processed the images to obtain plant regions, 2)

developed and trained a pixel-based algorithm to quantify

drought stress from the image sequences, 3) built a novel

classifier to discriminate levels of drought stress, and 4)
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introduced and evaluated two novel stress-based phenotypes, i.e.,

the average percentage stress and the moving average percentage

stress, to highlight possible temporal variation in the drought

progression across different genotypes.
A B C

FIGURE 2

Lateral view of the three Brassica rapa genotypes used in the study: (A) the oilseed, R500; (B) the Chinese Cabbage, CC; and (C) the Vegetable
Turnip, VT.
A B

FIGURE 1

Spectra of excitation and emission for leaves: (A) in a greenhouse environment where they are exposed to the entire light spectrum from low UV to
the near-infrared; and (B) in the autofluorescence measuring chamber at UNL where plants are exposed to low visible/UV light to re-emit an
extended visible spectrum.
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2 Related works

The use of fluorescence microscopy has significantly improved

in recent years to study the biochemical and physiological

characteristics of plants (Chacko and Eliceiri, 2019; Donaldson,

2020; Pegg et al., 2021; Zhu, 2022). The two most important auto

fluorescent molecules found in plants are chlorophyll (orange/red

fluorescence) and lignin (blue/green fluorescence) (Donaldson,

2020). Chlorophyll fluorescence is mainly used to measure the

photosynthetic capability of plants, whereas lignin fluorescence is

used to evaluate wood phenotyping and assess cell wall porosity.

Autofluorescence images have been effectively used to detect the

location and degree of lignin deposition during defense response in

apple roots to Pythium ultimum infection. This study helps in the

understanding of the macro-level plant resistance phenotypes

regulated by genotypes (Zhu, 2022). An improved understanding

of the relationship between a plant’s genotype and its internal

anatomical structures may lead to new insights for plant breeding

and new ecological and evolutionary dynamics (He et al., 2017). A

study conducted by Pegg et al. (2021) on Taxa replicates shows that

fluorescence microscopy can be an effective tool for visualizing a

plant’s internal anatomical structures with a high degree of

precision. Autofluorescence lifetime imaging microscopy has been

successfully used by Chacko and Eliceiri, 2019 to measure cellular

metabolism in plants.

However, despite the extensive use of autofluorescence in

cellular microscopy (Kitin et al., 2020; Pegg et al., 2021), its

mechanistic relation to plant metabolism and photosynthetic

efficiency has not been fully explored yet (Donaldson, 2020).

Since all secondary metabolites responsible for autofluorescence

are somewhat influenced by environmental interactions, attempts

have been made to use autofluorescence as a stress indicator.

Specifical ly , the impacts of fungal infect ions on the

autofluorescence signal have been studied in grapevine and palm,

along with strong allelopathic interactions among pollen cells

(Lichtenthaler and Buschmann, 2001; Dreyer et al., 2006; Bellow

et al., 2013). Although several HTPP platforms are equipped with

cameras to capture autofluorescence, the analysis of these high-

throughput data and their possible use in stress detection are just

emerging, with pixel-level analysis so far used mostly for thermal

and hyperspectral image elaboration (Yang et al., 2020; Li

et al., 2021).

The rest of the paper is organized as follows. Section 3 provides

materials and methods comprising experimental design, image pre-

processing, algorithms for ground truth generation and building

classifier for stress detection, and computation of stress-based

phenotypes. Section 4 shows analysis results. Finally, Section 5

provides discussions and Section 6 concludes the paper.
3 Material and methods

The block diagram in Figure 3 represents the analytical pipeline

used in our application. The proposed method consists of two parts:
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the classifier development for stress detection and the actual

computation of phenotypes from autofluorescence images using

the classifier. Prior to building the classifier, a dataset is acquired

using the HTTP system, consisting of image sequences of Brassica

plants in both the autofluorescence and the visible spectrum. Both

imaging modalities are used to manually create a ground truth

dataset to train a stress detection classifier to distinguish stressed

pixels from non-stressed pixels. A classifier is selected from a set of

single and ensemble classifiers based on their performance on a

distinct test set to classify the plant regions into stressed and non-

stressed parts. Finally, a set of novel stress-based phenotypes that

can be computed from the classified image is proposed.
3.1 Experimental design

3.1.1 Plant materials and growing conditions
Plants were grown at the greenhouse equipped with a High

Throughput Plant Phenotyping (HTPP) Facility located at the

Nebraska Innovation Campus of the University of Nebraska-

Lincoln in the fall of 2018. This section provides discussions on

selection of genotypes, environmental conditions, and treatment.

Genotypes: Three genotypes of Brassica rapa that span a wide

range of phenotypic and morphometric traits were selected for this

experiment: an oilseed variety, R500; a vegetable turnip type, VT;

and a Chinese Cabbage, CC, in replicates of at least six plants, with

pots randomly placed on the automated conveyor belt of the HTPP

platform. Seeds of VT and CC were obtained fromWageningen UR

Center for Genetic Resources (CGN10995 and CGN06867), while

seeds for R500 plants were part of collections bulked at the

University of Wyoming in 2013.

Environmental conditions: Red/Blue LED lights were on 14/10

day/night photoperiod, 1800 mmol photons m–2 s–1 maximum

photosynthetic photon flux density (PPFD) including the natural

light in the greenhouse, temperature was set at 20 – 22°C/18 – 20°C

day/night, and relative humidity averaged 45 ± 5%. All seeds were

planted in two liters pots filled with a soil mix (Miracle-Gro

Moisture Control Potting Mix; 20% v/v, Marysville, OH, and

Profile Porous Ceramic Greens Grade; 80% v/v, Buffalo Grove,

IL) amended with one teaspoon of Osmocote 18-6-12 fertilizer

(Scotts, Marysville, OH) per pot.

Stress treatment:Until day 7 after germination (DAG), all plants

were automatically weighed and watered daily on the HTPP system

to maintain soil volumetric water content ~ 35 ± 7% across all

genotypes. At 10 DAG, a more consistent progressive drought was

obtained by total water withholding on a subset of at least six plants

per genotype, while the drought response was followed until 30

DAG with a soil water content of 4 ± 2%. To ensure progressive

drought for all plants, volumetric soil water content was checked at

least once or twice daily (ECH2O; METER Group, Pullman, WA) to

adjust the watering regime accordingly. The data analyses did not

cover images collected between 0 and 4 DAG since they showed a

high noise-to-signal ratio due to the small size of the plants.

Moreover, the seedlings did not show any sign of visible stress

before the application of drought.
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3.1.2 Data acquisition
All images were recorded using the High-Throughput Plant

Phenotyping Facility (Scanalyzer 3D, LemnaTec Gmbh, Aachen,

Germany) at the University of Nebraska-Lincoln. All pots were

screened daily starting at 1200p.m., from 7 DAG and for the

duration of the experiment. Every imaging period consisted of the

movement of pots sequentially on the conveyor belt, first through an

adaptation environmental tunnel for 20 minutes (with 800 mmol

photons m–2 s–1 PPFD) and then through four sequential imaging

chambers instrumented with different light panels and cameras

(Rahaman et al., 2015): Red-Green-Blue (RGB) side view and top

view (Prosilica GT6600 29 megapixel camera with a Gigabit Ethernet

interface), thermal/infrared side view and top view (Pearleye p-030

LWIR), autofluorescence side view and top view (Basler Scout

scA1400-17gm/gc), hyperspectral side view (Headwall Hyperspec

Inspector x-vnir) and near-infrared top view (Goldeye p-008 SWIR)

(Mazis et al., 2020; Das Choudhury et al., 2023). For this study, we

focused on images acquired in the chamber for fluorescence equipped

with continuous blue lights (400-450 nm, low wavelength) to excite

plant autofluorescence and a camera (resolution: 1390X1038 pixel,

24bit) with apposite filters to record top images between 620-900 nm

(Supplementary Figure S1). We utilized the top-view RGB images

(400-700 nm, resolution 2454 × 2056 pixel, 24 bit) as visual ground-

truthing. A total of 3360 images were analyzed during the study to
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assess drought response between 15 and 30 DAG for the three

genotypes of B. rapa. For novel algorithm development and

systematic evaluation, we built and made publicly available

Autofluorescence Dataset collaboratively developed by the

University of Nebraska–Lincoln and the University of Wyoming

(UNL-UW-AFD) as a benchmark dataset , at https ://

plantvision.unl.edu/dataset. The dataset consists of 3360

autofluorescence images captured for three genotypes, i.e., R500, CC,

and VT. Figure 4 shows sample images from UNL-UW-AFD dataset.

Figure 4A shows an image captured with a visible light camera (RGB)

for an R500 plant at 28DAG and Figure 4B shows an image captured

using the autofluorescence camera of the same individual.
3.2 Image pre-processing

The pre-processing mainly focused on the segmentation of the

autofluorescence images to extract the plant regions. We used color

threshold-based segmentation, which extracts the plant from the

background based on the color difference. We adopted different color

channels (RGB channel and HSV- hue, saturation, and brightness -

channel) for different plant images. For the plant images taken in the

first few days after germination, the HSV channel gives better results

as the plant is small and the autofluorescence intensity is very close to
A B

FIGURE 4

Sample images of the UNL-UW-AFD dataset: (A) an image captured with a visible light camera for an R500 plant at 28DAG; and (B) an image
captured using the autofluorescence camera of the same individual.
FIGURE 3

Block diagram for stress detection and stress-based phenotype computation using HTTP-derived autofluorescence image sequences.
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the soil. As the plant grows, the RGB channel performs better

separation with the red channel to distinguish the plant region and

the background. Further processing was needed to remove random

noise due to other materials besides the plant, such as soil mixture,

pot, etc. An illustration of the pre-processing steps is shown in

Figure 5 using a sample image from the dataset, an R500 individual

at 14 DAG. For each raw autofluorescence image (Figure 5A), the

foreground was extracted through color-thresholding (Figure 5B).

Finally, after noise removal, the extracted plant region was used for all

subsequent analyses (Figure 5C).
3.3 Ground truth generation

A classifier learns from a set of labeled data that includes samples

from the different classes, i.e., ground truth. A subset of segmented

images is chosen to be labeled as the ground truth and used for the

development of the model and its evaluation. The pixels of the chosen
Frontiers in Plant Science 06
image are labeled as stressed or non-stressed based on their

appearance. The non-stressed class denotes the photosynthetically

efficient parts of the plant canopy, still green and not affected by

drought or browning (Guadagno et al., 2017), while the stressed class

denotes drought stressed tissue, which also appeared brown (i.e., dead

tissue) in the RGB images. The segmented images before consistent

drought stress showed the intensities of autofluorescence pixels in

non-stressed regions of the above-ground part of the plants. We

extracted such pixels using a number of round-shaped patches on the

leaves, slightly away from the larger veins of the leaves (green patches

in Figures 6A,B). Similarly, the stressed class of pixels is contained in

the dried regions of plant images, which occur after the introduction

of drought stress. Using the RGB images as reference, similar oval-

shaped patches were manually extracted, representing the stressed

class (yellow patches in Figures 6C, D. The ground truth consists of

the pixel intensities extracted from these stressed and non-stressed

regions on leaves from all three genotypes: R500, CC, and VT.

Algorithm 1 outlines the steps to generate the ground truth.
Input: Two sets of segmented plant images, i.e., D, and  H where D consists of images with only stressed pixels, and H

consists of images with only non-stressed pixels.

Output: Ground truth, G, a set of fluorescence intensity values as attributes and class information

Vnormal   = Vstress =  G = f

for I   ∈ H do//for each image in the set

for i = 1...rows do//for each row in the image

for j   =   1…cols do//for each column in the image

if (I½i, j�   ≠   0)//if the pixel has a value

Vnormal   =  Vnormal ∪   ½I½i,  j�, 0�f g //Label the //intensity value as “normal” (0)

for I   ∈ D do//for each image in the set

for i   =   1…rows do//for each row in the image

for j   1…cols do//for each column in the image

if (I½i, j�   ≠   0)//If the pixel has a value

Vstress   =  Vstress ∪   ½I½i,  j�, 1�f g //Label the //intensity value as “stressed”(1)

G   =  Vnormal ∪  Vstress

return ground truth set G
Algorithm 1. Ground truth generation.
A B C

FIGURE 5

Illustration of the preprocessing steps for the stress phenotyping analysis using a sample image from the UNL-UW-AFD dataset: (A) an R500
individual (14 DAG) is imaged for autofluorescence; (B) the extracted foreground image through color-thresholding; and (C) foreground image after
noise removal.
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3.4 Building a classifier for stress detection

The problem of developing a stress detection classifier can be

formulated as follows. Given a set ofm plants P = {P1, P2, ...Pi, ...Pm}

and each plant Pi represents a list of n fluorescence images {Ii,1, Ii,2,

...Ii,j, ...Ii,n} where j denotes the imaging date of the plant, along with

a ti denoting the day when the stress was introduced to the plant Pi
we need to develop a classifier C that converts the image Ii,j to a

stress image Isi,j at the pixel level. If the plant Pi is not stressed, the ti
will be 0. The mathematical definition of the classifier is given

below:

Ii,j½x,   y�→C Isi,j½x,   y� ∈ 0, 1f g
Frontiers in Plant Science 07
where 0, 1f g denotes the two classes: 0 denotes the non-stressed
class and 1 denotes the stressed class. All mathematical notations

for the current study are summarized in Table 1.

To separate the non-stressed and the stressed areas of the plant, we

utilized multiple machine learning-based classification models (Zhou,

2021) and evaluated their accuracies. These models include Ensemble

(Bagged Trees), Neural Network (Medium Neural Network with a

fully connected layer of size 25), Support Vector Machines (SVM,

Quadratic kernel function), Decision Tree (Medium Tree with a

maximum of 20 splits), Logistic Regression, and Naïve Bayes

(Gaussian numeric predictor). The classifiers aim to find a boundary

between the stressed and non-stressed classes based on the ground

truth. Algorithm 2 is used to build the stress detection classifier.
A B

DC

FIGURE 6

Illustration of ground truth generation: (A) autofluorescence image with circular green patches representing non-stressed pixels for a well-watered
plant; (B) the corresponding RGB image before introduction of stress; (C) the fluorescent image with oval shaped yellow patches representing
stressed pixels; and (D) the RGB image after introduction of drought stress 19DAG. A Chinese cabbage, CC genotype of Brassica rapa is represented
at 14DAG (A&B) and at 28DAG (C&D).
TABLE 1 Mathematical notations for Algorithm 1, 2.

Pi The plant with ID i

Ii,j The plant region images of plant at day

ti The day when the stress been introduced

C The stress detection classifier

T A set of stress-based plant phenotypes

G The ground truth dataset

Vnormal A subset of fluorescence intensity values labelled as normal (non-stressed) parts

Vstress A subset of fluorescence intensity values labelled as stress (dry) parts
frontiersin.org
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Fron
Input: An image dataset, P, with m plants in n days, where P   = P1,1,P1,2,…P1,n ,P2,1,…Pm,n
� �

the drought introduction day ts and a

set of k   classifiers including base classifiers and an ensemble classifier, i.e., K = K1,K2,…,  Kkf g (see Table 2)

Output: A stress detection classifier C

S =   f //store segmented images in set S

for i   =   1…m do//for each plant

for j   =   1…n do//for each day

Ii,j ←  segment(Pi,j) //generate the

//segmented image

S   =  S ∪  Ii,j //add new segmented images to S

//Generate the ground truth for stressed and non-//stressed classes

½D,  H� =label (S ,  ts) //returns two sets of images of //stressed and non-stressed labeled pixels

G   =  groundTruthGeneration(D,  H)

//Select the best classifier based on the ground truth

a = 0 //initialize the accuracy

for i   =   1…k do

 Ci =  Train(Ki ,  G) //build a model based on the training //data (ground truth)

 Ci = validate(Ci,  G) //validate the model

 ai =  testAccuracy(Ci ,  G) //compute the accuracy of the //model using the test data

 if  ai > a    //update the accuracy and model if the current //model is better

a = ai

 C = Ci
return classsifier C
Algorithm 2. Building stress detection classifier.
3.5 Computation of stress-
based phenotypes

To compute the stress-based phenotypes, the stress pixels from

the plant region images are first extracted using the best performing

classifier. Figure 7 shows a sample result using the classifier. The

stressed parts in the image are marked in blue, matching the yellow

leaf parts in the visible light image, indicating the separation of

stressed and non-stressed parts of the plant. The non-stressed parts

of the leaves were left at the original color (Figures 7A, B).

We propose two novel stress-based plant phenotypes that can

be directly computed from the stress images generated after the

classification. The phenotypes measure the stress in a plant and the

temporal changes over time. They are briefly described below.
tiers in Plant Science 08
Average Percentage Stress: The average percentage of stress for a

given genotype on any given day is computed as the average percentage

of stressed tissue, represented as the number of stressed pixels in the

plant. The higher the average percentage stress, the more stressed tissue

was present across the plant canopy. Since stress response to drought is

highly variable across individuals, results are presented as the average

percentage stress values of all the plants in each genotype.

Moving Average Percentage Stress: The moving average

percentage stress for a given plant on any given day is computed

by averaging the mean of the average percentage stress values for

that plant for the past n ways (temporal window size), including the

value on the given day, where n can be determined experimentally.

This phenotype is computed from the time series of a stress

phenotype and captures the temporal trends of stress induction.
A B

FIGURE 7

Illustration of the results of classifier: (A) an image of a R500 plant at 28DAG captured using a fluorescent camera; and (B) the stress image of the
same individual, where the predicted stressed regions of the plant are marked in blue color.
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4 Results

In this section, we demonstrate the results of the comparative

performance analysis of the stress detection classifiers to select the best

performing model for our application and the stress-based phenotypes

that show genotypic variation during drought stress propagation.
4.1 Classifier for stress detection

We examined the performance of six classifiers using a

validation set and a separate test set. Their performance is

summarized in Table 2. All classifiers performed well, with test

accuracy ranging from 96.5% (Naïve Bayes) to 99.8% (Ensemble).

Since the ensemble model achieved the highest accuracy, it was used

to classify the images for phenotype computation.
4.2 Genotypic variation for stress-
based phenotypes

We attempted to identify genetic variation within B. rapa types

under drought using autofluorescence imaging. Specifically, we
Frontiers in Plant Science 09
recorded images at midday on three extreme genotypes of B. rapa

(a Chinese cabbage (CC); a vegetable turnip (VT); and an oilseed,

R500) (Figure 1).

We evaluated the average percentage of stressed tissue for each

replicate plant and the moving average over the course of a

progressive drought to assess possible temporal variations in the

genotype stress behavior (Figures 8, 9). By studying these two

computed imaging phenotypes, our imaging approach permitted

the detection of significant differences across genotypes, consistent

with previous findings for the same genotypes under progressive

drought (Guadagno and Ewers, 2020). In particular, for R500, the

average percentage of stress tissue was consistently lower than the

other two genotypes throughout the duration of the analysis,

between 5 and 30 DAG (Figure 8). This difference became

significant (p< 0.001) after day 20 when R500 started to plateau at

15 ± 1% while the other two genotypes showed a further increase in

tissue damage. VT and CC showed a very similar response to the

drought treatment for tissue damage, with only a few significant

differences on particular days, such as days 9, 10, 20, and 25 (p<

0.005) (Figure 8). The turnip type is characterized by very broad

leaves, high presence of thorns, and a relative water content higher

than R500 which explained the greater visible impact of drought on

the above-ground tissue (Guadagno et al., 2021). When compared

to cabbage, R500 presents more but smaller and thinner leaves than

the cabbage genotype, allowing for a more moderate impact of

drought on the oilseed genotype.

The presented HTPP experiment applied a moderate level of

drought between days 7 and 30, and our outcomes for R500 align

with previous results on this genotype for different durations and

strengths of drought (Greenham et al., 2017; Guadagno et al., 2021).

To better highlight the difference between genotypes, we computed

the moving average of the tissue damage to determine the direction

of drought and trend for each genotype (Figure 9).

Irrespective of the genotype, a significant increase in tissue

stress was observed with increased drought after 15 DAG (Figure 8).

Specifically, the increased autofluorescence intensity, as expressed
FIGURE 9

Genotypic variation for the moving average percentage stress over
the time of drought for three Brassica rapa genotypes, R500 (gray),
CC (blue), and VT (orange). At least five replicate individual plants
were analyzed to compute the phenotype.
FIGURE 8

Genotypic variation for the average percentage stress over the time
of drought for three Brassica rapa genotypes, R500 (gray), CC (blue),
and VT (orange). The bars represent standard error for at least five
replicate individual plants analyzed to compute the phenotype.
TABLE 2 Comparative performance analysis of classifiers for stress
detection based on autofluorescence image analysis.

Machine Learning
Classification Model

Validation
Accuracy

Test
Accuracy

Ensemble 98.30% 99.80%

Neural Network 98.50% 98.70%

SVM 98.50% 98.50%

Decision Tree 98.00% 98.10%

Logistic Regression 97.50% 97.50%

Naive Bayes 96.70% 96.50%
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as the number of pixels per leaf area, is indicative of energy re-

emission from an array of different metabolites (Figure 1B). In the

non-stressed tissue this autofluorescence is masked by the presence

of the chlorophylls that do not re-emit at the same wavelength

(Buschmann et al., 2001; Lichtenthaler and Buschmann, 2001). The

drought-induced depletion in chlorophylls – underlined by the

visual browning of the leaves (Figure 6D) – allowed for

autofluorescence quantification across all genotypes of B. rapa,

confirming that imaging autofluorescence can play a primary role

as an HTPP method to identify and quantify tissue damage due to

environmental stresses.
5 Discussion

Characterizing genotypic variation to identify and predict

adaptive stress responses is crucial for both agricultural and

breeding purposes (Sircar and Parekh 2015; Debieu et al., 2018;

Ray et al., 2019). Within a species, genotypes may respond differently

to environmental stresses due to different alleles or an intrinsic

varying allelic sensitivity at causal loci (Edwards et al., 2011; Matsui

and Ehrenreich, 2016). As a consequence, the ability to screen across

genotypes under progressive stress can explain genetic effects that

may not be related to the trait of interest, ultimately impacting

current breeding and management practices (Kumar et al., 2015;

Cooper et al., 2019). Autofluorescence is the result of energy from

several metabolites when activated by short wave UV and visible

radiation (Figure 1). To explore the possible mechanistic significance

of this plant characteristic re-emission, image sequences from an

HTPP system captured by using a fluorescent camera were tested for

possible detection of genotypic variation of phenotypic traits across

three extreme genotypes in the species B. rapa (Figure 2). A novel

pipeline for the utilization of autofluorescence images using

computer vision and machine learning techniques was built for

the classifier design and the phenotype computation (Figure 3). The

paper includes two novel algorithms for ground truth generation

(Algorithm 1) and building stress detection classifier (Algorithm 2)

to provide step by step guidance for the concise representation of this

method (Figures 4–7). Non-destructive image-based measurements

of phenotypic traits enabled the detection of significant (p< 0.01)

differences in drought stress induction between R500, an oil seed

type, and both VT, and CC, a vegetable turnip, and Chinese cabbage,

respectively (Figures 8, 9).

Localized browning of the leaf tissue caused by stress is not

always indicative of an unrecoverable status for the plant but can be

used to assess and mitigate drought and other environmental

variables. The high-throughput quantification of stressed tissue

via autofluorescence images has the potential to inform the

thresholds of recovery after biotic and abiotic stresses. These

thresholds are species- if not genotype-specific, and future

implementations of the stress detection algorithms will focus on

implementing the power of the predictions across plant species

beyond B. rapa and for other environmental stresses toward a

unified pipeline for image stress detection. These results open an

exciting prospect for using autofluorescence in agricultural

phenomics (Kumar et al., 2015; Yang et al, 2020).
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Autofluorescence imagery reveals genotypic differences and

allows to extract biophysical properties of a plant under a given

environmental condition contributing to the understanding of a

plant’s vigor. In this paper, autofluorescence image sequences

obtained from an HTPP platform were used to quantify the

drought stress response of three B. rapa genotypes (VT, CC, and

R500). We developed a novel stress detection algorithm and built a

stress detection classifier based on the ensemble machine learning

model to classify the plants’ tissue as either stressed or non-stressed.

We introduced two phenotypes, i.e., average percentage stress and

the moving average percentage stress. Experimental evaluation

shows that autofluorescence based phenotypes are influenced by

genotypic variation during drought stress propagation over time.

Overall, the VT and CC genotypes showed a similar response to the

drought treatment for tissue damage, with a sharper increase in

autofluorescence during the period of consideration compared to

R500. The stress phenotypes indicated that the VT and CC

genotypes are more susceptible to drought stress compared to the

R500 genotype. A benchmark dataset, i.e., UNL-UW-AFD, has been

released to facilitate the development of new algorithms and

performance evaluation of the competing methods.
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