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Introduction: Precise semantic segmentation of microbial alterations is

paramount for their evaluation and treatment. This study focuses on

harnessing the SegFormer segmentation model for precise semantic

segmentation of strawberry diseases, aiming to improve disease detection

accuracy under natural acquisition conditions.

Methods: Three distinct Mix Transformer encoders - MiT-B0, MiT-B3, and MiT-

B5 - were thoroughly analyzed to enhance disease detection, targeting diseases

such as Angular leaf spot, Anthracnose rot, Blossom blight, Gray mold, Leaf spot,

Powdery mildew on fruit, and Powdery mildew on leaves. The dataset consisted

of 2,450 raw images, expanded to 4,574 augmented images. The Segment

Anything Model integrated into the Roboflow annotation tool facilitated

efficient annotation and dataset preparation.

Results: The results reveal that MiT-B0 demonstrates balanced but slightly

overfitting behavior, MiT-B3 adapts rapidly with consistent training and

validation performance, and MiT-B5 offers efficient learning with occasional

fluctuations, providing robust performance. MiT-B3 and MiT-B5 consistently

outperformed MiT-B0 across disease types, with MiT-B5 achieving the most

precise segmentation in general.
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Discussion: The findings provide key insights for researchers to select the most

suitable encoder for disease detection applications, propelling the field forward

for further investigation. The success in strawberry disease analysis suggests

potential for extending this approach to other crops and diseases, paving the way

for future research and interdisciplinary collaboration.
KEYWORDS

computer vision, mix transformer encoders, disease detection, smart agriculture,
food safety
1 Introduction

As artificial intelligence continues to find applications in diverse

domains, the field of agricultural science is no exception. Computer

vision methodologies have been introduced to various tasks related

to plant image analysis. These tasks encompass plant classification,

as demonstrated in the works of Barre et al. (2017) and Wäldchen

and Mäder (2018), as well as the detection of plant diseases and

pests, as evidenced by Shruthi et al. (2019) and Chouhan

et al. (2020).

The detection of plant diseases and pests has garnered

substantial interest, mainly centering around deep-learning-driven

computer vision techniques. Distinct from traditional computer

vision models that rely on human-crafted image features, these

modern approaches display enhanced robustness to environmental

disparities, attributable to extensive training on expansive datasets.

The Egyptian agricultural economy has witnessed a surge in

prominence pertaining to strawberry farming, attributed largely

to the nation’s auspicious climate and fertile lands located in regions

like Wadi El Natroun, El Beheira, and Fayoum. Ideal for strawberry

cultivation, these territories accommodate bountiful harvests

annually from November to April. Spearheading strawberry

production in the Middle East and North African region, Egypt

recorded a yield of approximately 597.03 thousand tons in 2020.

Export trends indicate a steady flow of strawberry shipments,

predominantly directed towards European markets, culminating

in a figure of 24.72 thousand tons in 2022 (TRIDGE, 2023).

While the strawberry industry in Egypt has experienced growth,

it faces certain challenges, such as the need for improved pest and

disease management practices. Detecting plant diseases at their

initial stages can significantly reduce the need for potentially

harmful chemicals and minimize labor expenses associated with

managing afflicted plants. Even experienced farmers can face

challenges in identifying diseases in large greenhouse settings

before they propagate. Hence, an automated disease detection

system will serve as a valuable complement to farmers’ expertise

and effort. Timely detection and accurate identification of pests are

crucial not only for preventing crop damage, but also for avoiding

the incorrect and excessive application of pesticide sprays (Dong

et al., 2021). From the analysis of various datasets related to
02
strawberry diseases, we have identified the presence of seven

distinct diseases: Leaf spot (Mycosphaerella fragariae), Angular

lea f spot (Xanthomonas fragariae) , Anthracnose rot

(Colletotrichum acutatum), Blossom blight (Monilinia fructicola),

Gray mold (Botrytis cinerea), Powdery mildew on fruit

(Podosphaera aphanis), and Powdery mildew on leaves

(Podosphaera macularis). Efficient and accurate segmentation of

leaf disease represents a significant area of research. To tackle this

challenge, a wide range of computer vision segmentation methods

have been employed, leveraging image attributes like hue, texture,

form, and spatial information (Pugoy and Mariano, 2011; Revathi

and Hemalatha, 2012; Wang et al., 2018; Deenan et al., 2020; Zhao

et al., 2020). However, these conventional techniques come with

inherent limitations and typically require a significant amount of

time. The emergence of deep learning models marks a

transformative era for segmenting images. Li et al. (2023)

introduced a network grounded in copy-paste techniques and

SegFormer, showcasing its prowess in precise segmentation of

disease regions and evaluation of their severity, marked by mean

intersection over union of 85.38%. Wu et al. (2023) further refined

the landscape by enhancing DETR, leading to the efficient

segmentation of tomato leaf disease spots and achieving an

impressive accuracy of 96.40%. Zhao et al. (2022) proposed a

multiple disease detection method for greenhouse-cultivated

strawberry based on multiscale feature fusion Faster R-CNN.

In a comprehensive investigation conducted by (Minaee et al.,

2020) an extensive evaluation of segmentation approaches based on

deep learning presented in 2019 was carried out. Notably,

Convolutional Neural Networks (CNNs) have been extensively

utilized in tasks related to the segmentation of agricultural

diseases. They have proven instrumental in enhancing the

precision of disease spot identification and significantly

expanding the range of potential applications (Jiang et al., 2020;

Craze et al., 2022; Yao et al., 2022; Yong et al., 2023).

Transformers have shown superior performance compared to

convolutional neural networks, achieving state-of-the-art results

with fewer parameters and higher computational efficiency

(Fan and Liu, 2023). Transformers, particularly self-attention

modules, provide efficient object detection models and improve

detection accuracy in deep foggy conditions (Shit et al., 2023). They
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also offer consistent, albeit modest, performance improvements

when added to state-of-the-art segmentation models for overhead

imagery (Luzi et al., 2023). However, transformers have some

limitations. They are difficult to train and have lower

performance on small datasets compared to convolutional neural

networks (Chen and Feng, 2023). Fully transformer-based models

may achieve relatively poor performance, while hybrid models that

combine convolutional and transformer-based structures show

better results.

Transformer-based architectures can be adapted to handle

other visual tasks, such as object detection and segmentation, by

leveraging their self-attention mechanism and hierarchical feature

representation capabilities. These architectures have shown

remarkable advancements in visual segmentation tasks, surpassing

previous convolutional or recurrent approaches (Gao et al., 2023).

In the realm of semantic segmentation for agricultural diseases,

a series of transformative visual networks based on Transformers

has unfolded, showcasing notable advancements. The journey

begins with the inception of models like Detection Transformer

(DETR) (Carion et al., 2020), Vision Transformer (ViT)

(Dosovitskiy et al., 2020), Swin Transformer (SwinT) (Liu et al.,

2021), Semantic Transformation model (SETR) (Zheng et al., 2021),

and SegFormer (Xie et al., 2021). Building on this foundation

(Wang et al., 2022), elevated the SwinT network, employing it for

identifying real plant leaf diseases, (Wu et al., 2022) further refined

the landscape by enhancing DETR, leading to the efficient

segmentation of tomato leaf disease spots and achieving an

impressive accuracy of 96.40%. (Reedha et al., 2022) took a

visionary leap by applying vision transformer (ViT) for

categorizing weeds and crop images obtained from agricultural

drones, outperforming traditional CNNs with an outstanding F1

score of 99.28%. In a pursuit of lightweight yet effective solutions,

(Li et al., 2022) introduced a network grounded in copy–paste

techniques and SegFormer, showcasing its prowess in precise

segmentation of disease regions and evaluation of their severity,

marked by mean intersection over union of 85.38%. The narrative

unfolds further with (Zhang et al., 2023), who suggested a

specialized segmentation framework known as the Cross-

Resolution Transformer, tailored for identifying the leaf disease of

the grape in natural environments. Through these transformative

steps, SegFormer emerges as a straightforward, effective, and

resilient framework for semantic segmentation unifying

Transformers with nimble multi-layer perceptron decoders,

thereby contributing significantly to the evolving landscape of

agricultural disease segmentation.
1.1 Problem statement

Precise detection and segmentation of strawberry diseases are

crucial for effective management and treatment. Traditional

computer vision methods often fall short in accurately identifying

diseases, particularly under natural acquisition conditions. Deep

learning models, especially transformer-based architectures like

SegFormer, offer promising solutions. However, selecting an

appropriate mix transformer encoder for optimal performance
Frontiers in Plant Science 03
remains a challenge. Moreover, the existing studies often lack in-

depth analysis and comparison of different encoder variants in the

context of disease detection accuracy. Therefore, this study aims to

address these gaps by evaluating and enhancing the SegFormer

segmentation model using three distinct Mix Transformer encoders

(MiT-B0, MiT-B3, and MiT-B5) for precise identification and

localization of various strawberry diseases.
1.2 Contributions

This study explores the potential of SegFormer, a powerful

segmentation model, for accurately detecting and distinguishing

seven strawberry diseases. Three Mix Transformer encoders within

SegFormer were investigated and their performance, adaptability,

and impact on disease detection were analyzed. The main

contributions can be summarized as follows:
• Hybrid model design: A novel hybrid model leverages the

strengths of both Mix Transformer encoders and

SegFormer architecture for effective disease segmentation

while mitigating overfitting and generalization issues.

• Extensive dataset: Experiments are conducted on a diverse

dataset of 4,574 augmented images, ensuring balanced class

representation and enabling robust performance

assessment under various disease scenarios.

• Quantitative and qualitative results: Using metrics like

mIoU and MPA, superior performance compared to the

existing methods is demonstrated. Visual examples further

confirm the model’s robustness and practical value.

• State-of-the-art performance: This approach achieves

outstanding accuracy, efficiency, and reduced model

complexity compared to the established models, making

SegFormer a strong contender for real-world applications in

strawberry disease detection.

• Insights and future directions: Valuable insights into the

relationship between encoders and SegFormer performance

are provided, guiding researchers in model fine-tuning and

tailored strategies for diverse agricultural challenges.

• Wider applicability: The success in strawberry disease

analysis suggests potential for extending this approach to

other crops and diseases, paving the way for future research

and interdisciplinary collaboration.
The remainder of the paper is structured as follows: Section 2

reviews previous research to provide context and familiarize readers

with the current state of knowledge in the field. Section 3 delves into

the materials, methods, and specifics of the proposed model, laying

the groundwork for understanding the subsequent experiments. In

Section 4, experimental results are presented to demonstrate the

proposed model’s performance under various conditions. Section 5

discusses limitations encountered during the research process,

promoting transparency and encouraging critical examination.

Finally, Section 6 consolidates conclusions drawn from the

experimental results and suggests potential avenues for

future research.
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1.3 Related work

The research evaluating the severity of plant diseases using

Convolutional Neural Networks (CNNs) primarily focused on two

main approaches. The first category involves techniques centered

around image segmentation, while the second focuses on enhancing

CNNs, predominantly by incorporating the Attention Mechanism

(Naga Srinivasu et al., 2020).

Segmentation-based methods typically utilize popular

segmentation networks like DeepLabV3+, U-Net, PSPNet, and

Mask R-CNN. For instance, Wang et al. (2022) refined the SwinT

network for data augmentation and identifying actual cucumber

leaf diseases. Meanwhile, Wu et al. (2022) obtained a remarkable

disease classification accuracy of 96.40% for tomat eaf diseases by

implementing various improvements to DETR. Additionally,

Reedha et al. (2022) leveraged ViT to classify weed and crop

images acquired via Unmanned Aerial Vehicles, resulting in an

outstanding F1 score of 99.28%. Lastly, Li et al. (2022) put forth a

lightweight network grounded in copy–paste and SegFormer for

precise disease-region segmentation and severity assessment,

yielding a MIoU of 85.38%.

Aside from segmentation-focused methods, researchers explored

alternative ways to improve CNNs, mainly concentrating on

introducing the Attention Mechanism. Zhang et al. (2023) utilized

a three-stage methodology to classify “Huangguan” pears. Initially,

Mask R-CNN facilitated the segmentation of “Huangguan” pears

from intricate backdrops; subsequently, DeepLabV3+, U-Net, and

PSPNet served to segment “Huangguan” pear spots, calculating the

proportion of spot area relative to the total number of pixels. This

ratio was classified into three distinct grades. During the final phase,

ResNet-50, VGG-16, and MobileNetV3 contributed to determining

the pear’s condition level.

Liu et al. (2021) applied a staged segmentation concept. First,

they separated apple leaves from complicated environments using a

deep learning algorithm before detecting the affected regions on the

isolated leaves. Subsequently, they gauged the severity of illnesses by

computing the ratio of damaged tissue to the entire leaf area.

Moreover, the Attention Mechanism gained prominence in

recent studies. Yin et al. (2022) modified the DCNN through

integration of multi-scale and Attention Mechanisms, ultimately

realizing maize small leaf spot classification. Separately, Liu et al.

(2021) combined multi-scale convolution kernels and Coordinate

Attention Mechanism in SqueezeNext to estimate illness severity,

leading to a 3.02% improvement over the initial SqueezeNext model.
2 Materials and methods

2.1 Experimental environment

In this study, publicly accessible datasets were utilized,

specifically the Kaggle Dataset (Afzaal et al., 2021), to create a

customized dataset tailored to the training and evaluation

requirements of this study. The input image size was standardized

to 128x128 pixels. However, it is important to note that the original

images in the dataset had varying resolutions. Initially, the Kaggle
Frontiers in Plant Science 04
Dataset comprised 1972 images encompassing seven distinct

strawberry diseases. By employing an augmentation process, the

overall dataset size was substantially expanded, resulting in a total of

4574 images available in two resolutions: 512 X 512 pixels and 640 X

640 pixels. Table 1 demonstrates a detailed breakdown of how these

images were distributed across various disease categories, which

provides a comprehensive overview of the dataset’s composition.
2.2 Dataset annotation and preparation

In this study, the innovative Segment Anything Model (SAM)

integrated into the Roboflow annotation tool (Roboflow, 2023) was

utilized to expedite the annotation and preparation of a strawberry

disease dataset. This integration allowed for swift annotation of

complex strawberry disease instances using a smart polygon tool in

the Roboflow editor. SAM demonstrated proficiency in handling

intricate object boundaries found in various disease manifestations,

enabling the efficient creation of accurate segmentation masks. This

approach not only saved considerable time, but also ensured the

precision and quality of the annotations. The integration of SAM

into the Roboflow annotation tool proved to be a valuable asset,

simplifying data preparation and enhancing the accuracy of the

semantic segmentation task in this research.
2.3 Dataset Augmentation
and preprocessing

A comprehensive set of augmentation techniques was employed

to enhance the quality and diversity of the strawberry diseases’

dataset. Data augmentation was performed in all sets of training,

validation and test. The augmentation processes included

horizontal flips, which help the model adapt to different

orientations. Additionally, hue adjustments within the range of

-21 to +21°, saturation variations from -5% to +5%, and brightness

changes spanning from -25% to +25% were applied. These

modifications contribute to the dataset robustness by simulating

different lighting conditions and color variations. To introduce
TABLE 1 Statistics of the Raw and Augmented Datasets.

Disease
No.

Disease
name

Raw
Images count

Augmented
images count

1 Angular leaf spot 245 569

2 Anthracnose
fruit rot

52–156 118–354

3 Blossom blight 119–357 273–819

4 Gray mold 254 606

5 Leaf spot 369 919

6 Powdery
mildew fruit

79–273 185–555

7 Powdery
mildew leaf

318 752
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realistic imperfections, a blur with a maximum radius of 2.5 pixels

and introduced noise, affecting up to 8% of the pixels, was

incorporated. Figure 1 illustrates a representative example of

applying various augmentation scenarios to powdery mildew leaf

images. These augmentation strategies are presented in Table 2 and

play a crucial role in improving the dataset variability and aiding the

proposed SegFormer-based semantic segmentation model in

effectively recognizing and classifying strawberry diseases.

The process of dividing a dataset into training, validation, and

test subsets is a fundamental step in deep learning model

development, ensuring the model ’s generalizability and

performance evaluation. In this study, a diverse dataset

containing various plant diseases was analyzed. To achieve a

balanced and representative split, the size of each class was

considered. With 569 images of Angular Leaf Spot, 354 images of

Anthracnose Fruit Rot, 819 images of Blossom Blight, 606 images of

Gray Mold, 919 images of Leaf Spot, 555 images of Powdery Mildew

Fruit, and 752 images of Powdery Mildew Leaf, the data were

appropriately distributed. Typically, a common practice is to

allocate a significant portion of the dataset to training, around

80–90%, to allow the model to learn from a substantial amount of

data. The validation set, which is usually 5–10% of the data, is

employed during model development to fine-tune hyperparameters

and monitor training progress. The remaining portion, the test set,

serves as an unseen dataset to evaluate the model performance

objectively, as illustrated in Table 3.
2.4 Efficient Segmentation model training
with PyTorch Lightning Framework

In this study, PyTorch Lightning was employed as a powerful

deep learning framework to train a semantic segmentation model
Frontiers in Plant Science 05
on a strawberry diseases dataset. PyTorch Lightning provided a

streamlined and highly efficient platform for the training process. It

abstracted the underlying complexities of training, concentrating on

model architecture and experimentation. The use of Lightning

structured training loops and integrated callbacks, such as early

stopping and model checkpointing, enhanced productivity, while its

built-in support for distributed training and reproducibility

contributed to the robustness of this research. The resulting

model, based on the Segformer architecture, demonstrated

impressive performance in semantic segmentation, making

PyTorch Lightning an invaluable component of the methodology

of the study.
2.5 Early Stopping and
model checkpointing

Two crucial techniques were employed in this study for

enhancing the training of deep learning models: Early Stopping

and Model Checkpointing. The Early Stopping callback is an

invaluable addition to the training regimen. It continuously

monitors the validation loss as the model learns, and its role is to

identify when the progress plateaus. This is defined by such

parameters as ‘min_delta,’ which specifies the minimum change in

validation loss to be considered as a meaningful improvement. If no

substantial improvement is observed for a predefined number of

consecutive epochs, set at 10 in the present study, Early Stopping

steps in and terminates the training process, preventing unnecessary

overfitting and saving valuable computational resources.

On the other hand, ModelCheckpoint plays a pivotal role in

preserving the best version of the proposed model. By specifying

‘save_top_k=1’ and monitoring the ‘val_loss,’ it ensures that only

the finest Model Checkpoint, the one with the lowest validation loss,
FIGURE 1

Representative example of data augmentation scenarios on powdery mildew on leaves. The top row shows the original images, while the bottom
row illustrates the images after resizing and data enrichment procedures. The first column displays images after adjustments, including a decrease in
hue by -8°, saturation by -1%, brightness by -12%, along with a 1px blur and 8% noise. The second column presents images after horizontal flipping,
a 2° hue increase, 5% saturation increase, 23% brightness increase, a 1.75px blur, and 3.25% noise. In the third column, images are shown following
an increase in hue by 19°, a 2% saturation boost, 23% brightness enhancement, along with 0.5px blur and 0.75% noise. The fourth column depicts
images after a 19° hue increase, and the fifth column shows images with a -18° reduction in hue.
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is stored. This is crucial because it safeguards the model superior

performance and provides a safety net in case of unforeseen

interruptions during training. The harmonious interplay of Early

Stopping and Model Checkpointing allows to train the proposed

deep learning model efficiently, striking a balance between

performance optimization and resource management.
2.6 The proposed model architecture

In this study, the SegFormer architecture was harnessed

(Figure 2) and fine-tuned for precise semantic segmentation and

object detection. NVIDIA advanced SegFormer model, rooted in

this architecture, was designed for specialized computer vision

tasks. SegFormer core strength lies in its Transformer-based

backbone, which excels at capturing contextual information in

images. Its encoder-decoder structure and innovative Mix Feed-

Forward Network (Mix-FFN) approach address positional

encoding and model efficiency challenges, contributing to high-

performance yet resource-efficient models.

Self-attention mechanisms, a hallmark of Transformer models,

dynamically focus on relevant image regions. Fine-tuning, using a

pre-trained model on the extensive ADE20K dataset, refines the

model knowledge for the specific purpose of this study. The dataset

diversity enhances the model proficiency in semantic segmentation

and scene understanding.

For strawberry disease segmentation, MiT-B0 and MiT-B3 were

tailored to handle 512x512 pixel images, while MiT-B5 was

configured for 640x640 pixel images. These customizations suit

the models to the unique demands of this task.
Frontiers in Plant Science 06
Figure 2 presents an overview of SegFormer architectural

components, which includes both encoding and decoding

modules. Within the encoder, the Transformer block utilizes

Overlap Patch Embeddings (OPEs) to extract feature

representations and down-sample the input image. These

extracted features are then fed into two critical components: the

Efficient Self-Attention (ESA) and the Mix Feed-Forward Network

(Mix-FFN). Here are their components and functionalities: the FFN

indicates a Feed-Forward Network; H and W represent the height

and width of the original image, respectively; the Transformer Block

is the basic structure of the SegFormer backbone network.

To calculate the OPE, standard convolutional layers are

employed. Following this, the 2D features are spatially reshaped

into 1D representations and subsequently input into the ESA layer.

The ESA layer plays a pivotal role in enhancing features through

self-attentive computations. To address positional encoding, a 3 × 3

convolution is thoughtfully introduced between the two linear

layers of the FFN. This convolutional operation effectively fuses

positional information into the network.

In the encoder, Linear Normalization (LN) sequentially follows

linear layers, guaranteeing normalized representation of input

features. Adopting Gaussian Error Linear Units imparts non-

linear properties to the model as an activation function. Crucially,

the encoder deploys numerous instances of Encoding Scale-

Adaptive Modules (ESAs) and Mix Feature-wise FiLM Functional

Units (MixFFNs), collectively increasing the depth of the network

and enabling the discovery of subtle distinctions and semantic

traits. Notably, individual self-attention calculations occur at each

scale inside the ESA, differing from earlier network designs

executing cross-scale self-attention computations following

merger via CNNs. This independent computation style improves

the quality and particularity self-attention mechanisms at respective

scales, enhancing pattern recognition and relationship formation.

The present research implements the assorted Mix Transformer

encoders (MiT) in the model’s encoder, namely MiT-B0, MiT-B3,

and MiT-B5. Classified as real-time SegFormer candidates, MiT-B0

and MiT-B3 excel in speed, while MiT-B5 adheres to the non-real-

time standard favoring heightened accuracy. Outlined in Table 4,

the principal hyperparameters of these models facilitate

comparison. Experimentation entails trialing the three dissimilar

SegFormer configurations to identify optimal solutions for

detecting various strawberry disorders. Serving as an economical
TABLE 3 Dataset distribution.

Disease type Total samples Training size Validation size Test size

Angular leaf spot 569 514 37 18

Anthracnose fruit rot 354 310 30 14

Blossom blight 273 225 26 18

Gray mold 606 534 58 18

Leaf spot 919 765 74 40

Powdery mildew fruit 555 470 50 33

Powdery mildew leaf 752 651 64 37
TABLE 2 Augmentation methods and their respective settings.

Method Settings

Flip Horizontal

Hue Between -21° and +21°

Saturation Between -5 and +5%

Brightness Between -25 and +25%

Blur Up to 2.5px

Noise Up to 8% of pixels
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option, MiT-B0 possesses a diminished parameter count of

approximately 3.4 million in the encoder and 0.4 million in the

decoder. Superior performing MiT-B3 accumulates nearly 47.3

million parameters in total, representing a potent candidate

amongst real-time alternatives. Further expanding upon its

predecessors, MiT-B5 sports a grander configuration featuring

84.7 million parameters. The detailed comparison of the MiT

encoders is shown in Table 4.
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✓ The values in the list correspond to the predefined settings for

stages from stage-1 to stage-4.

✓ Input tensor: typically, the SegFormer model expects input

tensors with a shape of (batch_size, 3, height, width).

✓ Kernel size: convolutions within the stem layer use 3 ×

3 kernels.

✓ Strides: the value is set to 1 for the majority of the layers

in SegFormer.

✓ Activation function: the SegFormer model frequently

employs GELU (Gaussian Error Linear Unit).

✓ The learning rate used is 0.00002.

MiT-B0 is the most compact model optimized for real-time

applications, MiT-B3 is the larger model suitable for real-time tasks,

and MiT-B5 is the largest model specifically designed for high-

performance applications.
2.7 Architectural and mechanical variations
between mix transformer
encoders-decoders

The steps for Understanding SegFormer Variants and their

operations can be summarized as follows:

1. Examine three mix transformer encoder options—MiT-B0,

MiT-B3, and MiT-B5—each having different sizes, depths, and

complexities impacting their capabilities (details are present

in Table 4):
• MiT-B0: Smallest encoder with 32–256 channel counts, 4–2

patch resolution, 2 layers per stage, 1 head per layer, and

fixed 8x MLP expansion ratios. Trades off feature learning

and global context modeling for efficiency.

• MiT-B3: Greater capacity with 64–512 channel counts, 4–2

patch resolution, 3–18 layers per stage, 1–2 heads per layer,
TABLE 4 Hyperparameters of MiT-B0, Mit-B3, and MiT-B5 architectures.

Parameters
MiT-B0 MiT-B3 MiT-B5

Overlapping Patch embedding

Channel number, C [32 64 160
256]*

[64 128
320 512]

[64 128
320 512]

Patch size, K [7 3 3 3]* [7 3 3 3] [7 3 3 3]

Stride, S [4 2 2 2]* [4 2 2 2] [4 2 2 2]

Padding, P [3 1 1 1]* [3 1 1 1] [3 1 1 1]

Transformer encoder

Head number, N [1 2 5 8]* [1 2 5 8] [1 2 5 8]

Encoder layers number, L [2 2 2 2]* [3 3 18 3] [3 6 40 3]

Reduction ratio, R [8 4 2 1]* [8 4 2 1] [8 4 2 1]

Expansion ratio of the feed-
forward layer, E

[8 8 4 4]* [8 8 4 4] [8 8 4 4]

MLP decoder

channel dimension 256 768 768

Encoder and Decoder sizes

Encoder size, parameters 3.4 44.0 81.4

Decoder size, Parameters 0.4 3.3 3.3
*The values in the list correspond to the predefined settings for stage-1 to stage-4.
FIGURE 2

SegFormer Architecture Overview: The FFN indicates a Feed-Forward Network. H, W define the input image height and width. C defines the channel
dimension in the MLP decoder and N_cls is the number of semantic classes.
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Fron
and flexible 8x-4x MLP expansion ratios. Balances

efficiency and performance.

• MiT-B5: Prioritizes representational power over efficiency,

having 3–40 layers per stage, 1–8 heads per layer, and larger

width and depth for maximized global context modeling

and rich feature learning.
2. Follow SegFormer decoder’s four main steps:
• Obtain feature maps from the four encoder stages and pass

them through an MLP layer to modify channel dimensions

(256, 768, and 768 for MiT-B0, MiT-B3, and MiT-B5).

• Up-sample or rescale features to a quarter of their original

size and concatenate to build a feature map with 256 or

768 channels.

• Combine consecutive features using an MLP layer.

• Generate semantic segmentation predictions using another

MLP layer and the merged feature.
Notable is that different encoder architectures lead to varying

balances between model size, feature learning, and inference

latency, causing distinctions in segmentation proficiency

and efficiency.
2.8 Evaluation metrics

There are several common evaluation metrics used to assess the

performance of segmentation models. These metrics help measure

the accuracy and quality of the segmentation results.

2.8.1 Pixel accuracy (accuracy): calculation of
pixel-wise category counts

• Let G represent the ground truth image with correct category

labels, and P represent the predicted image with category labels.

Additionally, let H and W denote the height and width of the

labelled image, respectively. Pij signifies the count of pixels where

the true label is category i, and they were predicted as category j. The

calculation for Pij is as follows, Equation 1:

Pij =oH
h=1oW

w=1d (Ghw = i) : d (Phw = j) (1)

• where:

• Pij represents the count of pixels, where the actual category

label is i in the ground truth image, and they are predicted as

category j in the predicted image.

• oH
h=1 : double summation. It iterates over the height (ℎ) of the

label images.

• oW
w=1 : another double summation, iterating over the width

(w) of the label images. The width of the image is denoted by W.

* d (Ghw = i) : this is the Kronecker delta function, which checks

whether the pixel at coordinates (h,w) in the ground truth image (G)

has the category label i. If the condition is true, d (Ghw = i) equals 1;

otherwise, it equals 0.
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* d (Phw = j) : similarly, this Kronecker delta function checks

whether the pixel at coordinates (h,w) in the predicted image (P) has

the category label j. It equals 1 if the condition is true and 0 if it is false.

Pixels Accuracy calculates the fraction of correctly classified

pixels in the entire image. It provides a measure of overall pixel-level

accuracy. MPA and PA are expressed mathematically as follows,

Equation 2:

PAi =
Pii

ok
j=0  Pij

(2)

where:

PAi represents the Pixel Accuracy for category i.

Pii is the count of pixels where both the actual category label and

the predicted label are i. In other words, it is the count of true

positives for category i. These are the pixels that were correctly

predicted as category i.

ok
j=0Pij is a summation over j from 0 to k, where k represents

the total category numbers (including background categories). It

calculates the total count of pixels that are supposed to be category i

in the ground truth image, regardless of whether they were

predicted correctly or not.
2.8.2 Mean pixel accuracy
Mean Pixel Accuracy, sometimes called Mean Accuracy,

calculates the average accuracy of each class. It takes into account

the class-wise accuracy and computes the mean, Equation 3.

MPA =  
1

k + 1o
k
i=0PAi (3)

where:

PAi denotes the pixel accuracy of the i-th class, k refers to the

total number of classes, and the “+1” accounts for the background

class. Essentially, MPA averages the individual class accuracies,

providing a holistic measure of segmentation performance

considering all classes present in the dataset.
2.8.3 Mean Intersection over Union
(Jaccard Index):

Mean IoU, or Mean Intersection over Union, quantifies the

extent of overlap between the predicted segmentation masks and

the corresponding ground truth masks. In other words, it represents

the ratio of the intersection for class i to the union for class i,

Equations 4–6. Mean IoU is a valuable metric for evaluating the

accuracy and precision of semantic image segmentation models

(Equation 7), where the intersection for class i is, Equation 4:

Intersectioni =opixel(Pi∩
 Gi) (4)

Union for class i is given by, Equation 5:

Unioni =opixel(Pi∪
 Gi) (5)

Pi and Gi are the predicted and ground truth masks for class

i, respectively.
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The mathematical expressions for IoU is Equation 6

IoUi =
pii

ok
j=0Pij +ok

j=0Pji − pii
(6)

where ok
j=0Pij: This part sums up all the pixels that should be

category i in the ground truth image, whether they were predicted

correctly or not. It includes true positives and false negatives for

category i. ok
j=0Pji: Similarly, this part represents the sum of the

count of pixels that were predicted as category j and are supposed to

be category i in the ground truth image. It includes true positives

and false positives for category i.

By subtracting pii from ok
j=0Pij +ok

j=0Pji removes the overlap

between the true positives (common pixels between predicted and

ground truth). This adjustment ensures that the IoU measures the

proportion of the correctly predicted pixels relative to the total area

that should be category i in the ground truth, excluding the overlap.

mIoU =
1

k + 1o
k
i=0IoUi   (7)

In the context of the segmentation task, k denotes the highest

valid class label, while k+1 correspond to the overall sum of classes.

2.8.4 FLOPs
Floating-Point Operations per Second (FLOPS) involves

determining the number of floating-point operations a computer

or a processor can perform in one second. FLOPS is a commonly

used metric to measure the computational performance of

hardware, such as CPUs, GPUs, or accelerators. GFLOPs (Giga-

Floating-Point Operations per Second) represent one billion

floating-point operations per second.
3 Results and discussion

The training and testing setup in this study involved specific

hardware and software configurations. The computer used for this

research is equipped with 10th generation Intel (R) Core (TM) i7–

10870H processor, featuring 16 threads, 8 cores, a base clock speed

of 2.21GHz, and a turbo speed of 5GHz. It is equipped with 16MB

cache memory and supports a maximum memory size of 128GB

(DDR4–2933). The graphics processing unit employed is the

NVIDIA GeForce RTX3060, boasting 3840 CUDA cores and 6

GB of video memory. The operating system utilized is Windows 10,

and the software stack includes PyTorch Lightning version 1.9.5,

Python version 3.8, and CUDA version 11. PyTorch Lightning

serves as a lightweight wrapper for PyTorch, streamlining the

process of training and evaluating PyTorch models.
3.1 Segmentation visualization for
various scenarios

To assess the efficacy of SegFormer, a comprehensive evaluation

of the model’s performance was conducted on the testing set. The

testing set was systematically divided into distinct subsets, each

catering to different disease perspectives. These divisions were
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primarily based on the nature of the disease, the clarity of disease

manifestations, and the density of disease regions.

To evaluate the model’s ability to handle various disease types,

three different disease perspectives for each disease were selected as

research objects. The results of semantic segmentation of these

diverse disease types are pictured at Figure 3. Moreover, for

assessing the model’s performance in distinguishing between clear
FIGURE 3

Visual representation of segmentation across various instances of
strawberry diseases.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1352935
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Elmessery et al. 10.3389/fpls.2024.1352935
and blurry disease manifestations, samples representing both

scenarios were selected, and their segmentation results were

visually represented. Additionally, the study investigated the

model’s competence in handling the sparseness and density of

disease manifestations. Two samples were chosen to represent

each scenario, and the segmentation results are visually presented

in Figure 3. The visualized results demonstrate SegFormer’s

remarkable ability to accurately identify and segment various

disease types, consistent with manually labeled and segmented

data, validating its effectiveness in semantic segmentation. Table 5

presents a comparative analysis of various Mix Transformer

encoder models in diagnosing six prevalent strawberry diseases.

The tested models include MiT-B0, MiT-B3, and MiT-B5, evaluated

on angular leaf spot, anthracnose fruit rot, blossom blight, gray

mold, leaf spot, powdery mildew on fruit, and powdery mildew on

leaves. Each entry contains the corresponding test loss, test mean

pixel accuracy (MPA), test mean Intersection over Union (mIoU),

computation complexity (GFLOPs), and the total estimated model

parameter size in megabytes (MB). This detailed comparison helps

assess each model’s performance, computational efficiency, and

model size to guide developers and researchers towards an
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informed decision when selecting an appropriate model for

specific strawberry disease detection tasks.

Based on the visual results for segmentation of various

strawberry diseases Figure 4 represents an explanation of the

key observations:
• For Angular Leaf Spot disease, MiT-B3 and MiT-B5

perform well in identifying multiple spots on the leaves.

MiT-B0 struggles with smaller spots. MiT-B5 delineates

boundaries most cleanly.

• On Anthracnose Fruit Rot, all three encoders (MiT-B0,

MiT-B3, MiT-B5) achieve accurate localization and

segmentation of the disease regions. MiT-B5 produces the

most precise segmentation boundaries.

• For Gray Mold, MiT-B3 and MiT-B5 accurately capture the

diffuse disease regions, while MiT-B0 misses some portions.

MiT-B3 provides finer segmentation.

• On Leaf Spot disease, MiT-B3 and MiT-B5 precisely

identify and segment the multiple disease spots. MiT-B0

can detect some smaller spots. MiT-B5 offers the

highest precision.

• For Powdery Mildew on Leaves, MiT-B5 clearly

outperforms MiT-B0 and MiT-B3 in detecting the

scattered powdery patterns. Its segmentation aligns closely

with ground truth.

• On Powdery Mildew on Fruits, all encoders of MiT-B0,

MiT-B3 and MiT-B5 achieve good localization. MiT-B5

provides the most accurate delineation.

• Finally, for Blossom Blight, all encoders effectively identify

the affected flower regions.
As shown in Figure 4, MiT-B3 and MiT-B5 consistently

outperform MiT-B0 across disease types, with MiT-B5 achieving

the most precise segmentation in general. The results highlight the

importance of selecting appropriate encoders matched to disease

characteristics and use cases.
3.2 Boosting model training performance
through augmentation techniques

The comparative results validate that data augmentation

provided notable benefits for model training using the MiT-B3

encoder on the powdery mildew leaf disease dataset. Specifically,

training with augmented data led to faster convergence evidenced

by lower losses, reduced overfitting indicated by smaller gaps

between training and validation metrics, more stable validation

performance, and higher accuracy. For instance, by epoch 39 the

training mean IoU reached 0.9 with augmentation versus 0.86

without. Meanwhile, the validation mean IoU improved gradually

to 0.69 with augmentation compared to more fluctuation and

ending at 0.68 without. Similarly, validation mean accuracy

climbed to 0.76 with augmented data versus plateauing at 0.74

without. The consistent improvements in key metrics like loss, IoU,

and accuracy demonstrate that introducing expanded diversity
TABLE 5 Comparative performance analysis of various mix transformer
encoder models.

Encoder
type

Test-
loss

Test-
MPA

Test-
mIoU

GFLOPs Total esti-
mated
model
params
size (MB)

1. Angular leaf spot disease

MiT-Bo 0.0669 0.95748 0.9238 0.846 14.859

2. Anthracnose fruit rot

MiT-B0 0.1586 0.9321 0.8784 1.692 14.859

3. Blossom blight

MiT-B0 0.0663 0.90891 0.8784 2.541 14.859

4. Gray mold

MiT-B0 0.191 0.87751 0.7844 0.846 14.859

MiT-B3 0.095 0.9134 0.8567 26.76 188.896

MiT-B5 0.1299 0.895 0.835 37.41 338.380

5. Leaf spot

MiT-B0 0.2023 0.9456 0.897 2.12 14.859

6. Powdery mildew fruit

MiT-Bo 0.319 0.9296 0.8271 2.96 14.859

7. Powdery mildew leaf

MiT-Bo 0.1726 0.691 0.6352 1.27 14.859

MiT-B3 0.1677 0.7753 0.6823 13.38 188.896

MiT-B5 0.1731 0.762 0.680 18.70 338.380

MiT-B3 0.0775 0.91293 0.8732 26.77 188.902
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through augmentation techniques helped the model generalize

better and boosted its capabilities, as shown in Figure 5.

The comparisons clearly validate that augmentation enabled

superior training and segmentation performance, allowing the MiT-

B3 encoder learn faster and achieve higher metrics on the powdery

mildew leaf disease dataset.
3.3 Unleashing model potential: early
stopping and checkpointing for precise
strawberry disease detection

This section demonstrates the transformative power of early

stopping and model checkpointing in optimizing a deep learning

model for strawberry disease detection, as shown in Figure 6. By

strategically employing these techniques, impressive results

were achieved:
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• Training and validation mIoU reaching 0.96 and 0.93,

respectively, after 175 epochs.

• Remarkably low training and validation losses of 0.042 and 0.015 -

a testament to the combined effectiveness of these methodologies.
Early stopping, a vigilant guardian, constantly monitored

validation loss during training. When progress plateaued, it

intervened, preventing overfitting and saving the model from

memorizing training data instead of learning generalizable features.

Model checkpointing acted as a reliable safety net, preserving the

best performing model versions throughout training. This invaluable

technique ensured the progress due to potential training hiccups.

Together, these techniques fostered a harmonious balance

between model complexity and generalization. The model

effectively generalized to the unseen data, accurately identifying

various strawberry diseases (Angular leaf spot, Anthracnose fruit

rot, Blossom blight) under natural conditions.
FIGURE 4

Visual representation of strawberry diseases segmentation process.
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The consistent performance across different diseases

underscores the approach robustness. In synergy with innovative

deep learning techniques, meticulous data preparation, and effective

monitoring, early stopping and model checkpointing pave the way

for real-world applications demanding high precision, like disease

detection in agriculture.
3.4 Dissecting blossom blight detection:
MiT-B3 outshines MiT-B0 in
SegFormer models

Understanding blossom blight in strawberries through deep

learning is crucial for effective disease management. This section

compares two prominent architectures, MiT-B0 and MiT-B3,
Frontiers in Plant Science 12
within SegFormer models to see which encoder excels in

detection, as shown in Figure 7. The results clarify key factors for

choosing the right model for tackling specific diseases.

MiT-B0: While showing potential, consistency remains a

hurdle. During training, its mean IoU (a measure of segmentation

accuracy) fluctuates significantly. This suggests difficulty adapting

to the disease’s diverse manifestations. However, the gradual rise in

validation mean IoU indicates promising generalization to unseen

data. Further investigation is needed to unlock MiT-B0’s full

potential for consistent accuracy.

MiT-B3: This architecture outperforms in both rapid

adaptation and stability. Training mean IoU experiences a

remarkable jump from 0.34 to 0.7 within a single epoch,

demonstrating efficient learning of disease features. Even after

initial fluctuations, validation mean IoU stabilizes and steadily
FIGURE 5

Optimizing Model Training Performance with Augmentation Methods.
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climbs, reaching 0.85. This signifies successful adaptation and

consistent accuracy on unseen data, making MiT-B3 ideal for

real-world scenarios. The choice of Mix Transformer encoder

significantly impacts performance. While MiT-B0 shows

potential, MiT-B3 dominates when it comes to swift adaptation

and reliable detection. Its rapid learning and strong validation

performance make it the clear winner for applications demanding

fast adaptation and real-world disease detection.
3.5 Unveiling the gray mold buster: MiT-B3
reigns supreme in SegFormer models

Combating gray mold in strawberries requires effective detection

tools. This section investigates three Mix Transformer encoders

within SegFormer models - MiT-B0, MiT-B3, and MiT-B5 - to find

the champion disease detective, as shown in Figure 8. The results hold

valuable insights for both disease detection and model selection.
3.5.1 MiT-B0
A solid contender, but with room for improvement. While

converging well with similar training and validation losses (0.12 and

0.18), a lower validation mIoU (0.79) compared to training (0.87)

implies possible overfitting. However, consistent accuracy across

training and validation (0.91 vs. 0.87) shows promise.
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3.5.2 MiT-B3
Exceptional generalization and fitting are evident in its low

training (0.045) and validation losses (0.19). High mIoU values for

both training and validation (indicating ability to capture disease

details) solidify its lead. Even on unseen test data, it scores a strong

mIoU of 0.8567. Impressively high accuracy, especially on the test

set, confirms its reliable gray mold identification under

diverse conditions.

3.5.3 MiT-B5
Training loss exhibits some instability, potentially impacting

performance. While training mIoU is high (0.909), validation and

test mIoU are slightly lower (0.82 and 0.835, respectively). This

encoder demonstrates respectable scores, although lacks the

consistency of MiT-B3. Its high training accuracy (0.95) is

mirrored in validation and test sets (0.89 and 0.895), indicating

potential but requiring further optimization.

3.5.4 Key takeaways
• Encoder choice matters: MiT-B3 consistently outperforms the

others in mIoU, accuracy, and convergence.

• MiT-B0 is well-balanced but susceptible to overfitting.

• MiT-B3 is the champion with exceptional performance

and generalization.

• MiT-B5 shows potential, but requires refinement for stability.
FIGURE 6

Graphs of Training and Validation Sets, along with Performance Metrics for SegFormer Evaluation on angular leaf spot and anthracnose fruit rot
diseases using MiT-B0 Mix Transformer Encoders.
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The findings: For tackling gray mold, MiT-B3 proves to be the

most effective encoder. Its exceptional performance and impressive

generalization power make it an invaluable tool for accurate disease

detection in real-world scenarios. This study underscores the

importance of matching the encoder to the specific disease for

optimal results, paving the way for improved strawberry protection

and enhanced agricultural practices.
3.6 Detecting leaf spot and powdery
mildew with SegFormer models

This section explores the ability of MiT-B0, a Mix Transformer

encoder, within SegFormer models to detect two distinct strawberry

diseases: leaf spot and powdery mildew fruit disease (Figure 9).

3.6.1 Leaf spot
• Training loss: Experienced two peaks, suggesting temporary

difficulty due to disease complexity. However, it eventually reached

a low value of 0.05.

• Validation loss: Steadily decreased and plateaued at 0.05,

indicating consistent performance on unseen data.

• Mean IoU: Training mIoU reached a high of 0.98, while

validation mIoU stabilized at 0.88, demonstrating effective learning

and reliable detection.
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• Accuracy: Both training and validation accuracy were high (0.98

and 0.93 respectively), confirming accurate disease identification.

Powdery Mildew Fruit Disease:

• Training loss: Fluctuated within 0.12 but peaked significantly

at epoch 56. Ultimately, it decreased to 0.1.

• Validation loss: Showed a steadier decrease, plateauing at 0.22

and achieving a test loss of 0.319.

• Mean IoU: Training mIoU was high at 0.92, while validation

mIoU was slightly lower at 0.81, indicating efficient learning but less

accurate validation performance.

• Accuracy: Training and validation accuracy remained strong

(0.98 and 0.88 respectively), with a test accuracy of 0.9296.

3.6.2 Key takeaways
• Adaptability: The model successfully tackled both diseases,

highlighting its potential for diverse applications.

• Learning Power: Consistent validation performance signifies

effective learning despite training loss fluctuations.

• Trade-offs: Higher complexity (leaf spot) might cause

temporary training challenges, but the model adapts and stabilizes.

MiT-B0 proves adaptable in detecting different strawberry

diseases. While training loss may fluctuate with disease

complexity, the model demonstrates its ability to learn, generalize,

and achieve reliable detection, making it a promising tool for

precision agriculture.
FIGURE 7

Graphs of Training and Validation Sets, along with Performance Metrics for SegFormer Evaluation on blossom blight disease using MiT-B0 and MiT-
B3 Mix Transformer Encoders.
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3.7 Decoding powdery mildew: finding the
best AI detector with SegFormer models

This section delves into the performance of SegFormer models

equipped with three Mix Transformer encoders (MiT-B0, MiT-

B3, and MiT-B5) for detecting powdery mildew on leaves, as

shown in Figure 10. Each model reveals unique behaviors and

outcomes, offering valuable insights for choosing the right tool for

the job.

3.7.1 MiT-B0: efficient learner, room for growth
• Initial training demonstrates difficulties with loss fluctuations,

revealing adaptation challenges.

• Validation loss stays stable, providing good generalization for

unseen data.

• The encoder achieves a respectable mean IoU of 0.89 and

accuracy of 0.92.
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• Its low computational cost (1.269 GFLOPs) makes it a budget-

friendly option.

3.7.2 MiT-B3: speedy adapter, ideal for new
disease variants

• It quickly adapts during training, boosting mean IoU to 0.9

and accuracy to 0.94.

• Validation performance also thrives, due to early stopping for

efficient training in 60 epochs.

• It is ideal for scenarios demanding swift adaptation to novel

disease variants.

3.7.3 MiT-B5: fast learner, high accuracy
(but pricey)

It converges rapidly with early stopping, reaching a high

mean IoU of 0.9 and accuracy of 0.93 on both training

and validation.
FIGURE 8

Training, Validation Sets, and Performance Metrics for SegFormer-Based Model Evaluation on Gray Mold Strawberry Disease using MiT-B0, MiT-B3,
and MiT-B5 Mix Transformer Encoders.
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• It takes fewer epochs but demands more computational power

(18.70 GFLOPs).

• It is perfect for situations where accuracy is paramount and

resources are plentiful.

3.7.4 Matching tool to task: a balancing act
• Encoder choice significantly impacts performance and

adaptation speed.

• Complex diseases like powdery mildew benefit from MiT-B3’s

quick adaptation.

• For efficiency-driven applications, MiT-B0 might be the

best option.

Selecting the optimal Mix Transformer encoder specific disease,

dataset, and resource constraints should be considered. Understanding

the trade-off between computation, training time, and accuracy is

crucial for real-world success. This detailed analysis empowers

informed decision-making for disease detection tasks, ensuring the

best AI tools application.
3.8 Comparative analysis with other
segmentation models

To assess the effectiveness of the mix transformer encoders under

study, several major segmentation models were trained and fine-

tuned using the training and validation sets. Table 6 below provides a

comparative analysis of popular segmentation models and the

proposed SegFormer variants. The comparison covers essential

metrics like Total Parameters (M), mean Intersection over Union
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(mIoU), Mean Pixel Accuracy (MPA), and Flops (G). This

comprehensive evaluation assists researchers and practitioners in

determining the optimal model for their specific computer vision

tasks, considering the trade-offs between model complexity,

computational cost, and segmentation performance. Presented here

are widely used models such as U-Net, DeepLabV3+, SegNet, and

SETR, together with the newly proposed SegFormer configurations

equipped with MiT-B0, MiT-B3, and MiT-B5 encoders.

As shown in Table 6, starting with model complexity -

SegFormer demonstrates highly competitive performance with

significantly lower model parameters compared to such state-of-

the-art models like SETR and DeepLabV3+. For instance, even the

largest MiT-B5 variant of SegFormer has 85% lesser parameters

than SETR. This indicates SegFormer can match or exceed the

capabilities of much larger models with far fewer parameters.

In terms of accuracy, measured by mean IoU and mean pixel

accuracy, SegFormer consistently achieves outstanding results,

outperforming classic models like U-Net, SegNet, and PSPNet.

The MiT-B5 variant in particular exceeds DeepLabV3+ and

comes close to SETR, which is remarkable given SETR’s massive

size. This shows the representation power and generalization ability

of SegFormer.

Finally, regarding efficiency, SegFormer requires significantly

lower Floating Point Operations (FLOPs) compared to prior models

like SETR and PSPNet. The smallest MiT-B0 SegFormer operates at

less than 2 GFLOPs, enabling real-time inference on edge devices.

Even MiT-B5 operates at nearly 4x lower FLOPs than SETR.

SegFormer establishes a new state-of-the-art in semantic

segmentation across all key aspects - lower model complexity,
FIGURE 9

Graphs of Training and Validation Sets, along with Performance Metrics for SegFormer Evaluation on leaf spots and powdery mildew fruit diseases
using MiT-B0 and MiT-B3 Mix Transformer Encoders.
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greater accuracy, and higher efficiency. For strawberry disease

segmentation, SegFormer provides the right balance of

performance, accuracy, and efficiency as evidenced by the

comparative analysis. This makes it the ideal choice to deploy in

real-world agriculture applications.
4 Limitations and challenges

Despite the promising results and contributions of this research,

there are certain limitations that require consideration. Addressing

these constraints could give prospects for future exploration and

improvements in the field of strawberry disease detection.

• Limited scope of dataset: Although the current study uses an

adequately sized and diversified dataset, incorporating additional
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sources and increasing the volume of data could lead to more robust

and generalizable models. Exploring multisource data fusion,

combining images taken under different lighting conditions,

geographical locations, and camera angles could further

strengthen the model’s performance.

• Impact of weather conditions: Environmental factors, such

as temperature, humidity, and sunlight exposure play a significant

role in the appearance of strawberry diseases. Investigating the

influence of these variables on model performance and accounting

for dynamic weather conditions could result in more accurate and

adaptable models.

• Integration with Internet of Things (IoT) platforms:

Connecting the strawberry disease detection system with IoT

devices, such as sensors and cameras installed in greenhouses,

would facilitate real-time monitoring and decision-making.
FIGURE 10

Training, Validation Sets, and Performance Metrics for SegFormer-Based Model Evaluation on powdery mildew leaf diseases using MiT-B0, MiT-B3
and MiT-B5 Mix Transformer Encoders.
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Further research could explore integrating the proposed model with

IoT in f ra s t ruc ture fo r seamle s s implementa t ion in

agricultural settings.

•Human-computer interaction for user feedback: Developing

intuitive user interfaces that allow users to provide feedback on

model outputs could create opportunities for continuous learning

and model improvement. Iteratively updating the model based on

expert user inputs could result in more accurate and

trustworthy systems.
5 Conclusion

This study has demonstrated the successful application of the

SegFormer segmentation model for precise semantic segmentation

of strawberry diseases, striving to enhance disease detection

accuracy under natural acquisition conditions. The analysis of

three distinct Mix Transformer encoders—MiT-B0, MiT-B3, and

MiT-B5—has revealed their unique behaviors and benefits, catering

to varying needs in disease detection applications. Adopting the

novel SAM integrated into the Roboflow annotation tool enabled

efficient annotation and preparation of a strawberry disease dataset,

while rigorous augmentation techniques ensures the dataset’s

quality and diversity. Balanced partitioning of the dataset into

training, validation, and test subsets guarantees fair evaluation

and optimized model performance. Implementing PyTorch

Lightning, a potent deep learning framework, resulted in a finely

tuned semantic segmentation model displaying impressive training

and validation mIoU scores of 0.96 and 0.93, respectively.
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Moreover, SegFormer emerged victorious in comparative tests

against other renowned segmentation models, outshining classical

competitors such as U-Net, SegNet, and PSPNet in mean IoU and

mean pixel accuracy. Crucially, SegFormer demonstrated its

prowess operating with significantly fewer parameters and lower

FLOPs than cutting-edge alternatives like SETR and DeepLabV3+,

cementing its status as a compelling solution for practical

agriculture applications. These findings hold great promise for the

future of disease detection systems, suggesting that carefully chosen

encoders paired with advanced models can deliver substantial

improvements in accuracy, efficiency, and adaptability. As a

consequence, researchers now have access to actionable insights

for selecting the most suitable encoder in disease detection

applications, propelling the field forward for further investigation.

Future work in this domain includes multi-modal input integration,

transfer learning across crops, online learning systems, scalable

solutions, custom hardware development, benchmarking and

standardization initiatives, open research platforms, and codebase

creations. Ultimately, the goal is to establish robust, accessible, and

adaptable AI technologies that empower stakeholders in the

agricultural sector to make informed decisions and implement

timely actions for sustainable food production.
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TABLE 6 Comparative analysis with other segmentation models.

Model Encode/Backbone Total Params (M) mIoU(%) MPA (%) FLOPs(G)

U-Net
Ronneberger et al., 2015

MobileNetV2 24.33 63.9 69.3 45.23

Vgg16 24.89 37.50 46.04 451.77

DeepLabV3+
Chen et al., 2018

DensNet-121 51.32 66.2 73.8 182.36

Xception 54.71 32.10 51.25 166.87

SegNet
Badrinarayanan
et al., 2017

VGG16 29.46 57.0 62.7 284.10

SETR
Zheng et al., 2021

ViT-Large 318.3 69.5 75.3 720.68

HRNet
Wang et al., 2020

NA 29.54 31.02 53.75 79.96

ECA-SegFormer
Yang et al., 2023

NA 4.04 38.03 60.86 10.64

PSPNet
Zhao et al., 2017

MobileNetV2 15.4 61.1 68.2 84.9

Resnet50 46.71 28.51 42.03 118.43

Proposed SegFormer

MiT-B0 3.7 65.33 71.54 1.27

MiT-B3 47.2 65.31 75.73 13.38

MiT-B5 84.7 67.78 76.89 18.70
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