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Introduction: The micronutrient deficiency of iron and boron is a common issue

affecting the growth of rapeseed (Brassica napus). In this study, a non-destructive

diagnosis method for iron and boron deficiency in Brassica napus (genotype:

Zhongshuang 11) using hyperspectral imaging technology was established.

Methods: The recognition accuracy was compared using the Fisher Linear

Discriminant Analysis (LDA) and Support Vector Machine (SVM) recognition

models. Recognition results showed that Multiple Scattering Correction (MSC)

could be applied for the full band hyperspectral data processing, while the LDA

models presented better performance on establishing the leaf iron and boron

deficiency symptom recognition than the SVM models.

Results: The recognition accuracy of the training set reached 96.67%, and the

recognition rate of the prediction set could be 91.67%. To improve the model

accuracy, the Competitive Adaptive Reweighted Sampling algorithm (CARS) was

added to construct the MSC-CARS-LDA model. 33 featured wavelengths were

selected via CARS. The recognition accuracy of the MSC-CARS-LDA training set

was 100%, while the recognition accuracy of the MSC-CARS-LDA prediction set

was 95.00%.

Discussion: This study indicates that, it is capable to identify the iron and boron

deficiency in rapeseed using hyperspectral imaging technology.
KEYWORDS

deficiency identification, rapeseed, iron and boron, hyperspectral imaging, MSC-
CARS-LDA
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fpls.2024.1351301/full
https://www.frontiersin.org/articles/10.3389/fpls.2024.1351301/full
https://www.frontiersin.org/articles/10.3389/fpls.2024.1351301/full
https://www.frontiersin.org/articles/10.3389/fpls.2024.1351301/full
https://www.frontiersin.org/articles/10.3389/fpls.2024.1351301/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2024.1351301&domain=pdf&date_stamp=2024-05-24
mailto:peiwang@swu.edu.cn
https://doi.org/10.3389/fpls.2024.1351301
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2024.1351301
https://www.frontiersin.org/journals/plant-science


Li et al. 10.3389/fpls.2024.1351301
1 Introduction

Rapeseed, rich in oil and protein, is an important oil crop and

industrial raw material, as well as a potential bioenergy crop overall

the world (Liu et al., 2019). According to the Rapeseed Explorer of

USDA, the global production of rapeseed has reached 87.103

million metric tons, which producing 31.8 million metric

rapeseed oil (USDA, 2024). With various useful compounds of

fatty acids, vitamins and proteins, rapeseed oil ranks as the third

most popular vegetable oil after oil palm and soybean (Friedt et al.,

2018). To better manage the fertilizer supply during rapeseed

cultivation, it is essential to monitoring the micronutrients status

of the plants.

Appropriate application content of fertilizers will not only

benefit the absorption and utilization of nutrients by the

crop plants, but also contribute to plants stress tolerance

(Hasanuzzaman et al., 2018; Thor, 2019). On the contrary,

lacking essential nutrients could inhibit the growth of the plants,

which would directly lead to the negative effect on rapeseed quality

or yield (Agren et al., 2012; Johnson et al., 2022). Real-time, fast, and

accurate monitoring of nutrient content would provide guidance for

reasonable fertilization to increase the crop quality and production

in any specific regions (Brown et al., 2022; Tian et al., 2024).

Therefore, monitoring the nutrient content of plants is an

important aspect in crop cultivation and management.

As two of the essential micronutrients, boron and iron play

important roles in the growth and reproduction of rapeseed,

especially in the southwestern region of China. Boron participates

in promoting the transport of carbohydrates in vivo plants which

will accelerate the growth of apical shoots and meristem. It is also

conducive to the development of plant flower organs (Kalaji et al.,

2018; Li et al., 2020). When the rapeseed plant is in deficiency of

boron, the transportation of assimilation products in vivo plant

could be interrupted. As a result, a large amount of starch would

accumulate in the leaves and petioles. Furtherly, the greatly increase

of phenolic compounds content would lead to necrosis of plant

apical buds. Thus, the main manifestation of boron deficiency in

rapeseed is the inhibition of apical buds, which would interrupt the

growth of roots and shoots, ultimately leading to the issue of

“blooming but not setting fruit” of rapeseed plants. Iron acts as

an activator of some enzymes or enzyme cofactors in the synthesis

of chlorophyll. It would indirectly affect the production process of

chlorophyll, while playing an important role in electron transfer

chain in various biochemical reactions in vivo plants (Takano et al.,

2008; Pavlovic et al., 2021). The main manifestation of iron

deficiency in rapeseed is the chlorosis and yellowing between leaf

veins while the leaf veins themselves remain green, especially in the

top fresh leaves (Takano et al., 2008; Merchant, 2010).

Phenotyping technology with optical sensors such as RGB

camera, chlorophyll fluorescence sensors, and particularly the

spectral imaging system, has been widely applied in monitoring

various biotic stresses for crops. With UAV-based RGB and multi-

spectral sensors, salinity stress phenotyping has been realized in

tomato and quinoa plants (Johansen et al., 2019; Jiang et al., 2022).

The study results provided insight into the effects of salt stress on
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plant area, growth and condition. Optical information like

chlorophyll fluorescence can also be measured for photosystem

status evaluation such as investigating herbicide stresses in soybean

plants (Li et al., 2018). Meanwhile, phenotyping of stresses from

over or deficient macronutrients such as nitrogen, phosphorus, and

potassium have also been successfully tested in many studies using

hyperspectral imaging technology (Jiang et al., 2015; Tmusǐć et al.,

2020). However, at present, the deficiency of the micronutrients

iron and boron in crops is mainly evaluated using artificial vision

and empirical morphological diagnostic methods which could only

be made when obvious stress symptoms have appeared, and the

specific fertilization may be missed for the suitable application

time window.

The objectives of this study were to, (1) investigate if it was

possible to differentiate the iron and boron deficiency symptoms in

rapeseed from healthy plants at early growth stage using spectral

imaging technology; (2) optimize the spectral diagnostic model for a

high classification accuracy. The results will provide support for the

nutritional diagnosis of iron and boron content in rapeseed fields

using UAV-based sensing systems and even for the potential

detection of vegetation deficiency symptoms via the space-based

remote sensing satellites.
2 Materials and methods

2.1 Plant materials

The cultivar of tested rapeseed (Brassica napus L.) in this study

is Zhongshuang 11 (ZS11, Beijing, Chinese Academy of

Agricultural Sciences), which is widely grown in the Yangtze

River basin. The plants were grown in 380 mm×300 mm pots

with soilless hydroponic incubator with six plants per pot. All the

plants were cultivated in a greenhouse of Southwest University in

Chongqing, China.

The nutrient deficient plants were cultivated as the methodology

described by Han et al. (2016), in which the ZS11 genotype was also

cultivated as the tested plants. The rapeseed seeds were germinated in

distilled water. After germination, the seedlings were transferred to a

plastic net floating on the half strength modified Hoagland solution

(Table 1). Normally growth seedlings were selected for next

cultivation steps of the tests. Seedlings for control treatment were

kept in the half strength modified Hoagland solution with boron

concentration of 20 mmol L-1 (H3BO3) and iron concentration of 80

mmol L-1 (C10H12FeN2NaO8, EDTA-Fe), which were dramatically

lower than the element concentration in the Chinese State Standard

of foliar microelement fertilizer (State Administration for Marker

Regulation of the People’s Republic of China & Standardization

Administration of the People’s Republic of China, 2020). The

seedlings for nutrient deficiency treatments were then transferred

to solution with iron or boron in lower concentration. Boron

deficiency plants was transferred to the solution with boron

concentration of 0.5 mmol L-1, while the iron deficiency plants were

treated with iron concentration of 1 mmol L-1. The other nutrients of

both micronutrients deficient solution were kept in same
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concentration as the half strength modified Hoagland solution. The

solution in all treatments was replaced every two days.

Germination treatment was applied to full and consistent ZS11

seeds. The seeds were soaked in distilled water for 20 minutes and

disinfected with 5% NaClO solution for 20 minutes. After rinsed with

distilled water repeatedly for 5–6 times, the seeds were put on gauze

soaked in 1/4 strength Hoagland solution for seedling cultivation.

Seedlings with uniform growth stage were selected for

transplant. The plants were transferred to plastic hydroponic

tanks containing nutrient solutions (1/4 strength Hoagland

solution was used for cultivation in the first week after

transplanting, half strength Hoagland solution was used for

cultivation since the second week after transplanting, solution for

nutrient deficiency treatments were applied since the third week

after transplanting). Four biological replicates were applied for each

treatment with 72 plants in total. The plants were set with a

Randomized Block Design. The experiment was repeated twice in

3rd March to 14th June and 7th September to 12th December in 2023.
2.2 Hyperspectral imaging system

The physical and architectural diagrams of the hyperspectral

imaging system are shown in Figures 1A, B, respectively. The main

hardware includes a hyperspectral camera (Raptor EM285CL,

Raptor Photonics Led., UK), a spectrometer (Impector V10E,

Measuring wavelength range 364~1025 nm, Spectral resolution

2.8 nm, Specim, Spectral Imaging Ltd., Finland), a zoom lens, a

150 W halogen adjustable light source, a linear photoconductor, a

stepping motor mobile platform, a computer, etc. The whole set of

devices is placed in the black box except the computer. The main

software installed on the computer includes Spectral image, an

image acquisition software provided by Wuling Optics (Taiwan,

China), and HIS Analyzer, an image analysis software.
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This device was fixed on the top of a black box in a darkroom.

Each plant was moved to the measuring platform out from the

hydroponic incubator. The window of the black box was closed

during measurement.
2.3 Data collection and calibration

After 28 days of transplanting, hyperspectral images of rapeseed

leaves were collected uniformly. To ensure the representativeness of the

collected data, all samples were placed horizontally under the same

conditions for imaging. After pre-testing, it was ultimately determined

that the exposure time of the hyperspectral imaging system camera was

48 ms, the working distance from the lens to the sample was 480 mm,

and the moving platform speed was 1.12 mm s-1.

Black and white board correction was performed on the

hyperspectral image data of each sample in the image analysis

software HIS Analyzer. The correction formula is as follows:

R = (Rs − RD)=(Rw − RD)

where, R is the relative reflection density of the leaves, Rs is the

reflection density of the original image of the sample, Rw is the

reflection density of all the white calibration image, and RD is the

reflection density of the all black calibration image. Black and white

correction is used to eliminate the influence of camera dark current,

while converting the spectral values of the original hyperspectral

image into reflectance.
2.4 Data preprocessing

Due to the influence of instruments, image acquisition

background, environmental lighting conditions, and other factors,

there would be noise, spectral baseline drift, and translation in the

obtained spectral data. To eliminate these adverse effects on

classification modeling, preprocessing of spectral data is necessary.

After preliminary experiments, normalization, SG convolutional

smoothing, spectral differentiation, and Multiple Scattering

Correction (MSC) were selected for the spectra preprocess of the

leaf samples after smoothing. The preprocessing procedure is shown

in Figure 2. Four types of the spectral data obtained after

preprocessing are spectral sample sets 1–4, which are abbreviated

as RAW, 1st Der, MSC, and 2nd Der in the following text.

Figure 3 shows four spectral samples obtained from the pre-

processed spectral data of some healthy rapeseed leaves.
2.5 Band screening

Hyperspectral data often has hundreds or even thousands of

wavelength points, which not only provides rich information about

samples but also poses challenges for computer storage,

transmission, and data processing (Arnon and Hoagland, 1938).

When extracting spectral dimension information from

hyperspectral data for modeling, using full band spectral
TABLE 1 Modified 1/2 Hoagland complete nutrient solution formula.

Chemical Molecular Weight Concentration
(10–3 mol L-1)

Ca(NO3)2·4H2O 236.15 2500

KNO3 101.1 2500

NH4NO3 80.04 1000

K2SO4 174.26 250

MgSO4·7H2O 246.47 1000

KH2PO4 136.09 500

DETA-Fe 376.05 80

H3BO3 61.83 20

MnCI2·4H2O 197.91 4.5

ZnSO4·7H2O 287.54 0.3

CuSO4·5H2O 249.68 0.16

(NH4)6Mo7O24·4H2O 1235.86 0.16
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information to establish the model will bring various negative

impacts to the model due to the presence of uninformative

variables in the data (Gruber et al., 2013). The dimension

reduction algorithm can select the wavelength variables that are

more meaningful to the classification results from the full

wavelength range and eliminate redundant wavelengths. It could

improve the prediction accuracy and modeling calculation

efficiency of the model, as well as reducing the overfitting of the

model and improve the generalization ability of the model (Arnon

and Hoagland, 1938; Gruber et al., 2013; Khan et al., 2018).

2.5.1 Continuous projection algorithm
Successive Projections Algorithm (SPA) is a forward variable

selection algorithm, which uses vector projection analysis to select

the combination of many variables with the smallest collinearity. In

some studies on plant spectral feature classification and regression

models, continuous projection algorithms are often applied in the

dimensionality reduction process of hyperspectral data, which can

play a good role in improving model operation efficiency and

recognition accuracy (Belgiu and Drăgut,̧ 2016).

2.5.2 Competitive adaptive reweighting algorithm
The Competitive Adaptive Reweighted Sampling (CARS)

algorithm has also been widely applied in the recognition of plant

spectral features. CARS uses the Monte Carlo sampling principle to

select sample subsets for modeling, and to evaluate the importance of

variables through the regression coefficients of the sub models. In each
Frontiers in Plant Science 04
iteration, dimensionality reduction is achieved by removing variables

with smaller mean regression coefficients through Exponential

Decreasing Function (EDF) and Adaptive Reweighted Sampling

(ARS) (Lorente et al., 2012).
2.6 Classification model

Linear Discriminant Analysis (LDA), also known as Fisher

linear discriminant analysis, is a classic algorithm for pattern

recognition and is widely used in multi class classification

problems. Using LDA can maximize the inter class scatter matrix

of the projected pattern samples and minimize the intra class scatter

matrix, ensuring that the projected pattern samples have the

minimum intra class distance and maximum inter class distance

in a new space. Its essence lies in finding a subspace. It enables

better separation of various categories in this subspace, which

means that patterns have the best separability in that space

(Zhang et al., 2022).

Support Vector Machine (SVM) is a supervised pattern

recognition method. The original spectral data is mapped to a

high-dimensional feature space, and an optimal classification

hyperplane is constructed to maximize the distance between the

support vectors of various samples and this hyperplane. SVM can be

used for linear and nonlinear multivariate analysis problems, and

the support vector can be solved by using linear equations instead of

Quadratic programming. By selecting appropriate kernel functions

to ensure the speed and efficiency of modeling while implementing

nonlinear mapping (Yuan et al., 2020), this experiment uses Radial

Basis Function (RBF) as kernel functions.
3 Results

3.1 Spectral features of nutrient
deficient leaves

From the average spectra of the collected leaves of rapeseed

plants (Figure 4), it presented that overall waveform of the spectral
FIGURE 2

Flow chart of spectral data preprocessing.
BA

FIGURE 1

Hyperspectral imaging system (A) physical drawing; (B) architecture diagram.
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reflection curve in the wavelength range of 400–1000 nm was

similar between normal plants and iron or boron deficient plants.
3.2 Deficiency recognition and
classification model based on full
band information

After preprocessing the 400–1000 nm full band spectral data

using three preprocessing methods, known as spectral first order

differential, spectral second order differential and MSC. LDA

discriminative model and SVM discriminative model for

identifying iron deficiency, boron deficiency and normal leaves

were established respectively. LDA discriminative model is a typical

Fisher linear discriminant analysis in Matlab Toolbox. When using

SVM to build a discriminative model, the kernel function used

when using SVM to build a discriminative model is the radial basis

function (RBF) kernel function:

K(Xi,Xj) = exp(− g ∥Xi − Xj ∥)
2

In the SVM modeling, the Penalty coefficient y was set as 100,

and the kernel width s was set as 0.1. The discrimination results of

each model were shown in Table 2.

Comparing the discrimination accuracy of the two models, it

presented that the LDA model had better overall discrimination

performance than the SVM model. However, when using the LDA

model to model the rapeseed leaf spectral dataset, the most suitable
Frontiers in Plant Science 05
preprocessing method was MSC. When using the SVM model, the

two preprocessing methods MSC and 2nd Der had better results.

By analyzing the confusion matrix of the modeling set

(Figure 5) and the test set (Figure 6) based on the SVM model, it

presented that the SVM model had a good spectral recognition

effect for healthy and nutrient deficient rape leaves, with an

accuracy rate of more than 90%. The recognition effect of iron
B

C D

A

FIGURE 3

Four spectral samples obtained from preprocessing spectral data of some healthy rapeseed leaves. (A) Sample set 1: RAW; (B) Sample set 2: 1st Der;
(C) Sample set 3: MSC; (D) Sample set 4: 2nd Der.
FIGURE 4

Comparison of average spectra between normal leaves and iron and
boron deficient in Brassica napus leaves.
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and boron deficient rapeseed leaves is average, with the 1st Der data

having the worst effect, with an accuracy rate of only 55%. The

accuracy rates of RAW, MSC, and 2nd Der data are all between 70%

and 85%.

Experiments also shown that SVM models based on full band

spectral data can effectively identify healthy rapeseed leaves and

rapeseed leaves lacking iron and boron elements. However, the

recognition accuracy between iron deficient and boron deficient

leaves still needed to be improved.
Frontiers in Plant Science 06
The analysis of the confusion matrix of the modeling set

(Figure 7) and the test set (Figure 8) based on the LDA model

showed that the LDA model was superior to the SVM model in

spectral recognition of healthy and nutrient deficient rapeseed leave.

Its accuracy in the test set is more than 95%. In the recognition of

iron and boron deficient rapeseed leaves, MSC data showed

significantly better performance than RAW, 1st Der, and 2nd Der

data, with average accuracy exceeding 90% in both training and

testing sets.
TABLE 2 Discrimination results of LDA and SVM discrimination models under different spectral pretreatment.

Model Preprocessing method Training set Testing set

Nc/Nt Accuracy Nc/Nt Accuracy

SVM RAW 81/90 90.00% 47/60 78.33%

1st Der 78/90 86.67% 39/60 65.00%

MSC 84/90 93.33% 52/60 86.67%

2nd Der 83/90 92.22% 51/60 85.00%

LDA RAW 79/90 87.77% 49/60 81.66%

1st Der 81/90 90.00% 46/60 76.67%

MSC 87/90 96.67% 55/60 91.67%

2nd Der 84/90 93.33% 47/60 78.33%
“Nc” represents the correct discriminant number of the tested samples; “Nt” represents the total number of tested samples.
B

C D

A

FIGURE 5

Discrimination results based on SVM models under different spectral pretreatments (Modeling set) for iron and boron deficiency in Brassica napus.
(A) RAW, (B) 1st Der, (C) MSC, (D) 2nd Der.
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Further analysis of the discrimination results of the MSC-LDA

model showed that both the modeling and prediction sets had a 100%

accuracy in discriminating normal samples. In general, the

discrimination accuracy of samples with boron deficiency was

higher than that of samples with iron deficiency. From the

confusion matrix, two samples with boron deficiency in the

modeling set were wrongly identified as samples with iron

deficiency symptoms, while one sample with iron deficiency

symptoms was wrongly identified as samples with boron deficiency,

and two samples are wrongly identified as healthy samples. The

prediction set discrimination results also showed that one sample

with boron deficiency was wrongly identified as samples with iron

deficiency symptoms, and four samples with iron deficiency

symptoms were wrongly identified as samples with iron deficiency.

The results of this experiment indicate that the MSC-LDA model

achieved the highest accuracy in the combination of data preprocessing

and modeling methods for Brassica napus iron and boron. The overall

discrimination accuracy of the modeling set reached 96.67%, and the

overall discrimination accuracy of the prediction set reached 91.67%.
3.3 Feature band screening results

Figure 9A shows the process of reducing the number of bands

involved in modeling through 50 Monte Carlo sampling (MC) of
Frontiers in Plant Science 07
the sample data. Figure 9B shows the cross-validation error curve of

the PLS model using the Leave on One Out (LOO) method as the

number of bands involved in modeling decreases. From the above

two curves, it could be seen that as the number of bands involved in

modeling gradually decreases, the Root Mean Square Error of Cross

Validation (RMSECV) of the model first shows a slow decreasing

trend. It indicated that there is indeed a lot of redundant

information in the spectral raw data containing more than 600

bands. Screening out certain band data could not only reduce

computational complexity, but also improve the accuracy of the

model to a certain extent. When the sampling frequency starts from

24, the RMSECV of the model in the training set gradually

increased as the number of modeling bands decreases, indicating

that some band data useful for classification modeling begins to

be eliminated.

The above phenomenon indicates that there is indeed a large

amount of redundant information in the original spectrum that is

useless for the classification and recognition of iron and boron

stress in rapeseed. It is meaningful to reduce the dimensionality of

the original spectral data.

SPA and CARS were used to reduce the dimensionality of

rapeseed leaf spectral data, as shown in Table 3. A total of 18

characteristic wavelengths were selected by SPA and defined as

subset 1. CARS screened a total of 33 wavelengths and defined them

as subset 2.
B

C D

A

FIGURE 6

Discrimination results based on SVM model under different spectral pretreatments (Test set) for iron and boron deficiency in Brassica napus. (A)
RAW, (B) 1st Der, (C) MSC, (D) 2nd Der.
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B
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A

FIGURE 7

Discrimination results based on LDA models under different spectral pretreatments (Modeling set) for iron and boron deficiency in Brassica napus.
(A) RAW, (B) 1st Der, (C) MSC, (D) 2nd Der.
B

C D

A

FIGURE 8

Discrimination results based on LDA model under different spectral pretreatment (test set). (A) RAW, (B) 1st Der, (C) MSC, (D) 2nd Der.
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3.4 Establishment of a deficiency
recognition and classification model based
on feature band information

Since the MSC-LDA model is superior to other discriminative

model when full band spectral information modeling is used, the

MSC-SPA-LDA and MSC-CARS-LDA mode l ing and

discrimination are conducted using two characteristic wavelength

subsets screened according to SPA and CARS. The prediction

results are shown in Table 4, and the confusion matrix is shown

in Figure 10 (MSC-SPA-LDA) and Figure 11 (MSC-CARS-LDA).

Analysis of the discrimination results of the MSC-SPA-LDA

model showed that the accuracy of the MSC-SPA-LDAmodel based

on SPA feature bands is 94.44% on the training set and 91.67% on

the test set, which is slightly lower than the MSC-LDA model based

on full band. However, due to its significant reduction in the

number of input variables in the model, the running speed of the

model is significantly improved, and the accuracy is within an

acceptable range, so the MSC-SPA-LDA model has better

applicability than the MSC-LDA model.

By analyzing the discrimination results of the MSC-CARS-LDA

model, it could be concluded that the MSC-CARS-LDA model

based on CARS feature bands achieved 100% and 95% accuracy on

the training and testing sets, respectively, making it the model with

the highest recognition accuracy in this experiment.

The feature wavelengths of subset 2 selected based on the CARS

algorithm were mainly concentrated between the regions of 400–

450 nm and 800–1000 nm, especially in the blue-violet light region
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of 400–450 nm, which is not the green peak region with the greatest

difference in the 500–650 nm spectral curve. This indicates that the

degree of leaf chlorosis is not the only basis for discrimination in

this recognition system.
4 Discussion

The deficiency of iron and boron could lead to a decrease in

chlorophyll content in the leaves, weakening their absorption of solar

radiation, and causing an overall increase in the spectral reflectance of

the leaves in the wavelength range of 400–700 nm, resulting in a “blue

shift” phenomenon at the “red edge” position. This was consistent

with previous research results (Yang et al., 2018). Considering the

“green peak” at 550 nm, the spectral reflectance difference was the

largest. The increase in green peak caused by iron deficiency was

more intense than that caused by boron deficiency, indicating that the

level of plant nutrient element content was closely related to spectral

characteristics. When the plants were in deficiency of iron or boron,

the total chlorophyll content of their leaves might reduce. That would

lead to weak absorption of solar radiation and an increase in the

reflectance and transmittance of incident light, which has been

proven in crops like sorghum and sugar beet (Teixeira et al., 2020;

Wu et al., 2021). The symptoms of nutrient deficiency in rapeseed

leaves appeared because of the decrease of chlorophyll content, which

might cause corresponding spectral responses such as an increase in

green peaks. This provides a basis for conducting spectral recognition

and identification.

The spectral reflectance of plant leaves in the range of 400–1000

nm indicated spectral responses to various factors such as plant

metabolites, chlorophyll, water content, internal structure of leaf

surfaces, and physical properties of plant leaves. The correlation

between spectral reflectance of different bands and the abundance or

deficiency of iron and boron elements in rapeseed plants was

comprehensive responses of the rapeseed plants to the nutrients

status and environment, rather than the direct correlation between

spectral values and iron and boron content. Therefore, machine

learning algorithms was employed in this study for further analysis.

Two pattern recognition methods, LDA and SVM, were used to
TABLE 3 Selected characteristic wavebands by SPA and CARS.

Data
name

Wavelength(nm)

Dataset
1

410, 411, 416, 421, 426, 429, 434, 437, 441, 442, 672, 691, 722, 737,
981, 990, 997

Dataset
2

401, 402, 405, 406, 408, 411, 412, 414, 417, 418, 422, 426, 427, 429,
430, 434, 438, 445, 446, 449, 453, 455, 674, 688, 812, 864, 882, 919,
955, 973, 977, 980, 992
BA

FIGURE 9

Impact of the number of bands involved in modeling on model accuracy. (A) Change trend of band number; (B) Model RMSECV change trend.
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identify different deficiency symptoms. The LDA algorithm achieves

better recognition results, and the CARS algorithm performs better

than the SPA algorithm in feature wavelength screening. Through the

analysis of confusion matrix, it presented that the recognition rate of

the recognition model established in this study for healthy rape leaves

was always higher than 90%. The recognition of iron deficient leaves

and boron deficient leaves presented some confusion of samples.

From Figure 5, it could also be seen that the green peak increase

response caused by iron deficiency was stronger than that caused by

boron deficiency. It might suggest that the physiological response to

spectral properties from iron deficiency was more sensitive than that

from boron deficiency in rapeseed plants (Sarafi et al., 2018).
Frontiers in Plant Science 10
5 Conclusion

The spectral response of normal, iron deficient, and boron deficient

rapeseed plants was investigated using hyperspectral imaging

technology in this study. Thus, it could conclude that, (1) with

employing spectral imaging technology, it is capable to identify the

iron and boron deficiency symptoms in rapeseed from healthy plants at

early growth stage based on full band and featured band; (2) the LDA

discriminativemodel established by screening characteristic wavelengths

could be optimized using CARS for further field application with lower

data consumption and faster calculation, and the recognition accuracy

of its modeling set and prediction set could be 92.22% and 86.67%.
BA

FIGURE 10

MSC-SPA-LDA model discrimination result confusion matrix. (A) training set, (B) test set.
BA

FIGURE 11

MSC-CARS-LDA model discrimination result confusion matrix. (A) training set, (B) test set.
TABLE 4 MSC-LDA discrimination model based on characteristic wavelength.

Model Training Set Test Set

Nc/Nt Accuracy Nc/Nt Accuracy

MSC-SPA-LDA 85/90 94.44% 55/60 91.67%

MSC-CARS-LDA 90/90 100.00% 57/60 95.00%
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(2020). Current practices in UAS-based environmental monitoring. Remote Sens. 12,
1001. doi: 10.3390/rs12061001

USDA (2024) Rapeseed Explorer. Available online at: https://ipad.fas.usda.gov/
cropexplorer/cropview/commodityView.aspx?cropid=2226000.

Wu, Z., Wang, X., Song, B., Zhao, X., Du, J., and Huang, W. (2021). Responses of
photosynthetic performance of sugar beet varieties to foliar boron spraying. Sugar Tech
23, 1332–1339. doi: 10.1007/s12355-021-01008-z

Yang, Y., Wu, Y., Li, W., Liu, X., Zheng, J., Zhang, W., et al. (2018). Determination of
geographical origin and icariin content of Herba Epimedii using near infrared
spectroscopy and chemometrics. Spectrochimica Acta Part A: Mol. Biomolecular
Spectrosc. 191, 233–240. doi: 10.1016/j.saa.2017.10.019

Yuan, Z., Wei, L., Zhang, Y., Yu, M., and Yan, X. (2020). Hyperspectral inversion and
analysis of heavy metal arsenic content in farmland soil based on optimizing cars
combined with PSO-SVM algorithm. Spectrosc. Spectral Anal. 40, 567–573.
doi: 10.3964/j.issn.1000-0593(2020)02-0567-07

Zhang, N., Zhang, X., Wang, C., Li, L., and Bai, T. (2022). Cotton LAI estimation
based on hyperspectral and successive projection algorithm. Trans. Chin. Soc. Agric.
Machinery 53, 257–262. doi: 10.6041/j.issn.1000-1298.2022.S1.028
frontiersin.org

https://doi.org/10.3389/fpls.2021.697592
https://doi.org/10.1007/s40502-018-0388-2
https://doi.org/10.1016/j.tplants.2008.05.007
https://doi.org/10.1007/s42729-020-00214-0
https://doi.org/10.3389/fpls.2019.00440
https://doi.org/10.3390/rs12061001
https://ipad.fas.usda.gov/cropexplorer/cropview/commodityView.aspx?cropid=2226000
https://ipad.fas.usda.gov/cropexplorer/cropview/commodityView.aspx?cropid=2226000
https://doi.org/10.1007/s12355-021-01008-z
https://doi.org/10.1016/j.saa.2017.10.019
https://doi.org/10.3964/j.issn.1000-0593(2020)02-0567-07
https://doi.org/10.6041/j.issn.1000-1298.2022.S1.028
https://doi.org/10.3389/fpls.2024.1351301
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

	Hyperspectal imaging technology for phenotyping iron and boron deficiency in Brassica napus under greenhouse conditions
	1 Introduction
	2 Materials and methods
	2.1 Plant materials
	2.2 Hyperspectral imaging system
	2.3 Data collection and calibration
	2.4 Data preprocessing
	2.5 Band screening
	2.5.1 Continuous projection algorithm
	2.5.2 Competitive adaptive reweighting algorithm

	2.6 Classification model

	3 Results
	3.1 Spectral features of nutrient deficient leaves
	3.2 Deficiency recognition and classification model based on full band information
	3.3 Feature band screening results
	3.4 Establishment of a deficiency recognition and classification model based on feature band information

	4 Discussion
	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


