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through genome-wide
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Wheat is an important cereal crop constrained by several biotic and abiotic

stresses including drought stress. Understating the effect of drought stress and

the genetic basis of stress tolerance is important to develop drought resilient,

high-yielding wheat cultivars. In this study, we investigated the effects of drought

stress on seedling characteristics in an association panel consisting of 198

germplasm lines. Our findings revealed that drought stress had a detrimental

effect on all the seedling characteristics under investigation with a maximum

effect on shoot length (50.94% reduction) and the minimum effect on

germination percentage (7.9% reduction). To gain a deeper understanding, we

conducted a genome-wide association analysis using 12,511 single nucleotide

polymorphisms (SNPs), which led to the identification of 39 marker-trait

associations (MTAs). Of these 39 MTAs, 13 were particularly noteworthy as they

accounted for >10% of the phenotypic variance with a LOD score >5. These high-

confidence MTAs were further utilized to extract 216 candidate gene (CGs)

models within 1 Mb regions. Gene annotation and functional characterization

identified 83 CGs with functional relevance to drought stress. These genes

encoded the WD40 repeat domain, Myb/SANT-like domain, WSD1-like

domain, BTB/POZ domain, Protein kinase domain, Cytochrome P450,

Leucine-rich repeat domain superfamily, BURP domain, Calmodulin-binding

protein60, Ubiquitin-like domain, etc. Findings from this study hold significant
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promise for wheat breeders as they provide direct assistance in selecting lines

harboring favorable alleles for improved drought stress tolerance. Additionally,

the identified SNPs and CGs will enable marker-assisted selection of potential

genomic regions associated with enhanced drought stress tolerance in wheat.
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1 Introduction

Drought is an important abiotic stress which negatively affects

crop growth and development. The impact and severity of drought

stress depend on the crop developmental stage, the duration and

intensity of the drought, and the genetic makeup of a cultivar

(Tanin et al., 2022; Ramesh et al., 2024). Drought stress at early

developmental stages affects the seed germination by limiting water

absorption, alters the mobilization of stored reserves, and affects the

synthesis of proteins in germinating embryos (Almansouri et al.,

2001). Additionally, at this stage drought stress reduces the

photosynthetic efficiency, which results in the poor plant

establishment with stunted growth (Tomar and Kumar, 2004). In

contrast, drought stress at the later developmental stages (viz.,

anthesis and grain filling stage) reduces the biomass accumulation

and grain filling duration, which ultimately results in reduced grain

weight and grain yield per unit area (Senapati et al., 2019).

Wheat (Triticum aestivum L.) is a globally important cereal

crop that is predominantly grown in the arid and semi-arid regions

of the world, where water scarcity poses a significant challenge to

agricultural production (Tanin et al., 2022). Wheat production in

these regions is further challenged by the frequent occurrence of

drought episodes which is the results of changing climatic

conditions coupled with depleting water tables (da Silva et al.,

2019). For instance, the severity and spread of heat wave in

northern and central India in 2022-23 cropping season,

accompanied by a lack of precipitation during March and April,

significantly reduced the wheat yield by 4.41% (Bal et al., 2022).

During this period, the average rainfall was found to be 60-99%

lower than usual. Similarly, a frequent occurrence of drought

episodes in the United States and Europe is threatening the

winter wheat production (Toreti et al., 2023). For instance,

incidence of drought stress at various developmental stages

reduce the global wheat production by 35% (Gupta et al., 2020).

Similarly, the evaluation of advanced breeding lines grown under

drought stress showed a reduction in grain yield up to 45% as

compared to controlled conditions. Therefore, to overcome these

challenges and to feed the ever-rising human population, it is
es; MTAs, marker-trait

andidate genes.
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utmost important to prioritize the research objectives to develop

drought-resilient wheat varieties (Bakala et al., 2020). However,

breeding drought-resilient cultivars is challenged by the complex

genetic architecture of drought stress tolerance. Nevertheless, the

advanced molecular breeding tools such as quantitative trait loci

(QTL) mapping, genome-wide association studies (GWAS), and

genomic selection (GS) overcome these barriers and help in

improving the quantitative traits (Gudi et al., 2022a; Zhang et al.,

2022; Singh et al., 2022a, Singh et al., 2022b; Song et al., 2023).

Genome-wide association studies (GWAS) have greatly

advanced our understanding of the genetic basis of complex

traits. GWAS relies on genome-wide markers and exploits the

historical recombinant events to identify significant marker-trait

associations (MTAs) associated with targeted traits. GWAS has

been successfully employed in identifying significant MTAs

associated with grain yield (Gill et al., 2022), chlorophyll

fluorescence (Gudi et al., 2023), disease resistance (Arora et al.,

2019), and stress tolerance (Gudi et al., 2023) traits in wheat. GWAS

has also been employed to identify the candidate genomic regions

associated with drought stress tolerance in wheat. For instance, the

GWAS was used to identify and clone a transcriptional factor,

TaWD40-4B.1, responsible for increased grain yield under drought

stress in wheat (Tanin et al., 2022). In addition, GWAS was used to

identify the candidate genes (CGs) responsible for abscisic acid

accumulation (Kalladan et al., 2017), proline accumulation

(Verslues et al., 2014), root traits (Fatima et al., 2021), and

biomass accumulation (Fatima et al., 2021) under drought stress.

Most of these studies focused on terminal drought stress, with

limited studies involving seedling drought stress tolerance. Since

wheat seedlings are crucial in determining plant stand and grain

yield, researchers are now prioritizing their studies at seedling stage.

For instance, multiple GWAS studies identified the significant

MTAs associated with germination percentage (GP), shoot length

(SL) (Maulana et al., 2020), root length (RL) (Ayalew et al., 2017),

coleoptile length (CL) (Ma et al., 2020), seedling vigour (SV)

(Maulana et al., 2021), and drought tolerance index (DTI)

(Schierenbeck et al., 2023) under drought stress. These studies

identified the candidate genomic regions associated with seedling

drought stress tolerance. Despite these achievements, further

research is required to fully understand the genetic and molecular

mechanisms involving seedling drought stress tolerance in wheat.
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In order to achieve this goal, we investigated the effect of

drought stress on a collection of 198 wheat germplasm lines at

the seedling stage. We also carried genome-wide association studies

(GWAS) to identify the candidate genomic regions associated with

seedling traits under drought stress. Additionally, we carried

candidate gene (CG) analysis to identify the potential CGs

associated with seedling drought stress tolerance.

2 Materials and methods

2.1 Plant material and experimental design

The wheat association panel used in this study involves 198

genotypes, including released varieties (from 1905 to 2020),

landraces, and advanced breeding lines (Supplementary Table 1).

Germplasm lines were evaluated for seedling drought stress tolerance

using 20% polyethylene glycol 6000 (PEG-6000) in completely

randomized design (CRD) with three replications. Seedling drought

stress tolerance was assessed using the modified Cigar roll method of

seed germination (Sharma et al., 2022). In brief, 20 uniform and bold

seeds from each genotype were surface sterilized with 0.1% HgCl2 for

30 minutes and subsequently washed three times in distilled water.

Seeds were then placed on germination paper moistened with

distilled water (for control treatment) and 20% PEG-6000 (for

drought treatment; to ensure drought stress from germination

itself). Germination papers were rolled and kept vertically in dark

chambers for 2-3 days until germination. Following the seed

germination, the growth chambers were adjusted to a photoperiod

of 16-hour of light and 8-hour of darkness with 25˚C day/night

temperature for 12 days. Data on the germination percentage (GP;

%), shoot length (SL; cm), root length (RL; cm), and coleoptile length

(CL; cm) were recorded on the 12th day after germination. Seedling

vigour (SV) was calculated by using the following formula:

Seedling vigour (SV) =  

½shoot length (cm) + root length (cm)� � germination percentage (% )
100

2.2 Phenotypic data analysis

Phenotypic data on seedling traits were subjected mixed linear

model (MLM) using “META-R version 6.04” to obtain the best

linear unbiased estimations (BLUEs) (Alvarado et al., 2020). BLUE

values were calculated by using the following formula:

Yij = μ + Gi + Rj + eij

Where, Yij: seedling trait; μ: grand mean; Gi: effect of ith genotype;

Rj: effect of jth replication; eij: error associated with ith genotype and jth

replication, which is assumed to be normally and independently

distributed, with mean zero and homogeneity of variances as s2.
The following formula was used to obtain the broad-sense

heritability (h2bs) for seedling traits in META-R:

h2bs =
s2
g

s2
g + s2

e=R
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Where, h bs
2: broad-sense heritability; sg2: genetic variance; sg

2:

error variance; and R: number of replications.

Pearson’s correlation coefficient analysis and principal component

analysis (PCA) were carried, respectively, using the “Corrplot” and

“Factoextra” package built in the RStudio (Team, 2016).
2.3 Single nucleotide polymorphism
genotyping and population
structure analysis

The standard CTAB (Cetyl trimethyl ammonium bromide)

method was employed to extract high-quality genomic DNA from

the young leaves of all the germplasm lines using the “2010 Geno/

Grinder®”. DNA quantification was done using a NanoDrop™

spectrophotometer, whereas the quality was assessed using 0.8

percent agarose gel electrophoresis. Single nucleotide polymorphism

(SNP) genotyping of association panel (i.e., 198 genotypes) was

outsourced from a private firm (from the Imperial life sciences,

India) using a commercial Wheat Breeder’s Genotyping Array

which is also referred as Affymetrix Axiom® genotyping array. It is

a high-density genotyping platform featuring 35,143 SNPs distributed

across the wheat genome (Allen et al., 2017). Subsequently, the

genotypic data was filtered to remove the: (i) monomorphic SNPs;

(ii) SNPs with minor allele frequency (MAF) of less than 5%; (iii)

SNPs with more than 20% missing data; and (iv) SNPs with

heterozygote frequency greater than 20% (Gudi et al., 2023).

Model-based clustering, principal component analysis (PCA),

and kinship analysis was used for population structure analysis. In

brief, the Bayesian approach built in the “STRUCTURE v.2.3.4” was

used to assess the number of sub-groups in the panel with a K-value

set to 10 (Pritchard et al., 2000). Each K-value was investigated for

three times with 100,000 burn-in iterations and 100,000 Markov

Chain Monte Carlo (MCMC) replications. The optimal number of

subpopulations was determined using ad-hoc and Evanno’s methods

in the “STRUCTURE HARVESTER v0.6.9450” software (Evanno

et al., 2005). SNP based PCA was carried out using “TASSEL v5.2.8”,

and a 3D plot was generated using RStudio (Bradbury et al., 2007).

Kinship analysis was done in the “GAPIT software”, and the resulting

square matrix was used to build a kinship plot (Lipka et al., 2012).
2.4 Genome-wide association study,
linkage disequilibrium, and candidate
genes analysis

The BLUE values along with genotypic data were used for

GWAS analysis using “mrMLM v4.0.2.” software (Zhang et al.,

2020). It is a multi-locus GWAS platform integrated with six multi-

locus models (viz., mrMLM, FASTmrMLM, FASTmrEMMA,

pLARmEB, pKWmEB, and ISIS EM-BLASSO). mrMLM relies on

multiple algorithms to select all the possible markers associated

with trait of interest. Once the potential markers are selected, they

will be put in multi-locus genetic model to estimate all the effects by

empirical Bayes. Further, all the non-zero effects are identified by
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likelihood ratio test for true MTAs and those MTAs identified in at

least two models will be considered as significant MTAs

(highlighted with pink color in the Manhattan plot). Though a

less stringent criteria is adopted for identifying MTAs, mrMLM

have high power and accuracy, with a low false positive rate.

Furthermore, the MTAs which had the LOD scores >5 and

explained >10% phenotypic variation were considered as high-

confidence MTAs. Finally, the chromosome wise linkage

disequilibrium (LD) analysis was carried out from the 100 Kb

region, and the LD decay plots were generated using RStudio.

The candidate genes (CGs) models were extracted from the

high-confidence MTAs which explained more than 10% of the

phenotypic variation and had the LOD scores >5 using

the “BioMart” tool present in the “Ensembl Plants database”. The

1Mb genomic region (total 2 Mb region) on either side of the SNPs

from the IWGSC Chinese Spring RefSeq v1.1 was used to extract the

CG models. The “InterPro database” was used to obtain functional

descriptions of the identified gene models.
3 Results

3.1 Assessing the effect of drought stress
on seedling characteristics

Association panel was evaluated for seedling traits and the data

on seedling characteristics, including GP, SL, RL, and CL were
Frontiers in Plant Science 04
collected from the controlled and drought stress conditions.

Seedling vigor (SV) was calculated using the aforementioned

formula. We observed a significant variation (P-value<0.01) for

all the seedling traits under controlled and drought stress condition

(Figure 1). It was also noticed that the genotypes showed higher

variation under drought stress than under controlled condition.

This suggests the significant effect of drought stress on seedling

characteristics. The values of the investigated traits under controlled

conditions and drought stress ranged respectively as follow: 70-

100% and 10-100% for GP; 12.1-28.74 and 0-23.9 cm for SL; 13.75-

35.64 and 5.55-32.8 cm for RL; 2.65-6.97 and 0-6.93 cm for CL, and

21.85-54.03 and 1.11-46.6 SV (Figures 1A–E). The GP showed the

lowest coefficient of variance (CV) under both control (4.59) and

drought stress (15.14), whereas the CV was the highest for CL

(18.95) and SL (49.9) under control and drought stress, respectively

(Table 1). Furthermore, the GP exhibited the lowest heritability

(broad sense) under control and drought stress conditions. In

contrast, the CL displayed the highest heritability under control

condition, while the SL showed the highest heritability under

drought stress (Table 1). The principal component analysis (PCA)

revealed that the first two PCs explained 81.38 and 88.01 percent of

the total phenotypic variance, respectively, under control and

drought stress condition (Supplementary Table 2; Supplementary

Figures 1A–D).

Drought stress significantly reduced all the traits with a

maximum effect on SL (50.93%) and the minimum effect on GP

(7.89%). However, the effect of drought stress was intermediate on
B C D

E F G H

A

FIGURE 1

Effect of drought stress on seedling characteristics and Pearson’s correlation coefficient analysis: (A–E) effect of drought stress on germination
percentage (GP, %), shoot length (SL, cm), root length (RL, cm), coleoptile length (CL, cm), and seedling vigour (SV); (F–H) Pearson’s correlation
coefficient analysis for seedling characteristics in control; drought; and overall mean. Level of significance obtained through Fisher's LSD test
(0.001 ‘***’; 0.01 ‘**’; 0.05 ‘*’).
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other traits, with a reduction of 23.98% for RL, 12.75% for CL, and

38.67% for SV. Pearson’s correlation coefficient analysis revealed

the significant positive association (P-value<0.05) between studied

traits (Figures 1F–H). Interestingly, the level of correlation was

found to be higher under drought stress than under controlled

condition. For instance, significant positive correlation was

observed for: SV with SL (r = 0.45), GP (r = 0.6), and RL (r =

0.76); RL with GP (r = 0.26); and SL with CL (r = 0.72) under

controlled condition (Figure 1F). Furthermore, we found a

significant negative correlation (r = -0.49) between RL and CL.

Similarly, we observed the significant positive association for all the

traits under drought stress with maximum association between SV

and RL (r = 0.88) and minimum association between GP and CL

(r = 0.37) (Figure 1G). The high level of correlation between the

studied traits was further supported by the PCA biplots

(Supplementary Figure 1).
3.2 SNP genotyping and population
structure analysis

Association panel was genotyped using the Wheat Breeder’s

Genotyping Array to get the genotypic information on a total of

35,143 SNPs. Raw data was subjected to filtering to remove the

SNPs with minor allele frequency (MAF) less than 5% (12,569

SNPs), heterozygosity exceeding 20% (10,044 SNPs), missing data

exceeding 20% (9 SNPs), and unknown chromosomal information

(1,010). This resulted in a final set of 12,511 high-quality SNPs

which was used for GWAS. Association panel showed the variation
Frontiers in Plant Science 05
in SNP distribution across the chromosomes and the sub-genomes.

For instance, chromosome 1B displayed the highest number of

SNPs (986), whereas chromosome 4D had the lowest number (195)

(Figure 2A). Similarly, B-genome displayed the highest number of

SNPs (5,097), while the D-genome displayed the lowest number of

SNPs (3,334) (Figure 2B).

Population structure analysis revealed the presence of three

distinct subpopulations (i.e., K=3) in the panel (Figures 2C–F).

Notably, subpopulation II displayed the highest number of

genotypes, comprising a total of 94 individuals, while

subpopulation III had the fewest genotypes, with only 31

individuals. These findings were further confirmed by the

principal component analysis (PCA) (Figure 2E) and kinship

analysis (Figure 2F).
3.3 Genome-wide association studies and
linkage disequilibrium analysis

Genome-wide association studies (GWAS) identified 39 MTAs

associated with all seedling traits. out of which, 18 MTAs were

identified under controlled condition, whereas 21 MTAs were

identified under drought stress (Figure 3; Supplementary Table 3).

Of the 18 MTAs identified under controlled conditions, two MTAs

were associated with GP (Supplementary Figure 2A), five MTAs

were associated with SL (Supplementary Figure 3A), RL

(Supplementary Figure 4A), and CL (Supplementary Figure 5A),

and one MTA was associated with SV (Supplementary Figure 6A).

Similarly, of the 21 MTAs identified under drought stress, five

MTAs were associated with GP (Supplementary Figure 2B), three

MTAs were associated with SL (Supplementary Figure 3B) and RL

(Supplementary Figure 4B), four MTAs were associated with CL

(Supplementary Figure 5B), and six MTAs were associated with SV

(Supplementary Figure 6B). Three of these 39 MTAs were

associated with multiple traits and hence they were pleiotropic in

nature. For instance: (i) MTA located on chromosome 4A (viz.,

AX95126745) was associated with GP and SV; (ii) MTA located on

chromosome 5A (AX94864753) was associated with SL and SV; and

(iii) MTA located on chromosome 6A (AX95222115) was

associated with RL and CL. Among all, only 19 MTAs explained

more than 10% of the phenotypic variation and they were

considered as major QTLs. Out of the 19 major QTL, 12 showed

a LOD score >5, which were considered as high-confidence MTAs

(Table 2; Figure 3).

Linkage disequilibrium (LD) analysis revealed a substantial

variation in LD decay across the chromosomes and the sub-

genomes (Supplementary Figure 7). For instance, chromosome-

level LD analysis revealed the largest LD block size in chromosome

1D (35.07 Mb) and the smallest LD block size in chromosome

7D (1.12 Mb). On average, each chromosome displayed an

LD block size of 8.71 Mb. Similarly, LD analysis revealed the

largest LD block in the B-genome (11.88 Mb) and the smallest

LD block in the A-genome (5.91 Mb). However, at the whole

genome level we observed the an average LD block size of 8.43

Mb (Supplementary Figure 7).
TABLE 1 Descriptive statistical analysis for seedling characteristics under
control and drought stress condition.

Traits Mean Range
LSD
at 5%

CV
Heritability

(bs)

Control

GP 97.44 70-100 6.53 4.59 0.55

SL 17.75
12.1-
28.74

0.69 14.78 0.97

RL 27.18
13.75-
35.64

0.8 13.57 0.98

CL 4 2.65-6.97 0.12 18.95 0.99

SV 43.83
21.85-
54.03

3.14 11.55 0.87

Drought (20% PEG)

GP 89.75 10-100 10.22 15.14 0.82

SL 8.71 0-23.9 0.96 49.9 0.98

RL 20.66 5.55-32.8 1.16 20.62 0.97

CL 3.49 0-6.93 0.29 31.39 0.97

SV 26.88 1.11-46.6 3.19 33.69 0.95
LSD, least significant difference; CV, coefficient of variance; bs, broad sense; PEG,
polyethylene glycol; GP, germination percentage; SL, shoot length; RL, root length; CL,
coleoptile length; and SV, seedling vigour.
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FIGURE 3

Distribution of quantitative trait loci (QTLs) identified for seedling traits under control and drought stress condition on the wheat chromosomes.
Each MTA is depicted as horizontal bar with SNP name at the left side and its physical position (bp) at right side. The MTAs highlighted in red color
represent high-confidence MTAs which explained the phenotypic variation of more than 10% and had the LOD score of more than five.
B

C

D E

F

A

FIGURE 2

Genomic features of wheat association panel: (A) number of SNPs per chromosome; (B) number of SNPs in A, B, and D sub-genomes; (C) sub-
populations present in the association panel; (D) DeltaK plot showing number of sub-populations; (E) principal component analysis (PCA); and (F)
kinship analysis for the association panel.
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3.4 Candidate gene analysis

A total of 12 high-confidence MTAs explaining >10% of the

phenotypic variance and with a LOD score >5 were utilized to extract

216 unique gene models (Supplementary Table 4). The highest number

of gene models (36 genes) was found on the MTA located on

chromosome 5B (viz., AX94528523). Conversely, the lowest number of

gene models (only 2 genes) were identified on the MTA located on

chromosome 1B (viz., AX94501214). Gene annotation and functional

characterization identified 83 gene models with functional relevance to

drought stress tolerance and were considered as the putative candidate

genes (CGs) (Table 3). These putative CGs encodes for a diverse range of

proteins, including, WD40 repeat domain, Myb/SANT-like domain,

WSD1-like domain, BTB/POZ domain, protein kinase domain,

cytochrome P450, leucine-rich repeat domain superfamily, BURP

domain, calmodulin-binding protein60, ubiquitin-like domain, etc.
4 Discussion

Drought is the major abiotic stress affecting the potential wheat

production at various developmental stages. In the early developmental

stages, drought stress affects the seed germination and seedling

establishment by preventing the water and nutrient absorption

(Almansouri et al., 2001; Tomar and Kumar, 2004). Drought stress

also reduces the photosynthetic efficiency, leading to reduced biomass

accumulation which ultimately leads to reduced grain yield per unit

area. Plants have developed various mechanisms to alleviate the effects

of drought stress (Qaseem et al., 2019). Understanding these

mechanisms of drought stress tolerance and developing drought-

resilient cultivars helps in reducing the yield losses. However, the

quantitative nature and the complex genetic architecture of drought

stress tolerance hinders the genetic improvement. With the

advancements in novel genomics and molecular biology tools
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coupled with low-cost, high-throughput genome sequencing, it is

now possible to identify and introgress the candidate genomic

regions associated with drought stress tolerance. For instance, GWAS

utilize the whole genome markers to identify the significant MTAs

associated with drought tolerance in wheat. Once such MTAs are

identified, they can be employed inmarker-assisted breeding to transfer

the candidate genomic regions in the background of commercial

cultivars to develop drought-resilient cultivars (Gudi et al., 2020;

Varshney et al., 2021). In order to achieve this, we assessed the

impact of drought stress on various seedling traits in a wheat

germplasm set comprising 198 lines. We also carried the GWAS and

CG analysis to unravel the genetic mechanisms underlying seedling

drought stress tolerance in wheat.
4.1 Effects of drought stress on
seedling characteristics

Genetic variation is essential for crop improvement, as it provides

breeders with diverse options to develop new crop varieties with

improved traits and adaptability to changing climatic conditions

(Singh et al., 2022a; Singh et al., 2022b; Singh et al., 2024). We

observed a substantial amount of genetic variation in the association

panel for the studied traits under controlled and drought stress

condition (Figure 1). Multiple studies reported the larger genetic

variation under drought stress than in normal condition (Ayalew

et al., 2017; Ahmed et al., 2022; Singh et al., 2022c; Schierenbeck

et al., 2023). Similarly, we observed the greater genetic variation for all

the traits under drought stress (viz., GP: 10-100%; SL: 0-23.9 cm; RL:

5.55-32.8 cm; CL: 0-6.93 cm, and SV: 1.11-46.6) than the controlled

condition (viz., GP: 70-100%; SL: 12.1-28.74 cm; RL: 13.75-35.64 cm;

CL: 2.65-6.97 cm, and SV: 21.85-54.03). These findings highlight the

significant impact of drought stress on seed germination and seedling

establishment (Figures 1A–E). Previous studies have reported the
TABLE 2 List of high-confidence quantitative trait loci (QTLs) identified for seedling characteristics under control and drought stress conditions.

QTLs/SNPs Trait Treatment Chromosome SNP position (bp) LOD score PVE (%)

AX94484198
Germination percentage (GP) Drought

3D 369413294 6.16 23.83

AX94615571 6B 123712887 8.98 16.13

AX95222115

Root length (RL)
Control

6A 425861645 6.13 12.15

AX94404743 6B 114367132 7.79 17.59

AX94501214 Drought 1B 281707148 5.75 31.73

AX94480117

Shoot length (SL)
Control

3B 555683121 6.28 15.66

AX94864753 5A 5997442 5.73 11.61

AX94931003 6B 471164903 5.6 31.19

AX94506461 Drought 6A 11251322 7.01 13.74

AX94535311

Coleoptile length (CL)
Control

4B 457870239 12.79 22.35

AX94528523 5B 700520247 5.8 11.81

AX95222115 6A 425861645 10.86 15.36

AX94885660 Drought 6B 139413035 6.77 36.91
fro
QTLs, quantitative trait loci; SNPs, single nucleotide polymorphism; bp, base pair; LOD, log of odds; PVE, phenotypic variance explained.
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TABLE 3 List of potential candidate genes (CGs) identified from the
high-confidence quantitative trait loci (QTLs) for seedling traits under
drought stress condition.

QTLs/
SNPs

Gene ID
Gene

position
(bp)

Interpro
Description

AX94480117

TraesCS3B02G345300
555148343-
555149367

Protein
kinase domain

TraesCS3B02G345700
555270080-
555273699

WD40 repeat

TraesCS3B02G345400
555155004-
555156101

BTB/POZ domain

TraesCS3B02G346800
556367760-
556369658

F-box domain

TraesCS3B02G345600
555243898-
555244989

BTB/POZ domain

TraesCS3B02G347000
556487647-
556519303

Histidine
phosphatase

superfamily, clade-2

TraesCS3B02G346700
556349511-
556351253

Cytochrome P450

AX94484198

TraesCS3D02G266700
370108377-
370112784

Sde2, N-terminal
ubiquitin domain

TraesCS3D02G266900
370123379-
370126365

O-acyltransferase,
WSD1-like,
N-terminal

AX94535311

TraesCS4B02G216900
457049370-
457052911

Phosphatidylinositol-
4-phosphate 5-
kinase, core

TraesCS4B02G217300
458124485-
458126550

Phospholipase A2

TraesCS4B02G217400
458456678-
458460338

Myc-type, basic
helix-loop-helix
(bHLH) domain

AX94864753

TraesCS5A02G008700
6287359-
6290472

Cytochrome P450

TraesCS5A02G008800
6411078-
6413189

Cytochrome P450

TraesCS5A02G008900
6422019-
6424272

Cytochrome P450

TraesCS5A02G009000
6438667-
6440111

Tetratricopeptide
repeat 1

TraesCS5A02G009100
6444931-
6449572

Ankyrin repeat

TraesCS5A02G009200
6482289-
6488020

Ankyrin repeat

TraesCS5A02G009700
6614883-
6620347

Ankyrin repeat

TraesCS5A02G009800
6621498-
6628092

Ankyrin repeat

TraesCS5A02G009900
6663221-
6663596

Calreticulin/calnexin

TraesCS5A02G010000

(Continued)
F
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TABLE 3 Continued

QTLs/
SNPs

Gene ID
Gene

position
(bp)

Interpro
Description

6665804-
6668336

Zinc finger,
RING-type

TraesCS5A02G010400
6773230-
6774222

Transcription factor,
MADS-box

TraesCS5A02G010500
6797997-
6799208

ELO family

TraesCS5A02G010600
6982513-
6983531

Casparian strip
membrane

protein domain

AX94528523

TraesCS5B02G550100
701519688-
701520317

Protein
kinase domain

TraesCS5B02G548400
700945256-
700947048

Cytochrome P450

TraesCS5B02G546500
699720646-
699725714

Phosphatidic acid
phosphatase type
2/haloperoxidase

TraesCS5B02G548600
701001929-
701002519

Cytochrome P450

TraesCS5B02G546700
699946003-
699949487

3-beta hydroxysteroid
dehydrogenase/

isomerase

TraesCS5B02G548100
700854870-
700856601

Cytochrome P450

TraesCS5B02G547800
700574102-
700575217

Sterile alpha
motif domain

TraesCS5B02G548300
700936413-
700939062

Cytochrome P450

TraesCS5B02G548200
700917011-
700918440

Zinc finger,
RING-type

TraesCS5B02G548700
701050114-
701051876

Cytochrome P450

TraesCS5B02G547200
700230739-
700234958

NAD-dependent
epimerase/
dehydratase

TraesCS5B02G549900
701465822-
701466980

Myb/SANT-
like domain

TraesCS5B02G548500
700997146-
700998633

Expansin

TraesCS5B02G549000
701158488-
701163796

Leucine-rich repeat
domain superfamily

TraesCS5B02G550000
701511918-
701516803

Protein
kinase domain

TraesCS5B02G547300
700235845-
700237592

F-box-like
domain superfamily

TraesCS5B02G546600
699729456-
699731225

F-box domain

TraesCS5B02G547000
700216666-
700225371

3-beta hydroxysteroid
dehydrogenase/

isomerase

(Continued)
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detrimental effects of drought stress on various seedling traits. For

instance, drought stress has been shown to reduce germination

percentage by 12%, plumule length by 79%, radicle length by 59%,

SL by 36%, RL by 11%, and seedling length by 36% (Mickky and

Aldesuquy, 2017; Ahmed et al., 2022; Mahpara et al., 2022;
TABLE 3 Continued

QTLs/
SNPs

Gene ID
Gene

position
(bp)

Interpro
Description

AX95222115 TraesCS6A02G226100
425741848-
425746917

Zinc finger, ZZ-type

AX94506461

TraesCS6A02G021300
10491634-
10496460

Putative S-adenosyl-
L-methionine-
dependent

methyltransferase

TraesCS6A02G021900
11006033-
11007811

Leucine-rich repeat
domain superfamily

TraesCS6A02G022200
11157368-
11159968

Cytochrome P450

TraesCS6A02G022400
11231875-
11236237

Protein
kinase domain

TraesCS6A02G022700
11280128-
11280811

Transcription factor,
MADS-box

TraesCS6A02G023000
11496482-
11500875

Leucine-rich repeat
domain superfamily

TraesCS6A02G023400
11679111-
11681611

Leucine-rich repeat
domain superfamily

TraesCS6A02G023700
11790646-
11791549

Zinc finger,
RING-type

TraesCS6A02G023800
11840405-
11841583

F-box-like
domain superfamily

TraesCS6A02G023900
11883792-
11886291

F-box-like
domain superfamily

TraesCS6A02G024000
11963972-
11966414

Peptidase C78,
ubiquitin fold

modifier-specific
peptidase 1/ 2

TraesCS6A02G024100
12055217-
12058516

Leucine-rich repeat

TraesCS6A02G024200
12077818-
12079854

Leucine-rich repeat

TraesCS6A02G024300
12117881-
12120124

Protein
kinase domain

TraesCS6A02G024400
12131874-
12133343

Very-long-chain 3-
ketoacyl-

CoA synthase

AX94615571

TraesCS6B02G127600
123499909-
123503951

Casparian strip
membrane

protein domain

TraesCS6B02G127800
123702609-
123715378

Protein
kinase domain

TraesCS6B02G128100
123747342-
123751102

Protein
kinase domain

TraesCS6B02G128200
123829736-
123836519

Diacylglycerol
acyltransferase

TraesCS6B02G128400
123910941-
123913009

F-box domain

TraesCS6B02G128500 F-box domain

(Continued)
TABLE 3 Continued

QTLs/
SNPs

Gene ID
Gene

position
(bp)

Interpro
Description

124083997-
124087349

TraesCS6B02G128600
124091073-
124091696

BURP domain

TraesCS6B02G128700
124384674-
124388848

BURP domain

AX94404743

TraesCS6B02G118800
113588038-
113590079

Cytochrome P450

TraesCS6B02G119700
114334445-
114335913

F-box domain

TraesCS6B02G119800
114366990-
114372653

UBA-like superfamily

TraesCS6B02G119900
114507380-
114511418

CALMODULIN-
BINDING
PROTEIN60

TraesCS6B02G120000
114879592-
114880826

F-box-like
domain superfamily

AX94931003

TraesCS6B02G261500
471232702-
471235523

Thioredoxin domain

TraesCS6B02G260300
470808922-
470810315

F-box domain

TraesCS6B02G260500
470825718-
470831560

Pyridoxamine 5'-
phosphate oxidase

TraesCS6B02G261700
471306774-
471314023

Peptidase S10,
serine

carboxypeptidase

TraesCS6B02G261400
471180551-
471181877

Tetratricopeptide-like
helical

domain superfamily

TraesCS6B02G260100
470786021-
470795563

Inositol
monophosphatase-

like

AX94885660

TraesCS6B02G140200
138643641-
138645626

Cathepsin propeptide
inhibitor

domain (I29)

TraesCS6B02G140400
139444367-
139445136

Myb/SANT-
like domain

TraesCS6B02G140500
139883785-
139886327

F-box domain

TraesCS6B02G140600
139893280-
139894535

Ubiquitin-
like domain

TraesCS6B02G140800
140331072-
140333562

F-box domain
QTLs: quantitative trait loci; SNPs: single nucleotide polymorphism; bp: base pair.
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Schierenbeck et al., 2023). In alignment with these findings, our study

revealed a maximum effect of drought stress on SL (with 50.94%

reduction) and theminimum effect on GP (with 7.9% reduction) which

suggest the varying degree of sensitivity among different seedling traits

to drought stress. Higher heritability values of quantitative traits aids

plant breeders in selecting traits, predicting offspring performance,

prioritizing breeding efforts, and improving crop varieties for enhanced

drought tolerance in an efficient and targeted manner (Bernardo,

2020). Studies reported high level of heritability for the seedling traits

under drought stress. For instance, Schierenbeck and co-authors (2023)

reported high level of heritability for CL (98 and 97% respectively,

under control and drought stress), SL (97 and 94% respectively, under

control and drought stress), and RL (89 and 87% respectively, under

control and drought stress). Similarly, we found the high heritability

and correlation (among the traits) under controlled and drought stress

condition for all the seedling traits (Table 1). These findings suggests

that a substantial proportion of the observed phenotypic variation is

under genetic control, which can be exploited to breed the drought-

tolerant wheat varieties.
4.2 Population structure analysis

Population structure is the differences in allele frequency between

subpopulations, which results from evolutionary forces that disturb

Hardy-Weinberg equilibrium. Population structure introduces the

confounding effects in association studies which leads to increased

false positive associations. Therefore, it is crucial to include structure

analysis to effectively circumvent or discern these false positive

associations. Bayesian approaches and model-free methods, such as

principal component analysis (PCA), have proven to be valuable tools

in achieving this goal (Alotaibi et al., 2022). In the present study we

applied both Bayesian approaches and PCA to investigate population

structure existing in the association panel which revealed the presence

of three distinct subpopulations (Figure 2). These subpopulations

likely occurred due to the inclusion of exotic lines, Indian land races,

and Indian released varieties or advanced breeding lines. We also

observed the admixture within each subpopulation, indicating the

genetic contribution from two or more ancestral parents. By

including diverse germplasm lines in the association panel, we

ensured sufficient allelic diversity, thus increasing the likelihood of

detecting all possible allelic variants associated with targeted traits.

Kinship analysis examines the familial relatedness among the

germplasm lines which helps in identifying genetic relationships

and similarity among individuals (Maguire and Woodward, 2008).

Kinship analysis revealed the sufficient amount of genetic diversity in

the association panel.
4.3 Genome-wide association study and
candidate gene analysis

GWAS has been successfully utilized in identifying the significant

MTAs associated with drought tolerance at various developmental stages

(Gill et al., 2022; Tanin et al., 2022; Halder et al., 2023). Most of these

studies were conducted at reproductive stages. However, the number of
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studies identifying MTAs for seedling drought stress tolerance are scarce

(Ayalew et al., 2017; Ma et al., 2020; Maulana et al., 2020, Maulana et al.,

2021; Ahmed et al., 2022; Schierenbeck et al., 2023). Therefore, in the

present study, we carried GWAS using 12,511 SNPs and identified 39

MTAs associated with seedling characteristics under controlled and

drought stress. Seed germination is key for maintaining optimum plant

population in field as well as to maintain the stable yield under drought

stress. Previous studies reported multiple QTLs for GP on different

chromosomes (Landjeva et al., 2010). Similarly, we identified five MTAs

associated with GP under drought stress on chromosomes 1A, 3D (2),

4A, and 6B. The SL is responsible for above-ground biomass production,

light capture, resource allocation, biomass partitioning, structural

adaptation, and reproductive success under drought stress (Gudi et al.,

2022a). Several studies reported the significant MTAs associated with SL

under drought stress on chromosomes 1A, 1B, 2A, 2B, 2D, 3A, 3B, 4A,

4B, 5A, 5B, 5D, 6A, 6B, 7A, and 7B (Sukumaran et al., 2018; Maulana

et al., 2020; Schierenbeck et al., 2023). Similarly, in the present study, we

identified threeMTAs (on chromosomes 1A, 1B, and 2B) associated with

SL under drought stress. Roots plays a critical role in plant adaptation to

drought stress tolerance by enhancing water absorption and nutrient

uptake. Several MTAs associated with root architecture and root biomass

traits were identified on various chromosomes including, 2D, 5A and 6A

(Bai et al., 2013), 5B, 6B, 7A, and 7B (Schierenbeck et al., 2023), and 1B

and 4A (Breseghello and Sorrells, 2007). We also identified three MTAs

associated with RL under drought stress condition and these MTAs

were located on 6A, 6B, and 7A chromosomes. Coleoptile is the first

plant organ which comes out by penetrating the soil and it will decide

the seedling emergence under water stress. Candidate genomic

regions associated with coleoptile related traits were identified on

almost all the chromosomes (viz., 1A, 1B, 2A, 2B, 2D, 3A, 3B, 3D, 4A,

4B, 4D, 5A, 5B, 5D, 6A, 6B, 7A, and 7B) (Ma et al., 2020). In this

GWAS, we identified four MTAs (on the chromosomes 2A, 4A, 6B,

and 6D) associated with CL under drought stress. Vigor is the ability

of a plant to thrive under unfavorable environments and support the

plant establishment via efficient resource utilization. Previous studies

identified the several QTLs associated with SV on chromosomes 1B,

2D, 4D, 5D, 6B, 6D and 7A (Moore and Rebetzke, 2015), 1D, 4D, and

5D (Landjeva et al., 2010), and 6A (Spielmeyer et al., 2007). Similarly,

we identified six MTAs on 1B, 3A, 4A (2), 4B, and 6B chromosomes.

Multiple studies have reported that most of the identified MTAs

are false positives or minor QTLs with minimum effect on phenotype

(Gill et al., 2022; Gudi et al., 2022b). These MTAs not only weakens the

effectiveness of marker-assisted selection (MAS) but also affect the trait

introgression. Therefore, it is necessary to apply the more stringent

criteria to eliminate the false positive QTL with minor effect on the

phenotype without losing the major QTLs. In the present study, we

applied such criteria and identified 12 MTAs as significant MTAs as

they explained >10% phenotypic variance and had the LOD scores of

>5. These MTAs were further utilized for extracting CG models.

Linkage disequilibrium (LD) is the non-random association of

alleles at different genetic loci. It occurs when certain alleles at different

loci are found together more frequently than would be expected by

chance. LD is influenced by genetic distance, mode of pollination,

recombination rate, and population history. Usually outbreeding

species such as maize, sunflower, Alfalfa, etc. have the smaller LD

block size (viz., 100-1500 Kb) in comparison to self-pollinated crops
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(up to 20 cM) such as wheat and rice (Vos et al., 2017). Several studies

reported that the LD decay in wheat is greatly influenced by the type of

populations used for GWAS and is varied across the different sub-

genomes (Lin et al., 2019; Rathan et al., 2022). For instance, Devate

et al. (2022) reported that the “sub-genome B” had the slower LD decay

(viz., 5.64 Mb), whereas the “sub-genome A” had the faster LD decay

(viz., 3.63 Mb) (Devate et al., 2022). However, Rathan et al. (2022)

reported the slower decay in the “sub-genome B” (viz., 11.88 Mb) and

the faster decay in the “sub-genome A” (viz., 3.63 Mb). In the present

study we observed the similar trend as that observed by Rathan and co-

authors (2022) with slower LD decays in “sub-genome B” (viz., largest

LD block size of 11.88 Mb) and faster decay in the “sub-genome A”

(viz., smallest LD block size of 5.91 Mb). The variations in LD decay

among the three sub-genomes imply that each of these genomes and

their diploid ancestors may originated independently and experienced

distinct selection pressures during domestication. Furthermore, a

significant difference in LD decay at the chromosome level was

observed, with chromosome 7D exhibiting larger LD block (1.12

Mb), while chromosome 1D displaying smaller LD block (35.07

Mb). This indicates a differential rate of recombination among

the chromosomes.

High-confidence MTAs identified through GWAS serve as

potential targets for extracting CGs associated with the trait of

interest. Several studies utilized GWAS-identified MTAs to extract

the potential CGs associated with: (i) agronomic traits including days to

anthesis, days to maturity, tiller number, spike length, spikelet number,

grain number per spike, grain weight, and grain yield (Gill et al., 2022;

Gudi et al., 2024); (ii) physiological traits such as chlorophyll

fluorescence, chlorophyll content, vegetation index, gas exchange,

and stomatal conductance (Hamdani et al., 2019; Gudi et al., 2023);

(iii) stress tolerance such as drought, heat, salinity, etc (Tanin et al.,

2022, Tanin et al., 2023; Tian et al., 2023); (iv) biochemical compounds

such as proline, abscisic acid, and hydrogen peroxides (H2O2)

(Verslues et al., 2014; Kamruzzaman et al., 2022); and (v) quality

traits including grain protein content, sedimentation volume, kernel

hardiness, solvent retention capacity, Fe content, and Zn content (Gudi

et al., 2022b; Halladakeri et al., 2023). Similarly, in the present study we

used 13 high-confidence MTAs explaining >10% phenotypic variance

and having the LOD scores >5 to extract 216 CGs models. Of the 216

CGs, 83 gene models were found to be functionally associated with

drought stress tolerance and were considered as the potential CGs.

These genes were responsible for encoding following proteins: WD40

repeat domain, Myb/SANT-like domain, WSD1-like domain, BTB/

POZ domain, protein kinase domain, cytochrome P450, leucine-rich

repeat domain superfamily, BURP domain, calmodulin-binding

protein60, ubiquitin-like domain, etc.

WD40 genes have been extensively studied for their regulatory

role in a wide range of biological processes, such as grain yield and

adaptation to various abiotic stresses, including drought. In wheat,

WD40 gene located on chromosome 4B interacts with the canonical

catalases to scavenge reactive oxygen species (ROS) and thereby

provide high-level of drought stress tolerance (Tian et al., 2023). The

Myb/SANT-like domains are responsible for providing drought stress

tolerance by regulating the development of epidermis, stomatal cells,

and trichomes as well as by regulating the auxin-salicylic acid cross-

talk under the stress (Tiwari et al., 2020). Under drought stress, the
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presence of WSD1-like domains plays a vital role in protecting leaf

tissues from dehydration. These domains facilitate the synthesis of

cuticular wax, which acts as a barrier to prevent excessive water loss,

thus safeguarding the leaf tissues from dehydration (Abdullah et al.,

2021). The BTB/POZ domains upregulate the brassinosteroids

signaling pathway and promote proline biosynthesis under drought

stress, thereby mitigates the negative impact of ROS (Zhou et al.,

2020). Protein kinases belong to the multi-gene family proteins

responsible for tissue specific expression under stress conditions

such as wounding, drought, heat, and salt stresses. Overexpression

of protein kinase genes enhance the drought stress tolerance by

preventing lipid peroxidation of cell membranes (Campo et al., 2014).

BURP domains represent a plant-specific gene familiesthat play a

crucial role in various biological processes, including drought stress

tolerance. Proteins belonging to the BURP family, such as AtRD22

and AtUSPL1, have been identified as important contributors to

drought tolerance in plants. These proteins are upregulated in

response to drought stress, thereby confers drought stress tolerance

(Harshavardhan et al., 2014). Although numerous genes associated

with drought stress tolerance have been identified, their exact

mechanisms of action remain unknown. Therefore, it is necessary

to functionally validate these genes, which helps in understanding the

metabolic processes and the intricate mechanisms involved in

drought stress tolerance.

5 Conclusion

In the present investigation we identified the significant effects

of genotypes and the drought stress on various seedling

characteristics. Population structure, principal component, and

kinship analysis revealed the presence of huge genetic variation in

the association panel, which helps to identify 39 MTAs for different

seedling traits under control and drought stress condition. The CGs

analysis from the high-confidence MTAs identified 83 potential

CGs associated with drought stress tolerance. The MTAs and CGs

identified in this study may facilitate marker-assisted breeding to

improve wheat varieties with enhanced drought stress tolerance.

This can be done only when the identified MTAs and potential CGs

are subjected to fine mapping and in-silico validation using reverse

genetic or transgenic or genome editing approaches.
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and (D) PCA biplot under drought stress condition.
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Manhattan showing the quantitative trait loci (QTL) for germination
percentage (GP) under control (A) and drought stress (B) conditions.
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Manhattan showing the quantitative trait loci (QTL) for shoot length (SL) under

control (A) and drought stress (B) conditions.

SUPPLEMENTARY FIGURE 4

Manhattan showing the quantitative trait loci (QTL) for root length (RL) under

control (A) and drought stress (B) conditions.

SUPPLEMENTARY FIGURE 5

Manhattan showing the quantitative trait loci (QTL)for coleoptile length (CL)
under control (A) and drought stress (B) conditions.

SUPPLEMENTARY FIGURE 6

Manhattan and QQ-plots showing the quantitative trait loci (QTL) for seedling
vigour (SV) control (A) and drought stress (B) conditions.
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Analysis of linkage disequilibrium (LD) at the chromosome level. The LD decay

block size (in bp) is depicted in green color.
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