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Montesinos-López A and Crossa J (2024)
Feature engineering of environmental
covariates improves plant
genomic-enabled prediction.
Front. Plant Sci. 15:1349569.
doi: 10.3389/fpls.2024.1349569

COPYRIGHT

© 2024 Montesinos-López, Crespo-Herrera,
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Introduction: Because Genomic selection (GS) is a predictive methodology, it

needs to guarantee high-prediction accuracies for practical implementations.

However, since many factors affect the prediction performance of this

methodology, its practical implementation still needs to be improved in many

breeding programs. For this reason, many strategies have been explored to

improve the prediction performance of this methodology.

Methods: When environmental covariates are incorporated as inputs in the

genomic prediction models, this information only sometimes helps increase

prediction performance. For this reason, this investigation explores the use of

feature engineering on the environmental covariates to enhance the prediction

performance of genomic prediction models.
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Results and discussion: We found that across data sets, feature engineering helps

reduce prediction error regarding only the inclusion of the environmental covariates

without feature engineering by 761.625% across predictors. These results are very

promising regarding the potential of feature engineering to enhance prediction

accuracy. However, since a significant gain in prediction accuracy was observed in

only some data sets, further research is required to guarantee a robust feature

engineering strategy to incorporate the environmental covariates.
KEYWORDS

genomic selection, plant breeding, environmental covariates, feature engineering,
feature selection
Introduction

The global population’s rapid growth is increasing food

demand, but climate change impacts crop productivity. Plant

breeding is essential for high-yield, quality cultivars. Wheat

production soared from 200 million tons in 1961 to 775 million

tons in 2023 without expanding cultivation, thanks to improved

cultivars and agricultural practices (FAO, 2023). Traditional

methods used pedigree and observable traits, but DNA

sequencing introduced genomic insights. Genomic selection (GS)

relies on DNA markers, offering advantages over traditional

methods (Crossa et al., 2017).

Numerous studies have investigated the efficacy of GS

compared to traditional phenotypic selection across various crops

and livestock. Butoto et al. (2022) observed that both GS and

phenotypic selection were equally effective in enhancing

resistance to Fusarium ear rot and reducing feminizing

contamination in maize. Similarly, Sallam and Smith (2016)

demonstrated that integrating GS into barley breeding programs

targeting yield and Fusarium head blight (FHB) resistance yielded

comparable gains in selection response to traditional phenotypic

methods. Moreover, GS offered the added benefits of shorter

breeding cycles and reduced costs. In contrast, research in maize

breeding conducted by Beyene et al. (2015) and Gesteiro et al.

(2023) revealed that GS outperformed phenotypic selection,

resulting in superior genetic gains. These comparative findings

underscore the considerable advantages of GS in optimizing

breeding outcomes across diverse agricultural settings.

GS revolutionizes plant and animal breeding by leveraging

high-density markers across the genome. It operates on the

principle that at least one genetic marker is in linkage

disequilibrium with a causative QTL (Quantitative Trait Locus)

for the desired trait (Meuwissen et al., 2001). This method

transforms breeding in several ways: a) Identifying promising

genotypes before planting; b) Improving precision in selecting

superior individuals; c) Saving resources by reducing extensive

phenotyping; d) Accelerating variety development by shortening

breeding cycles; e) Intensifying selection efforts; f) Facilitating the
02
selection of traits difficult to measure; g) Enhancing the accuracy of

the selection process (Bernardo and Yu, 2007; Heffner et al., 2009;

Desta and Ortiz, 2014; Abed et al., 2018; Budhlakoti et al., 2022).

The GS methodology, embraced widely, expedites genetic

improvements in plant breeding programs (Desta and Ortiz,

2014; Bassi et al., 2016; Xu et al., 2020). Utilizing advanced

statistical and machine learning models (Montesinos-López et al.,

2022), GS efficiently selects individuals within breeding

populations. Deep learning, a subset of machine learning, has also

shown promise in GS (Montesinos-López et al., 2021; Wang et al.,

2023). This selection process relies on data from a training

population, encompassing both phenotypic and genotypic

information (Crossa et al., 2017).

The Deep Neural Network Genomic Prediction (DNNGP)

method of Wang et al. (2023) represents a novel advanced on

deep-learning genomic predictive approach. The authors compared

the DNNGP with other genomic prediction methods for various

traits using genotypic and transcriptomics on maize data. They

demonstrated that DNNGP outperformed GBLUP in most datasets.

For instance, for maize days to anthesis (DTA) trait, DNNGP

showed superiority over GBLUP by 619.840% and 16.420% using

gene expression and Single Nucleotide Polymorphism (SNP) data,

respectively. When utilizing genotypic data, DNNGP achieved a

prediction accuracy of 0.720 for DTA, while GBLUP reached 0.580.

However, the study found varied patterns in prediction accuracy for

other traits.

Following rigorous training, these models utilize genotypic data

to predict breeding or phenotypic values for traits within a target

population (Budhlakoti et al., 2022). The GS methodology is

versatile, accommodating various scenarios including multi-trait

considerations (Calus and Veerkamp, 2011), known major genes

and marker-trait associations, Genotype × Environment interaction

(GE) (Crossa et al., 2017), and integration of other omics data (Hu

et al., 2021; Wu et al., 2022) such as transcriptomics, metabolomics,

and proteomics. GE influences phenotypic trait values across

diverse environments, underscoring its importance in association

and prediction models. Jarquin et al. (2014) introduced a

framework significantly improving prediction accuracy in the
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presence of GE, yet without considering environmental covariates.

To enhance accuracy further, recent studies are integrating

environmental information into genomic prediction models.

Jarquin et al. (2014) framework lacks consideration of

environmental covariates, prompting recent studies to integrate

such information to enhance prediction accuracy. For instance,

Montesinos-López et al. (2023) and Costa-Neto et al. (2021a,

2021b) demonstrated significant improvements. Conversely,

studies by Monteverde et al. (2019); Jarquin et al. (2020), and

Rogers et al. (2021) showed modest or negligible enhancements,

revealing the ongoing challenge of effectively integrating

environmental data into genomic prediction models.

Achieving high prediction accuracy in GS faces significant

challenges due to genetic complexities, environmental variations,

and data constraints (Juliana et al., 2018). Complex traits involve

multiple gene influences, while environmental conditions can alter

trait expression (Desta and Ortiz, 2014; Crossa et al., 2017).

Phenotyping and marker data quality are critical, and issues like

overfitting and population structure can compromise prediction

precision (Budhlakoti et al., 2022). Ongoing research focuses on

improving models, increasing marker density, and enhancing data

quality to refine genomic prediction accuracy (Crossa et al., 2017;

Budhlakoti et al., 2022).

Ongoing efforts focus on refining GS accuracy through various

optimizations. This includes fine-tuning training and testing sets for

improved precision (Rincent et al., 2012; Akdemir et al., 2015).

Researchers are also evaluating diverse statistical machine learning

methods to develop robust models with minimal fine-tuning yet

high accuracy (Montesinos-López et al., 2022). Moreover,

integrating additional omics data, such as phenomics and

transcriptomics, aims to bolster GS accuracy and identify potent

predictors for target traits (Montesinos-López et al., 2017; Krause

et al., 2019; Monteverde et al., 2019; Hu et al., 2021; Costa-Neto

et al., 2021a, b; Rogers and Holland, 2022; Wu et al., 2022). These

endeavors seek to enhance GS predictive capabilities by leveraging

diverse information sources.

Feature engineering (FE) is crucial in improving machine

learning model performance by selecting, modifying, or creating

new features from raw data. It transforms input data into a more

representative and informative format, capturing relevant patterns

and relationships, and enhancing the model’s generalization ability.

FE involves various tasks like selecting optimal features, generating

new features, normalization/scaling, handling missing values, and

encoding categorical variables. For instance, techniques like

Principal Component Analysis (PCA) can transform correlated

features into uncorrelated ones (Lam et al., 2017; Dong and Liu,

2018; Khurana et al., 2018). FE’s popularity is rising due to its ability

to enhance model performance, extract meaningful information

from complex data, improve interpretability, and boost efficiency.

Successful implementations include sentiment analysis, image

recognition, and predictive maintenance, showcasing FE’s

effectiveness across domains (Nargesian et al., 2017; Carrillo-de-

Albornoz et al., 2018; Yurek and Birant, 2019). In genomic

prediction, FE has also been successful, as demonstrated by

Bermingham et al. (2015) and Afshar and Usefi (2020). These
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examples underscore FE critical role in various domains, leading to

more accurate machine learning applications (Dong and Liu, 2018).

The impact of feature engineering (FE) on reducing prediction

error varies depending on the dataset, problem, and quality of FE.

Well-crafted features can notably minimize prediction error in

some cases, but the exact improvement is context-specific and not

guaranteed. Effective FE can enhance model performance

significantly, albeit its extent varies case by case (Heaton, 2016;

Dong and Liu, 2018).

To optimize genomic selection’s predictive accuracy, it’s vital to

adopt innovative methodologies that account for its multifaceted

influences. FE in genomic prediction offers a promising approach

by enhancing prediction quality, uncovering genetic insights,

customizing models to specific needs, improving interpretability,

and minimizing data noise. In this paper, we investigate FE applied

to environmental covariates to assess its potential in enhancing

prediction performance within the context of genomic selection.
Materials and methods

Dataset USP

The University of São Paulo (USP) Maize, Zea mays L., dataset

is sourced from germplasm developed by the Luiz de Queiroz

College of Agriculture at the University of São Paulo, Brazil. An

experiment was conducted between 2016 and 2017 involving 49

inbred lines, yielding a total of 906 F1 hybrids, of which 570 were

assessed across eight diverse environments for grain yield (GY).

These environments were created by combining two locations, two

years, and two nitrogen levels. However, we specifically used data

from four distinct environments for this research, each containing

100 hybrids. It’s important to note that these environments had

varying soil types and climatic conditions, and the study integrated

data from 248 covariates related to these environmental factors. The

parent lines underwent genotyping through the Affymetrix Axiom

Maize Genotyping Array, resulting in a dataset of 54,113 high-

quality SNPs after applying stringent quality control procedures.

Please refer to Costa-Neto et al. (2021a) for further comprehensive

information on this dataset.
Dataset Japonica

The Japonica dataset comprises 320 rice (Oryza sativa L.)

genotypes drawn from the Japonica tropical rice population. This

dataset underwent evaluations for the same four traits (GY, PHR:

percentage of head rice, GC: percentage of chalky grains, PH: plant

height) as the Indica population, but in this case, it was conducted

across five distinct environments spanning from 2009 to 2013.

Covariates were meticulously measured three times a year, covering

three developmental stages (maturation, reproductive, and

vegetative). This dataset comprises a non-balanced set of 1,051

assessments recorded across these five diverse environments.

Additionally, each genotype within this dataset was meticulously
frontiersin.org
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evaluated for 16,383 SNP markers that remained after rigorous

quality control procedures, with each marker being represented as

0, 1, or 2. For more comprehensive information on this dataset,

please refer to Monteverde et al. (2019).
Dataset G2F

These three distinct datasets correspond to the Maize Crop, Zea

mays L., for years 2014 (G2F_2014), 2015 (G2F_2015), and 2016

(G2F_2016) from the Genomes to Fields maize project (Lawrence-

Dill, 2017), as outlined by Rogers and Holland (2022). These

datasets collectively encompass a wealth of phenotypic, genotypic,

and environmental information. To narrow the focus, our analysis

primarily includes four specific traits: Grain_Moisture_BLUE

(GM_BLUE) , Gra in_Mois ture_weight (GM_Weight ) ,

Yield_Mg_ha_BLUE (YM_BLUE), and Yield_Mg_ha_weight

(YM_Weight), carefully selected from a larger pool of traits

detailed by Rogers and Holland (2022). Across these three years,

the study involves 18, 12, and 18 distinct environments for the years

2014 (G2F_2014), 2015 (G2F_2015) and 2016 (G2F_2016),

respectively. Regarding genotype numbers, the dataset for 2014

consisted of 781 genotypes, the dataset for 2015 featured 1,011

genotypes, and the dataset for 2016 comprised 456 genotypes. The

analysis relies on 20,373 SNP markers that have already undergone

imputation and filtering, following the methodology outlined by

Rogers et al. (2021) and Rogers and Holland (2022). Additive allele

calls are documented as minor allele counts, represented as 0, 1, or

2. For more detailed insights into these datasets, we recommend

consulting the comprehensive description provided in Lawrence-

Dill (2017) and Rogers and Holland (2022).

It is worth noting that each data set presents unique sets of

environments. However, concerning traits, the G2F_2014,

G2F_2015, and G2F_2016 datasets share identical traits, as do the

Japonica dataset.
Statistical models

The four predictors under a genomic best linear unbiased

predictor (GBLUP; Habier et al., 2007; VanRaden, 2008) model

are described below.

Predictor P1: E+G
This predictor is represented as

Yij = m + Ei + gj + ϵij, (1)

where Yij denotes the response variable in environment i and

genotype j. m denotes the population mean; Ei are the random

effects of environments, gj,  j = 1,…, J , denotes the random effects of

lines, and ϵij denotes the random error components in the model

assumed to be independent normal random variables with mean 0

and variance s 2. In the context of this predictor E+G, X, denotes
the matrix of markers and M the matrix of centered and

standardized markers. Then G= MMT

p (VanRaden, 2008), where p
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is the number of markers. Zg is the design matrix of genotypes

(lines) of order n� J ,  G is the genomic relationship-matrix

computed using markers (VanRaden, 2008). Therefore, the

random effect of lines is distributed as ɡ = (g1,…, gJ)
T ∼ NJ (0,s 2

g

ZgGZ
T
g ). This model (1) was implemented in the BGLR library of

Pérez and de los Campos (2014). Therefore, the linear kernel matrix

for the genotype effect was determined by calculating the

“covariance” structure of the genotype predictor (Zgg) as Kg =

ZgGZ
T
g .

On the other hand, the linear kernel matrix for the

Environment effect was computed using three different

techniques: not using environmental covariates (NoEC), with

environmental covariates (EC), and with environmental

covariates with FE.
∘ NoEC: Under this NoEC technique, the resulting linear

kernel of environments was computed as KE=XEX
T
E=I,

where I denotes the number of environments and XE the

design matrix of environments with zeros and ones, with

ones in positions of specific environments.

∘ EC: The EC technique involved selecting and scaling the

environmental covariates (EC) that exhibited a relevant

Pearson´s correlation with the response variable. Covariates

are selected if their Pearson’s correlation with the response

variable exceeds 0.5 in each training set per trait. Notably,

covariate selection excludes response variables in the testing set,

representing the environment to predict. Covariates meeting a

correlation of at least 0.5 are used; otherwise, lower thresholds

like 0.3 or 0.4 are considered. Correlations below these values

indicate training without environmental covariates.

∘ The resulting set of selected EC’s was then used to compute

an environmental linear kernel, denoted as KEC of order

I � I. After using this kernel, the expanded environmental

kernel was computed as KEEC
=  XEKECX

T
E=I, which was

used in the Bayesian model. The scaling of each

environmental covariate was done by subtracting its

respective mean and dividing by its corresponding

standard deviation.

∘ FE: The Feature Engineering (FE) technique involved

computing various mathematical transformations between

all possible pairs of ECs, including addition, difference,

product, and ratio, as well as other commonly used

transformations such as inverses, square powers, root

squares, logarithms, and some Box-Cox transformations

for each EC. These transformations were used to generate

new variables through FE. The transformation of addition,

difference, product and ratio were implemented for each

pair of environmental covariates, that is, there were built a

total the n_cov choose two new covariates, with n_cov

denoting the number of environmental covariates in each

data set. While with transformations such as inverses (1=x),

square powers (x2), root squares (
ffiffiffi
x

p
), natural logarithms

[ln(x)] , and Box-Cox transformat ions for each

environmental covariate was created only one new

environmental covariate. Then the original and new
frontiersin.org
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environmental covariates were concatenated in a matrix

and then were submitted to the selection process explained

above. Then under the FE approach these resulting

covariates are used to compute the new environmental

kernel matrix (KEFE
).
Predictor P2: E+G+GE
The E+G+GE predictor is similar to P1 (Equation 1) but also

accounts for the differential response of cultivars in environments,

that is GE. This is achieved by taking the product of the kernel

matrices of the genotype (G) and environment (E) predictors, that is,

they were computed as Kg °KENoEC
(for NoEC), Kg °KEEC

(for EC) or

Kg °KEFE
(for FE), which serves as the kernel matrix for the GE. In

general, adding the GE interaction to the statistical machine learning

model increases the genomic prediction accuracy (Jarquin et al., 2014;

Crossa et al., 2017). Also, it is important to point out that under this

predictor (P2) variance components and heritability of each trait in

each data set were obtained under a Bayesian framework using the

complete data set (i.e., no missing values allowed). For this

computation all the terms were entered as random effects into the

model but without taking into account the environmental covariates.

Predictor P3: E+G+BRR
The E+G+BRR predictor is similar to P1 (Equation 1), but

incorporating the ECs as fixed effects in a Bayesian Ridge

Regression (BRR) framework, that is, regression coefficients are

assigned normal independent and identically distributed normal

distributions, with mean zero and variance s 2
b . See details of BRR in

Pérez and de los Campos (2014).

Predictor P4: E+G+GE+BRR
The E+G+GE+BRR predictor is similar to P2, but also

incorporates ECs as fixed effects in a Bayesian Ridge Regression

(BRR) framework (see Appendix for brief details on Bayesian Ridge

Regression). The priors used for GBLUP and BRR in BGLR are

those default settings which are given with details in Pérez and de

los Campos (2014). In this study, we found these default settings to

be suitable, as we experimented with various configurations of the

prior hyperparameters for the GBLUP and BRR models on the USP

and G2F_2014 datasets. Remarkably, all configurations yielded

identical predictions. Consequently, for the remaining datasets,

we opted to utilize only the default settings.
Evaluation of prediction performance

The cross-validation approach used in this study involved

leaving one environment out. In each iteration, the data from a

single-environment served as the testing set, while the data from all

other families constituted the training set (Montesinos-López et al.,

2022). The number of iterations was equal to the number of

environments to ensure that each environment was used as the

testing set exactly one time. This method was employed to assess the

model’s ability to predict information from a complete environment

using data from other environments.
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To evaluate the predictive performance we used the Mean

Square Error (MSE) that quantifies the prediction error by

measuring the squared deviation between observed and predicted

values on the testing set. The MSE was computed for each scenario

evaluated (NoEC, EC and FE) and then for comparing these three

scenarios was computed the relative efficiencies as:

RENoEC _ vs _ EC =
MSE(NoEC)
MSE(EC)

� �

RENoEC _ vs _ FE =
MSE(NoEC)
MSE(FE)

� �
 

REEC _ vs _ FE =
MSE(EC)
MSE(FE)

� �
 

RENoEC _ vs _ EC compares the prediction performance of EC vs

NoEC, RENoEC _ vs _ FE compares the prediction performance of FE vs

NoEC and REEC _ vs _ FE compares the prediction performance of FE

vs EC. When RENoEC _ vs _ EC > 1 the best prediction performance

was obtained by the EC strategy, while when RENoEC _ vs _ EC < 1 the

strategy NoEC was the best. While when the relative efficiencies are

equal to 1 means that both methods had equal prediction

performance. The same interpretation applies for the other

comparisons in terms of RE.
Results

The results are given in three sections for three datasets (Japonica,

USP and G2F_2016). For each section we provided the results for the

four predictor models under study (E+G, E+G+GE, E+G+BRR, E+G

+GE+BRR) and under each predictor we compared three strategies for

the use of the environmental covariates: NoEC, using environmental

covariables (EC) and using environmental covariables with FE.

Additionally, Appendix A contains comprehensive details of the

BRR model utilized in this study. Furthermore, Appendix B offers

extensive information on the outcomes for Japonica, USP, and

G2F_2016 datasets, which are outlined in Table B1–Table B2,

Table B3, Table B4, Table B4–Table B5 respectively. Additionally,

Table B7 in this appendix presents the variance components and

heritability of each trait within every dataset. For the results pertaining

to datasets G2F_2014 and G2F_2015, please refer to the

Supplementary Materials section.
Japonica dataset

Predictor: E+G
Figure 1A provides a summary of Table B1 across traits and

reveals that FE outperformed EC in most environments with

improvements of 20.260% (2010), 38.920% (2011), 1.750% (2012),

and 25.470% (2013). This results in an average RE of 1.1567. EC, on

the other hand, outperformed NoEC in most environments with

improvements of 121.200% (2009), 48.080% (2010), and 8.140%

(2012), resulting in an average RE of 1.277. Likewise, FE

outperformed NoEC in 101.240% (2009), 59.560% (2010), and
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4.710% (2012), with slight losses in other environments, but an

average RE of 1.2814. This indicates that using EC and FE surpassed

NoEC by 27.730% and 28.140%, respectively. These calculations are

derived from the results presented in Table B1.

Predictor: E+G+GE
Figure 1B summarizes the findings from Table B1 across traits,

illustrating the comparative performance of FE, EC, and NoEC

techniques in various environments. The results indicate that FE

outperformed EC in the majority of environments, with

improvements of 4.280% (2010), 40.050% (2011), and 20.220%

(2013), resulting in an average RE of 1.099. On the other hand, EC

outperformed NoEC in most environments, with improvements

of 78.070% (2009), 16.100% (2012), and 147.980% (2013), yielding

an average RE of 1.430. Furthermore, FE surpassed the

conventional NoEC technique by 68.990% (2009), 1.780%

(2012), and 178.280% (2013), with an average RE of 1.462.

These results indicate that using EC and FE techniques

outperformed the conventional NoEC technique by 43.040%

and 46.150%, respectively. The calculations are derived from the

outcomes presented in Table B1.

Predictor: E+G+BRR
Figure 1C provides an overview of Table B2 across traits. It

reveals that FE outperformed EC only in environments 2010
Frontiers in Plant Science 06
(9.630%) and 2011 (25.340%), resulting in an average RE of

0.975. On the other hand, EC outperformed NoEC in all

environments, with percentages of improvement of 92.640%

(2009), 20.690% (2010), 15.960% (2011), 36.170% (2012), and

9.070% (2013), and an average RE of 1.349. Additionally, FE

outperformed the NoEC technique in 80.390% (2009), 34.120%

(2010), 13.690% (2011), and 21.950% (2012) of the environments

with a slight loss in 2013, but an average RE of 1.269. These findings

indicate that using EC and FE techniques surpassed NoEC in

34.910% and 26.940% of the environments, respectively. The

calculations are based on the results presented in Table B2.

Predictor: E+G+GE+BRR
Figure 1D summarizes the findings from Table B2 across traits. It

reveals that FE displayed a superior performance over EC in

environments 2010 (14.770%), 2011 (21.700%), and 2013

(17.870%), resulting in an average RE of 1.064. On the other hand,

EC outperformed NoEC in most environments, namely 67.750%

(2009), 28.390% (2010), 27.210% (2011), and 183.970% (2013), with

an average RE of 1.614. Moreover, FE outperformed NoEC in most

environments, specifically 54.260% (2009), 35.520% (2010), 33.140%

(2011), and 197.980% (2013), with an average RE of 1.604. These

findings indicate that using EC and FE surpassed NoEC in 61.390%

and 60.460% of cases, respectively. The computations for these results

were based on the findings presented in Table B2.
A B

DC

FIGURE 1

The three relative efficiencies, considering EC_vs_FE, NoEC_vs_EC, and NoEC_vs_FE, for Japonica dataset, for predictors (A) E+G, (B) E+G+GE,
(C) E+G+BRR and (D) E+G+GE+BRR in terms of mean squared error (MSE) for each Environment across traits.
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Montesinos-López et al. 10.3389/fpls.2024.1349569
USP dataset

Predictor: E+G
Figure 2A and Table B3 provide the results of our comparison

between the NoEC and FE techniques using the RE metric. FE

outperformed the NoEC technique only in Env1 (1.107), displaying

an improvement of 10.670%. However, in Env2 (0.910), Env3

(0.8123), and Env4 (0.989), the NoEC technique surpassed FE,

resulting in an average RE of 0.955. This average RE indicates a

general loss of 4.520% when using FE compared to NoEC

(see Table B3).

Predictor: E+G+GE
Figure 2B and Table B3 provide the results of our comparison

between the NoEC and FE techniques based on the RE metric,

including the fact that the use of FE outperformed the use of NoEC

in environments Env1 (1.167), Env2 (1.016), and Env4 (1.064),

resulting in respective improvements of 16.670%, 1.550%, and

6.390%. However, in Env3 (0.912), the NoEC technique

outperformed FE, resulting in an average RE of 1.040. This

average RE indicates a general improvement of 4.000% of the FE

technique regarding the NoEC method. For more detailed

information, see Table B3.

Predictor: E+G+BRR
Based on Figure 2C and Table B4, our comparison between the

NoEC and FE techniques using the RE metric reveals that FE
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outperformed the NoEC technique in environments Env1 (1.216),

Env3 (1.189), and Env4 (1.435), displaying improvements of

21.580%, 18.890%, and 43.500%, respectively. However, in Env2

(0.768), the NoEC technique outperformed using FE. In general, FE

outperformed NoEC by 15.200% since an average RE of 1.152 was

observed (see Table B4).

Predictor: E+G+GE+BRR
Finally, based on the analysis presented in Figure 2D and

Table B4, we compared the NoEC and FE techniques using the

RE metric. The results indicate that FE outperformed NoEC in Env1

(1.231), Env3 (1.368), and Env4 (1.491), displaying improvements

of 23.090%, 36.760%, and 49.080%, respectively. However, in Env2

(0.901), the NoEC technique outperformed FE, although, FE

outperformed the NoEC in general terms, since an average RE of

1.248 was observed (see Table B4).
G2F_2016 dataset

Predictor: E+G
Figure 3A summarizes Table B5 across different environments for

each trait. It reveals that FE outperformed EC in all traits, achieving

improvements of 87.970% (Grain_Moisture_BLUE), 58.100%

(Grain_Moisture_weight), 21.030% (Yield_Mg_ha_BLUE), and

89.600% (Yield_Mg_ha_weight), resulting in an average RE of 1.642.

In contrast, EC outperformed NoEC in most traits, with
A B

DC

FIGURE 2

The three relative efficiencies, considering EC_vs_FE, NoEC_vs_EC, and NoEC_vs_FE, for USP dataset, for predictors (A) E+G, (B) E+G+GE,
(C) E+G+BRR and (D) E+G+GE+BRR in terms of mean squared error (MSE) for each Environment.
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improvements of 63.960% (Grain_Moisture_BLUE), 1682.340%

(Grain_Moisture_weight), and 52.860% (Yield_Mg_ha_weight),

yielding an average RE of 5.497. Additionally, FE surpassed NoEC in

all traits, with enhancements of 119.370% (Grain_Moisture_BLUE),

245.980% (Grain_Moisture_weight), 1.400% (Yield_Mg_ha_BLUE),

and 22.630% (Yield_Mg_ha_weight), resulting in an average RE of

1.974. These findings indicate that both EC and FE techniques

outperformed NoEC by 449.740% and 97.350%, respectively. The

computations are based on the results presented in Table 5B.

Predictor: E+G+GE
Figure 3B and Table B5 shows that for the Yield_Mg_ha_weight

trait, the NoEC technique achieved the best performance in most

environments, as shown by the MSE values (DEH1_2016 [0.051],

GAH1_2016 [0.026], IAH1_2016 [2.914], IAH2_2016 [0.069],

MIH1_2016 [0.055], MNH1_2016 [0.146], NEH1_2016 [0.033],

NYH2_2016 [0.449] and OHH1_2016 [1.202]). On average, there

were slight losses of 2.210% and 2.570% when comparing EC versus

NoEC and FE versus NoEC, respectively. This suggests that EC and

FE techniques could have performed more adequately than the

conventional NoEC technique. However, comparing EC and FE

techniques based on RE showed that FE outperformed EC in most

environments under NoEC, resulting in an average RE of 1.339,

indicating a superiority of 33.930% for FE (see Table 5B).

Predictor: E+G+BRR
Figure 3C summarizes the findings from Table B6 across

environments for each trait. It shows that FE outperformed EC in all

characteristics, with improvements of 67.090% (Grain_Moisture_BLUE),
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167.270% (Grain_Moisture_weight), 10.650% (Yield_Mg_ha_BLUE),

and 3.960% (Yield_Mg_ha_weight), resulting in an average RE of

1.622. Additionally, EC outperformed NoEC in all traits, with

improvements of 84.880% (Grain_Moisture_BLUE), 249.510%

(Grain_Moisture_weight), 3.780% (Yield_Mg_ha_BLUE), and 51.630%

(Grain_Moisture_weight), resulting in an average RE of 1.975.

Furthermore, FE outperformed NoEC only in the traits

Grain_Moisture_BLUE (129.850%) and Grain_Moisture_weight

(25.410%), with an average RE of 1.360. These results indicate that EC

and FE techniques outperformed the conventional NoEC technique in

62.240% and 36.020% of cases, respectively. These calculations are

derived from the results presented in Table B6.
Predictor: E+G+GE+BRR
Figure 3D summarizes the results from Table B6 across different

traits. It shows that FE outperformed EC in the majority of traits,

specifically by 29.090% for Grain_Moisture_BLUE, 689.960% for

Grain_Moisture_weight, and 38.420% for Yield_Mg_ha_weight.

This leads to an average RE of 2.893. On the other hand, EC

outperformed NoEC in all traits, with improvements of 65.180% for

Grain_Moisture_BLUE, 408.510% for Grain_Moisture_weight,

11 .690% for Y ie ld_Mg_ha_BLUE, and 22 .200% for

Yield_Mg_ha_weight. The average RE for EC compared to NoEC

is 2.269. Furthermore, FE outperformed NoEC in all traits, with

improvements of 125.150% for Grain_Moisture_BLUE, 240.900%

for Grain_Moisture_weight, 9.490% for Yield_Mg_ha_BLUE, and

11.380% for Yield_Mg_ha_weight. The average RE for FE

compared to NoEC is 1.967. These results indicate that using EC

and FE outperformed NoEC by 126.890% and 96.730%,
A B

DC

FIGURE 3

The three relative efficiencies, considering EC_vs_FE, NoEC_vs_EC, and NoEC_vs_FE, for G2F_2016 dataset, for predictors (A) E+G, (B) E+G+GE,
(C) E+G+BRR and (D) E+G+GE+BRR in terms of mean squared error (MSE) for each trait across environments.
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respectively. These computations are derived from the outcomes

of Table B6.
Summary across data sets for
each predictor

In Table 1 we can observe that in any of the four predictors using

environmental covariates improve prediction accuracy at least

61.400% regarding of not using the environmental covariates

(NoEC_vs_EC). Also, we can see in this same table that using FE

improves the prediction performance in the four predictors regarding

of using the original environmental covariates (EC_vs_FE) in at least

347.300%. Regarding using FE and not using environmental

covariates (NoEC_vs_FE) we can observe that also in the four

predictors using FE outperform by at least 113.100% not using the

environmental covariates. Also, we observed that in many cases

adding directly the environmental covariates (EC) not improve

(and even reduce) the prediction performance and for this reason,

we observe that the gain in terms of prediction performance of

NoEC_vs_FE is less pronounced regarding comparing EC_vs_FE.
Discussions

Due to the fact, that still the practical implementation of the GS

methodology is challenging since not always is possible to guarantee

high genomic-enabled prediction accuracy, many strategies had

been developed to improve the machine learning genomic

prediction ability (Sallam and Smith, 2016). For this reason, since

the GS methodology is still not optimal, this investigation explored

FE on the environmental covariates. FE is a crucial step in machine

learning and data science that involves creating new features or

modifying existing ones to improve the performance of a model. FE

is a creative and essential aspect of the machine learning workflow,

and it can significantly impact the success of one’s models. It is a

skill that improves with experience and a deep understanding of the

data and problem. For this reason, FE has been applied successfully

in solving natural language processing, computer vision, time series

and other issues.
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FE is not new in the context of GS, since some studies had been

conducted exploring feature engineering techniques from the feature

selection point of view. For example, Long et al. (2011) used

dimension reduction and variable selection for genomic selection to

predict milk yield in Holsteins. Tadist et al. (2019) present a

systematic and structured literature review of the feature-selection

techniques used in studies related to big genomic data analytics.

While Meuwissen et al. (2017) proposed variable selection models for

genomic selection using whole-genome sequence data and singular

value decomposition. More recently Montesinos-López et al. (2023)

proposed feature selection methods for selecting environmental

covariables to enhance genomic prediction accuracy. However,

these studies are only focused on feature selection and not create

new features from the original inputs.

From our results across traits and data sets, we can state that

including environmental covariates significantly improves the

prediction performance, since comparing no environmental

covariates (NoEC) vs adding environmental covariates (EC), the

resulting improvement was of 167.900% (RE=2.679 of

NoEC_vs_EC), 142.100 (RE=2.242 of NoEC_vs_EC), 56.100%

(RE=1.561 of NoEC_vs_EC) and 421.300% (RE=5.213 of

NoEC_vs_EC) under predictor E+G, E+G+GE, E+G+BRR and

E+G+GE+BRR respectively. However, it is very interesting to point

out that the prediction performance can be even improved when the

covariates are included but using FE.We found that the improvement

of the prediction performance using FE only including only the EC

was of 816.600% (RE=9.166 of EC_vs_FE), 372.900% (RE=4.729 of

EC_vs_FE), 616.100% (RE=716.100 of EC_vs_FE) and 1240.900%

(RE=13.409% of EC_vs_FE) under predictors E+G, E+G+GE, E+G

+BRR and E+G+GE+BRR respectively. The larger gain in prediction

performance was observed under the most complex predictor (E+G

+GE+BRR), while the lowest gain was observed under predictor E+G

+GE. Our results show that FE in genomic prediction holds

tremendous potential for advancing our understanding of genetics

and improving predictions related to various aspects of genomics. For

this reason, FE should be considered an important tool to unlock the

potential of genomic data for research and practical applications of

genomic prediction.

Although our results are very promising for the use of FE, its

practical implementation is very challenging, since we observed a

significant improvement in some data sets but not in all, and for

practical implementations, we need to be able to identify with a high

degree of accuracy when the use of FE will be beneficial and when

the use of this approach will not be successful. Also, it is important

to point out that we have opted against utilizing the Pearson’s

correlation coefficient as a performance metric for predicting

outcomes. This decision is principally rooted in the lack of

substantial improvement linked to this measure we observed. The

marginal benefits observed with this metric can be partly ascribed to

our exclusive focus on feature selection within the realm of

environmental covariates. Additionally, this can be attributed to

the assessment of environmental covariates not at the genotype level

but rather at the environmental (location) level.

Three reasons why the FE works well for some data but not very

well for others are: (1) that those data sets with low efficiency with
TABLE 1 Summary of relative efficiencies (RE) across data sets for
each predictor.

Predictor NoEC_vs_EC_ EC_vs_FE NoEC_vs_FE

E+G 2.573 8.419 2.131

E+G+BRR 1.614 6.574 2.641

E+G+GE 2.489 4.473 3.141

E+G+GE+BRR 4.882 12.138 7.692

Average 2.889 7.901 3.901
NoEC_vs_EC denotes the RE of no using environmental covariates (NoEC) vs using
environmental covatiates (EC), EC_vs_FE denotes the RE efficiency of comparing using EC
vs using the environmental covatiates with feature engineering (FE) and NoEC_vs_FE is the
RE of using FE regarding of no using environmental covariates (NoEC).
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FE are those in which the environmental covariates are less

correlated with the response variable, (2) that we speculate that

not for all data sets the type of FE we implemented are efficient and

(3) FE capture complex relationships between the inputs and the

response variable. These mean that the nature of each data set

affects substantially the performance of any FE strategy. For these

reasons some challenges for its implementation are: a) Domain

Knowledge Requirement: Effective FE often requires a deep

understanding of the domain. With domain expertise, it can be

easier to identify relevant features or transformations that could

enhance model performance; b) Data Quality and Quantity:

Obtaining high-quality and sufficient data for FE can be

challenging in many practical scenarios. Limited or noisy data

can hinder the creation of meaningful features; c) Time and

Resource Constraints: Implementing FE can be time-consuming,

and in some real-world applications, there might be strict time and

resource constraints. This makes exploring and experimenting with

a wide range of FE techniques challenging; d) Dynamic Data: Real-

world data often changes over time. Features that are effective at one

point in time may become less relevant or even obsolete as the data

distribution evolves. Maintaining and updating features in dynamic

environments can be challenging; e) Overfitting Risks: Aggressive.

FE can lead to overfitting, especially when the number of features is

large compared to the amount of available data. Overfit models

perform well on training data but generalize poorly to new, unseen

data; f) Complexity and Interpretability: As the number and

complexity of features increase, the resulting models can become

difficult to interpret. This lack of interpretability can be challenging,

especially in applications where understanding the model’s

decisions is crucial; g) Automated Feature Selection: While

manual FE can be effective, the process is often subjective and

time-consuming. Automated feature selection methods exist, but

selecting the right techniques and parameters can be challenging; h)

Curse of Dimensionality: As the number of features increases, the

curse of dimensionality becomes more pronounced. This can lead to

increased computational requirements and decreased model

performance, making it challenging to strike the right balance.

The results of this study demonstrate that the feature engineering

strategy for incorporating environmental covariates effectively

enhances genomic prediction accuracy. However, further research

is warranted to refine the methodology for integrating environmental

covariates into genomic prediction models, particularly in the context

of modeling genotype-environment interactions (GE). For instance,

employing the factor analytic (FA) multiplicative operator to describe

cultivar effects in different environments has shown promise as a

robust and efficient machine learning approach for analyzing multi-

environment breeding trials (Piepho, 1998; Smith et al., 2005). Factor

analysis offers solutions for modeling GE with heterogeneous

variances and covariances, either alongside the numerical

relationship matrix (based on pedigree information) (Crossa et al.,

2006) or utilizing the genomic similarity matrix to assess GE

(Burgueño et al., 2012). Further research is needed to

comprehensively explore the application of the FA approach for

feature engineering of environmental covariates within the

framework of genomic prediction.
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Conclusions

This study delved into the impact of feature engineering on

environmental covariates to enhance the predictive capabilities of

genomic models. Our findings demonstrate a consistent

improvement in prediction performance, as measured by MSE,

across most datasets when employing feature engineering

techniques compared to models without such enhancements. While

some datasets showed no significant gains, others exhibited notably

substantial improvements. These results underscore the potential of

feature engineering to bolster prediction accuracy in genomic studies.

However, it’s imperative to acknowledge the inherent complexity and

challenges associated with practical implementation, as various

factors can influence its efficacy. Therefore, we advocate for further

exploration and adoption of feature engineering methodologies

within the scientific community to accumulate more empirical

evidence and harness its full potential in genomic prediction.
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Appendix A

Bayesian ridge regression

Bayesian Ridge Regression (BRR) is a probabilistic approach

to linear regression that incorporates Bayesian principles. It is

a regularized regression method that extends traditional

linear regression by introducing a prior distribution over the

regression coefficients. This approach provides a way to express

uncertainty in the model parameters and helps prevent overfitting

by introducing regularization.

The model assumptions assumes a traditional linear regression,

with a linear relationship between the independent variables and

the dependent variable. The BRR assumes that the coefficients of the

regression model follow a Gaussian (normal) distribution. This

introduces a regularization term that penalizes large coefficients,

helping to prevent overfitting.

The model formulation assumes that X is an independent

variables with and a dependent variable y, such that the BRR can

be written as

y = Xb + ϵ

where y is the dependent variable. X is the matrix of independent

variables, b is the vector of regression coefficients and ϵ is the residual
(error) term. From a Bayesian perspective, the prior distribution for b
is assumed to be Gaussian (normal) b ∼ N(0,a−1I) with a being a

hyperparameter controlling the strength of the regularization and I is

the identity matrix. The goal is to estimate the posterior distribution of

b given the data. The posterior distribution is proportional to the

product of the likelihood and the prior P(b ∣X, y) ∝ P(y ∣X, b) · P(b)
. Once the posterior distribution is obtained, Bayesian inference can be

performed with. point estimates (mean or mode) of the posterior

distribution can be used as the regression coefficients. additionally,

credible intervals can be computed to quantify uncertainty.
Appendix B

Japonica dataset

Predictor: E+G
Table B1 shows an adequate performance for the results under

NoEC for the GC trait across all environments. The MSE values for

2009, 2010, 2011, 2012, and 2013 were 0.0035, 0.0110, 0.0019,

0.0281, and 0.0017, respectively. Comparing the NoEC results to the

EC and FE techniques using Relative Efficiency (RE), all RE values

were below 1. On average, NoEC presented 50.050% better

performance compared to EC and 42.230% better performance

compared to FE. However, when comparing EC and FE techniques

based on RE, FE outperformed EC in 2010, 2011, 2012, and 2013,

with RE values of 1.287, 2.686, 1.139, and 1.586, respectively. In

2009, EC had a lower RE value of 0.522. On average, the use of FE

outperformed EC by 44.410%. Please refer to Table B1 for more

detailed information.
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Concerning the GY trait, Table B1 shows that the use of EC led

to a superior performance in most environments based on MSE

(796,963 [2009], 2,488,872 [2010] and 1,157,280 [2012]). However,

the exceptions occurred in 2011 and 2013, when FE achieved the

best MSE values of 2,615,758 and 377,719, respectively. By contrast,

when comparing NoEC versus EC and NoEC versus FE using RE,

most RE values were greater than 1. On average, the EC technique

displayed an improvement of 105.610% (NoEC_vs_EC) regarding

the NoEC method, and an improvement of 77.570% (NoEC_vs_FE)

was observed with the use of FE compared to the conventional

NoEC technique. Nonetheless, when assessing the performance of

EC and FE techniques based on RE, FE only outperformed EC in

2011 (RE = 1.091) and 2013 (RE = 1.087). EC, on the other hand,

outperformed FE in 2009 (RE = 0.777), 2010 (RE = 0.817), and 2012

(RE = 0.806), resulting in an average RE of 0.916. This indicates an

overall performance loss of 8.450% when using FE compared to EC.

Table B1 provides further details.

In terms MSE for the PH trait, Table B1 shows that the use of FE

achieved the best performance in most environments (15.872 [2009],

10.959 [2010], and 164.039 [2012]). However, there were exceptions

in 2011 and 2013, where the best MSE values were 28.573 (EC) and

18.363 (NoEC), respectively. On the other hand, when comparing

NoEC versus EC and NoEC versus FE techniques using RE, most RE

values were greater than 1. On average, the use of EC and FE

displayed improvements of 61.570% and 70.210%, respectively,

compared to the use of NoEC. Furthermore, when comparing the

performance of EC and FE techniques based on RE, FE outperformed

EC in all environments, resulting in an average RE of 1.0389. This

indicates that using FE surpassed EC by 3.88% (Table B1).

In terms of MSE for the PHR trait, Table B1 indicates that the

use of FE yielded the best performance in most environments (0.001

[2009], 0.001 [2010], and 0.001[2013]). However, exceptions were

found in 2011 and 2012, when the best MSE values were 0.001 (EC)

and 0.006 (NoEC), respectively. On the other hand, when

comparing EC versus FE and NoEC versus FE techniques using

Relative Efficiency (RE), most RE values were at least 1. On average,

the use of FE displayed a general improvement of 22.790%,

compared to EC and 7.020% compared to the conventional NoEC

technique. However, evaluating the performance of EC versus

NoEC techniques based on RE showed that NoEC outperformed

EC in most environments, resulting in an average RE of 0.938. This

indicates a general accuracy loss of 6.200% when using EC

compared to the conventional NoEC technique (Table B1).

Predictor: E+G+GE
Table B1 shows that, in most environments, the conventional

NoEC technique yielded the best performance for the GC trait, with

MSE values of 0.001 (2009), 0.013 (2010), and 0.002 (2011). The

exceptions occurred in 2012 and 2013, with the best MSE values of

0.025 (EC) and 0.0023 (FE). The average RE for the comparison of

NoEC versus EC and NoEC versus FE techniques across

environments was 0.919 and 0.9023, respectively, indicating

general losses of 8.080% and 9.740% for EC and FE compared to

the conventional NoEC.
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TABLE B1 The prediction performance and the relative efficiency (RE) for Japonica dataset in terms of mean squared error (MSE) for each
Environment and for each trait, for the predictors E+G and E+G+GE under three different techniques to compute the Kernel for the effect of the
Environment: without Environmental Covariates (NoEC), using Environmental covariates (EC) and using Environmental Covariates with Feature
Engineering (FE).

Predictor Trait Env NoEC EC FE NoEC_vs_EC EC_vs_FE NoEC_vs_FE

E+G GC 2009 0.004 0.005 0.009 0.729 0.522 0.380

E+G GC 2010 0.011 0.017 0.013 0.663 1.287 0.853

E+G GC 2011 0.002 0.009 0.004 0.202 2.686 0.543

E+G GC 2012 0.028 0.039 0.034 0.719 1.140 0.819

E+G GC 2013 0.002 0.009 0.006 0.185 1.586 0.293

E+G GC Across – – – 0.500 1.444 0.578

E+G GY 2009 3049246.325 796963.009 1025847.337 3.826 0.777 2.972

E+G GY 2010 5683515.755 2488872.780 3046722.045 2.284 0.817 1.866

E+G GY 2011 4024422.454 2853854.731 2615758.363 1.410 1.091 1.539

E+G GY 2012 2050745.031 1157280.313 1436429.272 1.772 0.806 1.428

E+G GY 2013 405886.860 410565.496 377719.356 0.989 1.087 1.075

E+G GY Across – – – 2.056 0.916 1.776

E+G PH 2009 58.674 16.561 15.872 3.543 1.043 3.697

E+G PH 2010 27.005 12.127 10.959 2.227 1.107 2.464

E+G PH 2011 13.534 28.641 28.573 0.473 1.002 0.474

E+G PH 2012 175.254 168.840 164.039 1.038 1.029 1.068

E+G PH 2013 18.363 23.009 22.729 0.798 1.012 0.808

E+G PH Across – – – 1.616 1.039 1.702

E+G PHR 2009 0.001 0.001 0.001 0.750 1.333 1.000

E+G PHR 2010 0.001 0.002 0.001 0.750 1.600 1.200

E+G PHR 2011 0.002 0.001 0.002 1.643 0.778 1.278

E+G PHR 2012 0.006 0.007 0.006 0.797 1.095 0.873

E+G PHR 2013 0.001 0.001 0.001 0.750 1.333 1.000

E+G PHR Across – – – 0.938 1.228 1.070

E+G+GE GC 2009 0.001 0.001 0.003 0.769 0.433 0.333

E+G+GE GC 2010 0.013 0.034 0.032 0.394 1.053 0.414

E+G+GE GC 2011 0.002 0.006 0.003 0.281 2.462 0.692

E+G+GE GC 2012 0.025 0.025 0.029 1.004 0.839 0.843

E+G+GE GC 2013 0.006 0.003 0.003 2.148 1.039 2.231

E+G+GE GC Across – – – 0.919 1.165 0.903

E+G+GE GY 2009 3242702.030 1152261.036 1460144.165 2.814 0.789 2.221

E+G+GE GY 2010 4339466.437 3653811.519 4302236.223 1.188 0.849 1.009

E+G+GE GY 2011 1834248.259 3337540.514 3251492.136 0.550 1.027 0.564

E+G+GE GY 2012 1894112.619 989127.176 1358843.398 1.915 0.728 1.394

E+G+GE GY 2013 1924915.862 416054.225 370980.321 4.627 1.122 5.189

E+G+GE GY Across – – – 2.219 0.903 2.075

E+G+GE PH 2009 56.517 20.261 17.631 2.789 1.149 3.206

(Continued)
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Regarding the GY trait, MSE values from Table B1 reveal that

the use of EC achieved the best performance in most environments

(1152261.030 [2009], 3653811.510 [2010], and 989127.170 [2012]).

However, exceptions were observed in 2011 and 2013, where the

best MSE values were 1834248.25 (NoEC) and 30980.32 (FE),

respectively. On the other hand, when comparing NoEC versus

EC and NoEC versus FE techniques using RE, most RE values were

greater than 1. The average RE for NoEC versus EC and NoEC

versus FE was 2.219 and 2.075, respectively, indicating general

improvements of 121.860% and 107.520% compared to the use of

NoEC. However, an evaluation of the performance of EC and FE

techniques based on RE showed that FE outperformed EC only in

2011 (1.0267) and 2013 (1.122), while EC outperformed FE in 2009

(0.789), 2010 (0.849), and 2012 (0.7278). Consequently, the average

RE for EC versus FE was 0.9029, implying a general loss of 9.710%

when using FE compared to EC (Table B1).

Concerning the PH trait, the analysis of MSE values from Table B1

reveals that the use of FE yielded the best performance in most

environments (17.631 [2009] and 23.544 [2012]). However,

exceptions were observed in 2010, 2011, and 2013, where the best

MSE values were 12.954 (EC), 44.689 (NoEC), and 164.891 (NoEC),

respectively. On the other hand, comparing NoEC versus EC and

NoEC versus FE techniques using RE showed that most RE values

were greater than 1. The average RE for NoEC versus EC and NoEC

versus FE was 1.618 and 1.700, respectively, indicating general

improvements of 61.810% and 70.000% compared to the

conventional NoEC technique. Furthermore, when evaluating the

performance of EC and FE techniques based on RE, FE consistently

outperformed EC inmost environments. The average RE for EC versus

FE was 1.047, indicating a 4.710% advantage in favor of FE (Table B1).

Moreover, in the case of the PHR trait, the analysis of MSE values

fromTable B1 shows that the use of FE yielded the best performance in

most environments (0.001 [2009], 0.002 [2010], and 0.001 [2013]).

However, there were exceptions in 2011 and 2012, where the best MSE

values were 0.001 (EC) and 0.005 (NoEC), respectively. Furthermore,

when comparing the RE values between NoEC versus EC and NoEC

versus FE techniques, the average RE values of 0.966 and 1.168 indicate
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a slight loss of 3.440% and an improvement of 16.800%, respectively,

for the use of EC and FE compared to the conventional NoEC

technique. Nevertheless, when evaluating the performance of FE

versus EC techniques based on RE, FE consistently outperformed

EC in most environments. The average RE for FE versus EC was 1.282,

indicating a significant improvement of 28.240% in accuracy for using

FE compared to (Table B1).

Predictor: E+G+BRR
According to Table B2, the GC trait displayed superior

performances with the conventional NoEC technique in most

environments, yielding MSE values of 0.004 (2009), 0.002 (2011),

and 0.0012 (2013). However, exceptions were found in 2010 and

2012, where FE achieved the best MSE values of 0.0680 and 0.009,

respectively. Comparing the RE values between NoEC versus EC

and NoEC versus FE techniques showed that most RE values were

below 1. Nonetheless, the average RE of 1.104 (NoEC_vs_EC) and

1.189 (NoEC_vs_FE) indicated that EC and FE outperformed the

conventional NoEC technique by 10.360% and 18.930%,

respectively. Furthermore, when evaluating the performance of

EC and FE techniques based on RE, FE presented the best

performance in 2009 (1.151), 2010 (1.353), 2011 (2.044), and

2012 (1.0623), while EC outperformed FE in 2013 (0.529).

Overall, the average RE 1.228 indicated that FE outperformed EC

by 22.800% (Table B2).

Regarding the GY trait, Table B2 indicates that the conventional

NoEC technique displayed superior performances in most

environments, with MSE values of 5,683,515.750 (2010),

2,749,626.080 (2012), and 405,886.860 (2013). However, exceptions

were observed in 2009 and 2011, where FE achieved the best MSE

values of 3,049,246.320 and 4,024,422.450, respectively. When

comparing the RE values between NoEC_vs_EC and NoEC_vs_FE

techniques, most values were below 1. Nevertheless, the average RE of

1.124 (NoEC_vs_EC) and 0.896 (NoEC_vs_FE) indicated an overall

improvement of 12.430% for EC and a general loss of 10.450% for FE

compared to the conventional NoEC technique. However, when

comparing the performance of EC and FE techniques based on RE,
TABLE B1 Continued

Predictor Trait Env NoEC EC FE NoEC_vs_EC EC_vs_FE NoEC_vs_FE

E+G+GE PH 2010 17.957 12.954 16.142 1.386 0.803 1.112

E+G+GE PH 2011 44.689 77.310 64.564 0.578 1.197 0.692

E+G+GE PH 2012 164.891 175.005 168.680 0.942 1.038 0.978

E+G+GE PH 2013 59.136 24.696 23.544 2.395 1.049 2.512

E+G+GE PH Across – – – 1.618 1.047 1.700

E+G+GE PHR 2009 0.001 0.001 0.001 0.750 1.333 1.000

E+G+GE PHR 2010 0.002 0.002 0.002 0.818 1.467 1.200

E+G+GE PHR 2011 0.002 0.001 0.001 1.727 0.917 1.583

E+G+GE PHR 2012 0.005 0.007 0.006 0.783 1.095 0.857

E+G+GE PHR 2013 0.001 0.001 0.001 0.750 1.600 1.200

E+G+GE PHR Across – – – 0.966 1.282 1.168
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TABLE B2 The prediction performance and the relative efficiency (RE) for Japonica dataset in terms of mean squared error (MSE) for each
Environment and for each trait, for the predictors E+G+BRR and E+G+GE+BRR under three different techniques to compute the Kernel for the effect
of the Environment: without Environmental Covariates (NoEC), using Environmental covariates (EC) and using Environmental Covariates with Feature
Engineering (FE).

Predictor Trait Env NoEC EC FE NoEC_vs_EC EC_vs_FE NoEC_vs_FE

E+G+BRR GC 2009 0.004 0.008 0.007 0.417 1.151 0.480

E+G+BRR GC 2010 0.011 0.009 0.007 1.196 1.353 1.618

E+G+BRR GC 2011 0.002 0.009 0.005 0.207 2.044 0.422

E+G+BRR GC 2012 0.028 0.010 0.010 2.755 1.063 2.927

E+G+BRR GC 2013 0.002 0.002 0.003 0.944 0.529 0.500

E+G+BRR GC Across – – – 1.104 1.228 1.189

E+G+BRR GY 2009 3049246.325 1221342.669 1607864.482 2.497 0.760 1.897

E+G+BRR GY 2010 5683515.755 7662804.296 7449307.222 0.742 1.029 0.763

E+G+BRR GY 2011 4024422.454 3689043.326 3841776.983 1.091 0.960 1.048

E+G+BRR GY 2012 2050745.031 2749626.084 5697594.878 0.746 0.483 0.360

E+G+BRR GY 2013 405886.860 743092.012 988735.462 0.546 0.752 0.411

E+G+BRR GY Across – – – 1.124 0.797 0.896

E+G+BRR PH 2009 58.674 15.466 15.281 3.794 1.012 3.840

E+G+BRR PH 2010 27.005 22.962 27.436 1.176 0.837 0.984

E+G+BRR PH 2011 13.534 29.033 25.921 0.466 1.120 0.522

E+G+BRR PH 2012 175.254 165.479 159.312 1.059 1.039 1.100

E+G+BRR PH 2013 18.363 10.981 14.450 1.672 0.760 1.271

E+G+BRR PH Across – – – 1.634 0.954 1.543

E+G+BRR PHR 2009 0.001 0.001 0.001 1.000 1.000 1.000

E+G+BRR PHR 2010 0.001 0.001 0.001 1.714 1.167 2.000

E+G+BRR PHR 2011 0.002 0.001 0.001 2.875 0.889 2.556

E+G+BRR PHR 2012 0.006 0.006 0.011 0.887 0.554 0.491

E+G+BRR PHR 2013 0.001 0.001 0.001 1.200 1.000 1.200

E+G+BRR PHR Across – – – 1.535 0.922 1.449

E+G+GE+BRR GC 2009 0.001 0.007 0.006 0.154 1.083 0.167

E+G+GE+BRR GC 2010 0.013 0.017 0.008 0.796 2.012 1.602

E+G+GE+BRR GC 2011 0.002 0.007 0.003 0.273 2.000 0.546

E+G+GE+BRR GC 2012 0.025 0.024 0.019 1.029 1.278 1.316

E+G+GE+BRR GC 2013 0.006 0.004 0.002 1.526 2.111 3.222

E+G+GE+BRR GC Across – – – 0.756 1.697 1.371

E+G+GE+BRR GY 2009 3242702.030 1333530.864 1860560.276 2.432 0.717 1.743

E+G+GE+BRR GY 2010 4339466.437 7649947.049 7468881.672 0.567 1.024 0.581

E+G+GE+BRR GY 2011 1834248.259 4157537.398 4872981.083 0.441 0.853 0.376

E+G+GE+BRR GY 2012 1894112.619 1690390.524 4082192.704 1.121 0.414 0.464

E+G+GE+BRR GY 2013 1924915.862 584945.854 681359.148 3.291 0.859 2.825

E+G+GE+BRR GY Across – – – 1.570 0.773 1.198

E+G+GE+BRR PH 2009 56.517 18.089 17.332 3.124 1.044 3.261

(Continued)
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only FE presented a superior performance in 2010 (1.029), resulting in

an average RE of 0.797, which indicates a general loss of 20.350% for

FE compared to EC (Table B2).

For the PH trait, Table B2 shows that FE yielded the best

performance in environments 2009 (15.281) and 2012 (159.312),

while EC led to superior performances in environments 2010

(22.962) and 2013 (10.981). Most notably, when comparing the RE

values for NoEC_vs_EC and NoEC_vs_FE, values exceeding 1 were

observed. The average RE values of 1.634 (NoEC_vs_EC) and 1.5434

(NoEC_vs_FE) indicated substantial improvements of 63.350% and

54.350% respectively for using EC and FE, compared to the

conventional NoEC technique. However, in evaluating the

performance of EC and FE based on RE, FE exhibited a superior

performance in most environments, but still resulting in an average

RE of 0.954. This suggests that EC marginally outperformed FE by

4.650%. For further details, see Table B2.

Additionally, for the PHR trait, using FE displayed a superior

performance in most environments, as indicated in Table B2. The

best MSE values were observed in 2009 (0.001), 2010 (0.001), and

2013 (0.001). However, exceptions were noted in 2011 and 2012,

where the use of EC and NoEC resulted in the best MSE values of

8e-04 and 0.0055, respectively. Furthermore, most RE values

comparing NoEC_vs_EC and NoEC_vs_FE techniques were

greater than 1. The average RE values of 1.535 (NoEC_vs_EC)

and 1.449 (NoEC_vs_FE) indicate significant improvements of

53.530% and 44.930% respectively, compared to the conventional

NoEC technique. However, when comparing the performance of

the EC versus the FE techniques, the RE values were lower than 1 in

most environments, resulting in an average RE of 0.9212. This

suggests a general accuracy loss of 7.820% in for using FE compared

to using the EC technique (Table B2).
Predictor: E+G+GE+BRR
According to Table B2, the GC trait displayed superior

performances with the conventional NoEC technique in most

environments, yielding MSE values of 0.004 (2009), 0.002 (2011),

and 0.0012 (2013). However, exceptions were found in 2010 and
Frontiers in Plant Science frontiersin.org17
2012, where FE achieved the best MSE values of 0.0680 and 0.009,

respectively. Comparing the RE values between NoEC versus EC

and NoEC versus FE techniques showed that most RE values were

below 1. Nonetheless, the average RE of 1.104 (NoEC_vs_EC) and

1.189 (NoEC_vs_FE) indicated that EC and FE outperformed the

conventional NoEC technique by 10.360% and 18.930%,

respectively. Furthermore, when evaluating the performance of

EC and FE techniques based on RE, FE presented the best

performance in 2009 (1.151), 2010 (1.353), 2011 (2.044), and

2012 (1.0623), while EC outperformed FE in 2013 (0.529).

Overall, the average RE 1.228 indicated that FE outperformed EC

by 22.800% (Table B2).

Regarding the GY trait, the analysis in Table B2 reveals that the

use of EC yielded superior results in most environments (2009

[1333530.864], 2012 [1690390.524], and 2013 [584945.854]).

However, exceptions were observed in 2010 and 2011, where the

NoEC approach resulted in the best MSE values of 4339466.437 and

1834248.259, respectively. Moreover, most RE values for the

comparison of NoEC_vs_EC and NoEC_vs_FE techniques were

greater than 1. The average RE values of 1.570 (NoEC_vs_EC) and

1.198 (NoEC_vs_FE) indicate general improvements of 57.030%

and 19.790% for the use of EC and FE, respectively, compared to the

use of NoEC. However, when comparing the performance of EC

and FE techniques based on RE, the FE technique did not

outperform EC only in 2010, resulting in an average RE of 0.773.

This suggests a general loss of 22.670% accuracy for using FE

compared to EC.

Regarding the PH trait, Table B2 shows that the use of FE

achieved the best performance in environments 2009 (17.332) and

2011 (22.026), while the use of EC achieved the best performance in

environments 2010 (14.9561) and 2013 (11.071). Similarly, most of

the RE values for the comparison of NoEC_vs_EC and

NoEC_vs_FE techniques were greater than 1. The average RE

values of 2.5259 (NoEC_vs_EC) and 2.362 (NoEC_vs_FE)

indicate general improvements of 152.590% and 136.210% for

using EC and FE, respectively, compared to the conventional

NoEC technique. However, when comparing the performance of
TABLE B2 Continued

Predictor Trait Env NoEC EC FE NoEC_vs_EC EC_vs_FE NoEC_vs_FE

E+G+GE+BRR PH 2010 17.957 14.956 26.970 1.201 0.555 0.666

E+G+GE+BRR PH 2011 44.689 22.351 22.026 1.999 1.015 2.029

E+G+GE+BRR PH 2012 164.891 171.095 167.745 0.964 1.020 0.983

E+G+GE+BRR PH 2013 59.136 11.071 12.138 5.342 0.912 4.872

E+G+GE+BRR PH Across – – – 2.526 0.909 2.362

E+G+GE+BRR PHR 2009 0.001 0.001 0.001 1.000 1.000 1.000

E+G+GE+BRR PHR 2010 0.002 0.001 0.001 2.571 1.000 2.571

E+G+GE+BRR PHR 2011 0.002 0.001 0.001 2.375 1.000 2.375

E+G+GE+BRR PHR 2012 0.005 0.006 0.011 0.871 0.554 0.482

E+G+GE+BRR PHR 2013 0.001 0.001 0.001 1.200 0.833 1.000

E+G+GE+BRR PHR Across – – – 1.604 0.877 1.486
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EC and FE techniques based on RE, EC outperformed FE in most

environments, resulting in an average RE of 0.909. This indicates

that using EC achieved a 9.100% improvement compared to using

FE. For more detailed information, refer to Table 2.

Table B2 displays that using EC yielded the best performance for

the PHR trait in most environments, as indicated by the MSE.

Specifically, the MSE values were as follows: 2009 (0.001), 2010

(0.001), 2011 (0.001), and 2013 (0.001). However, in 2012, the best

MSE values were 0.005, achieved using both EC andNoEC. Comparing

NoEC_vs_EC and NoEC_vs_FE techniques, most RE values were at

least 1, with average improvements of 60.350% and 48.570% when

using EC and FE, respectively, compared to NoEC. Conversely, when

comparing EC versus FE techniques, most environments resulted in an

average RE of 0.877, indicating a 12.260% decrease in accuracy when

using FE compared to EC (Table B2).
USP dataset

Predictor: E+G
Upon examining Table B3, it becomes apparent that the

conventional NoEC technique achieved the best performance in

terms of MSE in environments Env2 (4.073) and Env3 (5.246).

However, exceptions were found in Env1 and Env4, where the

optimal MSE values were 3.141 (FE) and 7.814 (EC), respectively.

For further detail, refer to Table B3.

Table B3 present our comparison results between the NoEC and

EC techniques, assessed through the RE metric. The EC technique

displayed its best performance in environments Env1 (1.059) and

Env4 (1.046), showcasing improvements of 5.920% and 4.610%

over the NoEC technique, respectively. However, NoEC

outperformed EC in environments Env2 (0.869) and Env3

(0.831), resulting in an average RE of 0.951. This average RE

indicates a general loss of 4.890% in accuracy when using EC

compared to NoEC (see Table B3).

In terms MSE for the PH trait, Table B1 shows that the use of FE

achieved the best performance in most environments (15.872
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[2009], 10.959 [2010], and 164.039 [2012]). However, there were

exceptions in 2011 and 2013, where the best MSE values were

28.573 (EC) and 18.363 (NoEC), respectively. On the other hand,

when comparing NoEC versus EC and NoEC versus FE techniques

using RE, most RE values were greater than 1. On average, the use of

EC and FE displayed improvements of 61.570% and 70.210%,

respectively, compared to the use of NoEC. Furthermore, when

comparing the performance of EC and FE techniques based on RE,

FE outperformed EC in all environments, resulting in an average RE

of 1.0389. This indicates that using FE surpassed EC by

3.88% (Table B1).

The EC and FE techniques were compared, using the RE metric

to assess their performance. The findings indicate that the FE

technique achieved its best performance in environments Env1

(1.045) and Env2 (1.048), displaying improvements of 4.480% and

4.790% over EC. However, EC exhibited a slightly better

performance in environments Env3 (0.979) and Env4 (0.946),

resulting in an average RE of 1.004. This average RE suggests a

modest improvement of 0.430% when using FE compared to EC

(see Table B3).

Predictor: E+G+GE
Table B3 reveals the performance of the FE technique in terms

of MSE across different environments. The FE technique achieved

its best performance in environments Env1 (2.789) and Env2

(4.636), although exceptions were found in Env3 and Env4, where

the optimal MSE values were 5.833 (NoEC) and 7.792 (EC),

respectively (see Table 3).

Table B3 present our comparison results between the NoEC and

EC techniques, based on the RE metric. The EC technique displayed

its best performance in environments Env1 (1.107) and Env4

(1.120), showing improvements of 10.72% and 12.040% over the

NoEC technique. However, the NoEC technique outperformed EC

in environments Env2 (0.961) and Env3 (0.925), resulting in an

average RE of 1.028. This average RE indicates a general

improvement of 2.840% of the EC method regarding the NoEC

technique (see Table B3).
TABLE B3 The prediction performance and the relative efficiency (RE) for USP dataset in terms of mean squared error (MSE) for each Environment and
for each trait, for the predictors E+G and E+G+GE under three different techniques to compute the Kernel for the effect of the Environment: without
Environmental Covariates (NoEC), using Environmental covariates (EC) and using Environmental Covariates with Feature Engineering (FE).

Predictor Trait Env NoEC EC FE NoEC_vs_EC EC_vs_FE NoEC_vs_FE

E+G GY Env1 3.476 3.281 3.141 1.059 1.045 1.107

E+G GY Env2 4.073 4.689 4.475 0.869 1.048 0.910

E+G GY Env3 5.246 6.317 6.455 0.831 0.979 0.813

E+G GY Env4 8.174 7.814 8.262 1.046 0.946 0.989

E+G GY Across – – – 0.951 1.004 0.955

E+G+GE GY Env1 3.254 2.939 2.789 1.107 1.054 1.167

E+G+GE GY Env2 4.708 4.898 4.636 0.961 1.057 1.016

E+G+GE GY Env3 5.833 6.307 6.396 0.925 0.986 0.912

E+G+GE GY Env4 8.730 7.792 8.206 1.120 0.950 1.064

E+G+GE GY Across – – – 1.028 1.012 1.040
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The EC and FE techniques were compared, using the RE metric

to assess their performance. The findings indicate that the FE

technique achieved its best performance in environments Env1

(1.054) and Env2 (1.057), displaying improvements of 5.380% and

5.650% over EC. However, using EC exhibited a better performance

in environments Env3 (0.986) and Env4 (0.949), resulting in an

average RE of 1.012. This average RE indicates a 1.150%

improvement of the FE technique over EC (see Table B3).

Predictor: E+G+BRR
Table B4 presents the results of our analysis regarding the MSE

about the FE technique. The FE technique performed best in Env1

(2.859) and Env3 (4.413) environments. However, exceptions were

observed in Env2 and Env4, where the optimal MSE values were

4.073 (NoEC) and 5.638 (EC), respectively. For further details,

see Table B4.

The results of our comparison between the NoEC and EC

techniques, based on the RE metric, are presented in Table B4. The

EC technique exhibited its best performance in environments Env1

(1.171) and Env4 (1.450), suggesting improvements of 17.1000%

and 45.000%, respectively, compared to the NoEC technique.

However, the NoEC technique outperformed EC in environments

Env2 (0.823) and Env3 (0.836), resulting in an average RE of 1.070.

This average RE indicates a general improvement of 7.000% of the

EC regarding the NoEC technique (see Table B4).

We compared the EC and FE techniques, evaluating their

performance with the RE metric. The findings indicate that the

FE technique achieved its best performance in environments Env1

(1.038) and Env3 (1.423), displaying respective improvements of

3.840% and 42.290% over EC. However, EC performed better in

environments Env2 (0.934) and Env4 (0.990), resulting in an

average RE of 1.096. This average RE indicates a 9.600% better

performance of the FE technique over EC (see Table B4).
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Predictor: E+G+GE+BRR
Table B4 presents the performance results of the FE technique

in terms of MSE. The best performance was observed in

environments Env1 (2.644), Env3 (4.265), and Env4 (5.856). The

only exception was Env2, where the optimal MSE value was 4.708,

achieved using NoEC. For further information, see Table B4.

Based on the RE metric, the results of our comparison between

the NoEC and EC techniques are presented in Table B4. EC

performed best in environments Env1 (1.175) and Env4 (1.465),

with improvements of 17.510% and 46.530%, respectively,

compared to the NoEC technique. However, the NoEC technique

outperformed EC in environments Env2 (0.958) and Env3 (0.915),

resulting in an average RE of 1.128. This average RE indicates a

general improvement of 12.830% of EC regarding NoEC. For more

specific information, see Table B4.

We compared the EC and FE techniques based on the RE

metric. The analysis revealed that the FE technique displayed its

best performance in Env1 (1.047), Env3 (1.494), and Env4 (1.017).

These results indicate improvements of 4.740%, 49.430%, and

1.740%, respectively, when compared to using EC. However, EC

displayed a better performance in Env2 (0.941), but in general, the

FE technique outperformed EC by 12.500%, since an average RE of

1.125 was observed (see Table B4).
G2F_2016 dataset

Predictor: E+G
Table B5 illustrates that FE yielded the best performance for the

Grain_Moisture_BLUE trait in most environments. MSE values were

4.645 (DEH1_2016), 2.154 (GAH1_2016), 2.703 (IAH1_2016), 0.467

(IAH4_2016), 0.668 (MOH1_2016), 3.598 (NCH1_2016), 2.092

(NYH2_2016), and 1.601 (WIH2_2016). The average RE values
TABLE B4 The prediction performance and the relative efficiency (RE) for USP dataset in terms of mean squared error (MSE) for each Environment and
for each trait, for the predictors E+G+BRR and E+G+GE+BRR under three different techniques to compute the Kernel for the effect of the
Environment: without Environmental Covariates (NoEC), using Environmental covariates (EC) and using Environmental Covariates with Feature
Engineering (FE).

Predictor Trait Env NoEC EC FE NoEC_vs_EC EC_vs_FE NoEC_vs_FE

E+G+BRR GY Env1 3.476 2.968 2.859 1.171 1.038 1.216

E+G+BRR GY Env2 4.073 4.951 5.301 0.823 0.934 0.768

E+G+BRR GY Env3 5.246 6.279 4.413 0.836 1.423 1.189

E+G+BRR GY Env4 8.174 5.638 5.696 1.450 0.990 1.435

E+G+BRR GY Across – – – 1.070 1.096 1.152

E+G+GE+BRR GY Env1 3.254 2.769 2.644 1.175 1.047 1.231

E+G+GE+BRR GY Env2 4.708 4.917 5.224 0.958 0.941 0.901

E+G+GE+BRR GY Env3 5.833 6.373 4.265 0.915 1.494 1.368

E+G+GE+BRR GY Env4 8.730 5.958 5.856 1.465 1.017 1.491

E+G+GE+BRR GY Across – – – 1.128 1.125 1.248
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showed that FE outperformed EC and NoEC by 87.970% and

119.370%, respectively. Additionally, EC displayed an average RE

improvement of 63.960% over NoEC. For further detail, see Table B5.

For the Grain_Moisture_weight trait, EC presented the best

performance based on MSE values in several environments listed in

Table 5 (ARH1_2016 [24.235], DEH1_2016 [0.207], IAH1_2016

[2.568], ILH1_2016 [2.172], INH1_2016 [0.210], MOH1_2016

[7.450], OHH1_2016 [0.454] and WIH2_2016 [0.194]). The

average RE values revealed that EC and FE outperformed the

conventional NoEC technique by 1682.340% and 245.980%,

respectively. Furthermore, FE displayed a 58.100% improvement

over EC (See Table B5).

Regarding the Yield_Mg_ha_BLUE trait, NoEC displayed a

superior performance in most environments based on MSE values

listed in Table B5 (GAH1_2016 [3.579], IAH4_2016 [2.576],

MIH1_2016 [4.045], MNH1_2016 [1.268], NYH2_2016 [16.252],

OHH1_2016 [1.830] and WIH1_2016 (3.665]). The average RE

values indicated that FE resulted in general improvements of

21.030% and 1.400% over EC and NoEC, respectively. However, a

comparison between NoEC and EC showed a slight decrease of

0.190% in average RE for EC (see Table B5).

For the Yield_Mg_ha_weight trait, NoEC showed the best

performance based on MSE values in most environments

(DEH1_2016 [0.078], IAH4_2016 [0.091], ILH1_2016 [0.351],

MIH1_2016 [0.1156], MNH1_2016 [0.391], NYH2_2016 [0.087],

WIH1_2016 [0.063] and WIH2_2016 [0.019]). The average RE

values indicated general improvements of 52.860% and 22.630% for

EC and FE, respectively, compared to NoEC. Moreover, on average,

FE outperformed EC by 89.600% (see Table B5).
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Predictor: E+G+GE
Table B5 shows that FE yielded the best performance for the

Grain_Moisture_BLUE trait in the majority of environments, with

MSE values ranging from 0.519 to 5.813 (IAH4_2016, ILH1_2016,

MNH1_2016, NEH1_2016, NYH2_2016, OHH1_2016 and

WIH1_2016). Comparing RE values, using FE outperformed EC

and NoEC techniques by 42.480% and 114.740%, respectively.

Additionally, EC outperformed NoEC with an average RE of

1.552, indicating a superiority of 55.210% for EC. For further

details, see Table B5.

For the Grain_Moisture_weight trait, Table B5 reveals that FE

displayed a better performance in most environments, as indicated

by the MSE values (DEH1_2016 [0.132], IAH3_2016 [0.418],

IAH4_2016 [139.446], MIH1_2016 [1.668], MNH1_2016 [1.316],

NCH1_2016 [6.953], NYH2_2016 [5.565], OHH1_2016 [0.195]

and WIH1_2016 [1.508]). Moreover, the average RE values

showed that FE outperformed EC and NoEC by 831.910% and

825.260%, respectively. Comparing NoEC and EC techniques, there

was a general improvement of 357.000% for EC over NoEC, with an

average RE of 4.570 (see Table B5).

Regarding the Yield_Mg_ha_BLUE trait, Table B5 shows that the

use of NoEC achieved the best performance in most environments, as

indicated by the MSE values (GAH1_2016 [3.379], IAH1_2016

[2.287], IAH2_2016 [7.505], IAH4_2016 [3.565], MIH1_2016

[4.748], NYH2_2016 [17.271], WIH1_2016 [2.210] and

WIH2_2016 [4.667]). However, most RE values comparing

NoEC_vs_EC and NoEC_vs_FENoEC_vs_FEtechniques were

greater than 1. On average, EC displayed a 7.450% improvement

and FE showed an 11.690% improvement compared to the
TABLE B5 The prediction performance and the relative efficiency (RE) for G2F_2016 dataset in terms of mean squared error (MSE) for each
Environment and for each trait, for the predictors E+G and E+G+GE under three different techniques to compute the Kernel for the effect of the
Environment: without Environmental Covariates (NoEC), using Environmental covariates (EC) and using Environmental Covariates with Feature
Engineering (FE).

Predictor Trait Env NoEC EC FE NoEC_vs_EC EC_vs_FE NoEC_vs_FE

E+G Grain_Moisture_BLUE ARH1_2016 1.733 6.108 1.886 0.284 3.238 0.919

E+G Grain_Moisture_BLUE DEH1_2016 7.863 5.829 4.645 1.349 1.255 1.693

E+G Grain_Moisture_BLUE GAH1_2016 6.686 5.107 2.154 1.309 2.371 3.105

E+G Grain_Moisture_BLUE IAH1_2016 9.814 7.419 2.703 1.323 2.745 3.632

E+G Grain_Moisture_BLUE IAH2_2016 3.124 0.866 1.694 3.608 0.511 1.844

E+G Grain_Moisture_BLUE IAH3_2016 1.456 2.981 1.486 0.489 2.006 0.980

E+G Grain_Moisture_BLUE IAH4_2016 2.495 0.506 0.467 4.932 1.084 5.344

E+G Grain_Moisture_BLUE ILH1_2016 4.556 3.436 9.783 1.326 0.351 0.466

E+G Grain_Moisture_BLUE INH1_2016 1.934 9.982 2.887 0.194 3.457 0.670

E+G Grain_Moisture_BLUE MIH1_2016 2.988 3.101 3.366 0.963 0.922 0.888

E+G Grain_Moisture_BLUE MNH1_2016 17.117 4.471 4.483 3.829 0.997 3.818

E+G Grain_Moisture_BLUE MOH1_2016 0.809 3.068 0.668 0.264 4.593 1.211

E+G Grain_Moisture_BLUE NCH1_2016 21.208 10.860 3.598 1.953 3.018 5.895

E+G Grain_Moisture_BLUE NEH1_2016 6.193 4.897 10.060 1.265 0.487 0.616
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TABLE B5 Continued

Predictor Trait Env NoEC EC FE NoEC_vs_EC EC_vs_FE NoEC_vs_FE

E+G Grain_Moisture_BLUE NYH2_2016 7.475 3.625 2.092 2.062 1.732 3.573

E+G Grain_Moisture_BLUE OHH1_2016 4.840 2.834 5.728 1.708 0.495 0.845

E+G Grain_Moisture_BLUE WIH1_2016 5.143 2.599 3.788 1.979 0.686 1.358

E+G Grain_Moisture_BLUE WIH2_2016 4.219 6.224 1.601 0.678 3.887 2.634

E+G Grain_Moisture_BLUE Across – – – 1.640 1.880 2.194

E+G Grain_Moisture_weight ARH1_2016 30.391 24.235 30.934 1.254 0.783 0.982

E+G Grain_Moisture_weight DEH1_2016 14.987 0.207 2.910 72.261 0.071 5.150

E+G Grain_Moisture_weight GAH1_2016 1.272 2.339 7.133 0.544 0.328 0.178

E+G Grain_Moisture_weight IAH1_2016 401.574 481.573 510.263 0.834 0.944 0.787

E+G Grain_Moisture_weight IAH2_2016 6.212 2.568 25.510 2.419 0.101 0.244

E+G Grain_Moisture_weight IAH3_2016 0.199 10.913 31.831 0.018 0.343 0.006

E+G Grain_Moisture_weight IAH4_2016 311.023 244.775 180.018 1.271 1.360 1.728

E+G Grain_Moisture_weight ILH1_2016 5.447 2.172 25.900 2.507 0.084 0.210

E+G Grain_Moisture_weight INH1_2016 1.274 0.210 0.325 6.058 0.647 3.916

E+G Grain_Moisture_weight MIH1_2016 0.715 8.311 0.872 0.086 9.531 0.820

E+G Grain_Moisture_weight MNH1_2016 7.866 43.427 6.379 0.181 6.808 1.233

E+G Grain_Moisture_weight MOH1_2016 27.122 7.450 44.113 3.640 0.169 0.615

E+G Grain_Moisture_weight NCH1_2016 1.174 4.278 10.042 0.274 0.426 0.117

E+G Grain_Moisture_weight NEH1_2016 42.758 63.944 64.869 0.669 0.986 0.659

E+G Grain_Moisture_weight NYH2_2016 1.893 2.551 11.545 0.742 0.221 0.164

E+G Grain_Moisture_weight OHH1_2016 63.776 0.454 27.250 140.383 0.017 2.340

E+G Grain_Moisture_weight WIH1_2016 1.373 7.073 1.371 0.194 5.160 1.001

E+G Grain_Moisture_weight WIH2_2016 16.972 0.194 0.403 87.485 0.482 42.125

E+G Grain_Moisture_weight Across – – – 17.823 1.581 3.460

E+G Yield_Mg_ha_BLUE ARH1_2016 3.713 3.199 14.552 1.161 0.220 0.255

E+G Yield_Mg_ha_BLUE DEH1_2016 5.330 3.354 4.354 1.589 0.770 1.224

E+G Yield_Mg_ha_BLUE GAH1_2016 3.580 10.264 4.606 0.349 2.229 0.777

E+G Yield_Mg_ha_BLUE IAH1_2016 3.187 2.897 1.395 1.100 2.077 2.286

E+G Yield_Mg_ha_BLUE IAH2_2016 7.921 7.684 8.073 1.031 0.952 0.981

E+G Yield_Mg_ha_BLUE IAH3_2016 5.918 4.741 3.772 1.248 1.257 1.569

E+G Yield_Mg_ha_BLUE IAH4_2016 2.576 2.718 3.708 0.948 0.733 0.695

E+G Yield_Mg_ha_BLUE ILH1_2016 8.719 4.698 6.260 1.856 0.750 1.393

E+G Yield_Mg_ha_BLUE INH1_2016 2.415 3.018 2.406 0.800 1.254 1.004

E+G Yield_Mg_ha_BLUE MIH1_2016 4.045 5.627 16.686 0.719 0.337 0.242

E+G Yield_Mg_ha_BLUE MNH1_2016 1.268 1.301 1.270 0.975 1.025 0.999

E+G Yield_Mg_ha_BLUE MOH1_2016 7.968 4.191 10.428 1.901 0.402 0.764

E+G Yield_Mg_ha_BLUE NCH1_2016 4.467 10.571 3.293 0.423 3.211 1.357

E+G Yield_Mg_ha_BLUE NEH1_2016 4.993 4.832 4.188 1.033 1.154 1.192

E+G Yield_Mg_ha_BLUE NYH2_2016 16.252 22.790 16.626 0.713 1.371 0.978
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TABLE B5 Continued

Predictor Trait Env NoEC EC FE NoEC_vs_EC EC_vs_FE NoEC_vs_FE

E+G Yield_Mg_ha_BLUE OHH1_2016 1.830 4.790 2.558 0.382 1.872 0.715

E+G Yield_Mg_ha_BLUE WIH1_2016 3.665 5.021 3.785 0.730 1.326 0.968

E+G Yield_Mg_ha_BLUE WIH2_2016 4.630 4.588 5.420 1.009 0.846 0.854

E+G Yield_Mg_ha_BLUE Across – – – 0.998 1.210 1.014

E+G Yield_Mg_ha_weight ARH1_2016 0.989 1.000 1.542 0.989 0.649 0.641

E+G Yield_Mg_ha_weight DEH1_2016 0.163 0.078 0.230 2.088 0.340 0.710

E+G Yield_Mg_ha_weight GAH1_2016 0.035 0.439 0.288 0.079 1.522 0.120

E+G Yield_Mg_ha_weight IAH1_2016 3.743 3.345 3.151 1.119 1.061 1.188

E+G Yield_Mg_ha_weight IAH2_2016 0.175 0.668 0.077 0.262 8.629 2.261

E+G Yield_Mg_ha_weight IAH3_2016 0.788 1.704 1.583 0.462 1.076 0.498

E+G Yield_Mg_ha_weight IAH4_2016 0.498 0.091 0.105 5.491 0.861 4.729

E+G Yield_Mg_ha_weight ILH1_2016 1.113 0.351 0.754 3.172 0.465 1.476

E+G Yield_Mg_ha_weight INH1_2016 0.055 0.077 0.052 0.709 1.486 1.054

E+G Yield_Mg_ha_weight MIH1_2016 0.121 0.116 0.132 1.042 0.875 0.912

E+G Yield_Mg_ha_weight MNH1_2016 0.393 0.391 0.711 1.005 0.551 0.553

E+G Yield_Mg_ha_weight MOH1_2016 0.232 1.501 0.172 0.155 8.721 1.348

E+G Yield_Mg_ha_weight NCH1_2016 0.083 0.343 0.085 0.241 4.062 0.978

E+G Yield_Mg_ha_weight NEH1_2016 0.036 0.038 0.029 0.963 1.279 1.231

E+G Yield_Mg_ha_weight NYH2_2016 0.402 0.087 0.139 4.601 0.630 2.899

E+G Yield_Mg_ha_weight OHH1_2016 0.533 1.326 0.876 0.402 1.514 0.608

E+G Yield_Mg_ha_weight WIH1_2016 0.117 0.063 0.209 1.877 0.299 0.561

E+G Yield_Mg_ha_weight WIH2_2016 0.055 0.019 0.180 2.860 0.107 0.306

E+G Yield_Mg_ha_weight Across – – – 1.529 1.896 1.226

E+G+GE Grain_Moisture_BLUE ARH1_2016 2.003 6.545 4.641 0.306 1.410 0.432

E+G+GE Grain_Moisture_BLUE DEH1_2016 5.256 5.689 10.400 0.924 0.547 0.505

E+G+GE Grain_Moisture_BLUE GAH1_2016 5.841 3.993 2.715 1.463 1.471 2.152

E+G+GE Grain_Moisture_BLUE IAH1_2016 2.857 5.585 3.541 0.512 1.577 0.807

E+G+GE Grain_Moisture_BLUE IAH2_2016 0.713 1.504 1.785 0.475 0.843 0.400

E+G+GE Grain_Moisture_BLUE IAH3_2016 2.933 4.648 2.860 0.631 1.625 1.025

E+G+GE Grain_Moisture_BLUE IAH4_2016 1.622 0.519 0.695 3.123 0.747 2.333

E+G+GE Grain_Moisture_BLUE ILH1_2016 8.071 4.093 9.622 1.972 0.425 0.839

E+G+GE Grain_Moisture_BLUE INH1_2016 5.315 10.531 4.891 0.505 2.153 1.087

E+G+GE Grain_Moisture_BLUE MIH1_2016 2.448 3.313 5.501 0.739 0.602 0.445

E+G+GE Grain_Moisture_BLUE MNH1_2016 13.571 5.813 6.414 2.335 0.906 2.116

E+G+GE Grain_Moisture_BLUE MOH1_2016 3.450 5.296 1.357 0.651 3.904 2.543

E+G+GE Grain_Moisture_BLUE NCH1_2016 14.869 8.231 2.333 1.806 3.528 6.374

E+G+GE Grain_Moisture_BLUE NEH1_2016 12.527 5.166 10.466 2.425 0.494 1.197

E+G+GE Grain_Moisture_BLUE NYH2_2016 9.727 4.423 5.172 2.199 0.855 1.881

E+G+GE Grain_Moisture_BLUE OHH1_2016 6.975 2.849 6.176 2.448 0.461 1.129
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TABLE B5 Continued

Predictor Trait Env NoEC EC FE NoEC_vs_EC EC_vs_FE NoEC_vs_FE

E+G+GE Grain_Moisture_BLUE WIH1_2016 6.024 3.056 5.975 1.971 0.512 1.008

E+G+GE Grain_Moisture_BLUE WIH2_2016 21.532 6.235 1.739 3.454 3.585 12.382

E+G+GE Grain_Moisture_BLUE Across – – – 1.552 1.425 2.147

E+G+GE Grain_Moisture_weight ARH1_2016 14.116 3.206 9.123 4.403 0.351 1.547

E+G+GE Grain_Moisture_weight DEH1_2016 1.608 10.772 0.132 0.149 81.919 12.231

E+G+GE Grain_Moisture_weight GAH1_2016 0.862 0.883 4.521 0.976 0.195 0.191

E+G+GE Grain_Moisture_weight IAH1_2016 501.269 514.108 546.300 0.975 0.941 0.918

E+G+GE Grain_Moisture_weight IAH2_2016 43.354 23.631 36.310 1.835 0.651 1.194

E+G+GE Grain_Moisture_weight IAH3_2016 11.456 7.015 0.418 1.633 16.769 27.387

E+G+GE Grain_Moisture_weight IAH4_2016 265.697 167.322 139.446 1.588 1.200 1.905

E+G+GE Grain_Moisture_weight ILH1_2016 35.818 2.973 32.902 12.047 0.090 1.089

E+G+GE Grain_Moisture_weight INH1_2016 51.327 1.919 3.812 26.741 0.504 13.465

E+G+GE Grain_Moisture_weight MIH1_2016 18.430 38.977 1.668 0.473 23.368 11.049

E+G+GE Grain_Moisture_weight MNH1_2016 11.304 39.937 1.316 0.283 30.345 8.589

E+G+GE Grain_Moisture_weight MOH1_2016 3.665 14.395 291.204 0.255 0.049 0.013

E+G+GE Grain_Moisture_weight NCH1_2016 7.758 7.873 6.953 0.985 1.132 1.116

E+G+GE Grain_Moisture_weight NEH1_2016 113.669 88.519 99.451 1.284 0.890 1.143

E+G+GE Grain_Moisture_weight NYH2_2016 80.595 16.174 5.565 4.983 2.906 14.482

E+G+GE Grain_Moisture_weight OHH1_2016 12.108 0.596 0.195 20.319 3.054 62.060

E+G+GE Grain_Moisture_weight WIH1_2016 11.902 4.475 1.508 2.660 2.967 7.892

E+G+GE Grain_Moisture_weight WIH2_2016 0.917 1.365 3.320 0.672 0.411 0.276

E+G+GE Grain_Moisture_weight Across – – – 4.570 9.319 9.253

E+G+GE Yield_Mg_ha_BLUE ARH1_2016 3.928 2.896 14.301 1.357 0.203 0.275

E+G+GE Yield_Mg_ha_BLUE DEH1_2016 5.964 3.522 3.831 1.694 0.919 1.557

E+G+GE Yield_Mg_ha_BLUE GAH1_2016 3.379 10.667 4.157 0.317 2.566 0.813

E+G+GE Yield_Mg_ha_BLUE IAH1_2016 2.287 2.778 2.820 0.823 0.985 0.811

E+G+GE Yield_Mg_ha_BLUE IAH2_2016 7.505 8.311 7.733 0.903 1.075 0.971

E+G+GE Yield_Mg_ha_BLUE IAH3_2016 7.908 6.619 5.280 1.195 1.254 1.498

E+G+GE Yield_Mg_ha_BLUE IAH4_2016 2.565 2.895 3.811 0.886 0.760 0.673

E+G+GE Yield_Mg_ha_BLUE ILH1_2016 8.036 4.761 5.919 1.688 0.804 1.358

E+G+GE Yield_Mg_ha_BLUE INH1_2016 6.533 2.424 1.994 2.696 1.216 3.277

E+G+GE Yield_Mg_ha_BLUE MIH1_2016 4.748 7.252 19.667 0.655 0.369 0.241

E+G+GE Yield_Mg_ha_BLUE MNH1_2016 1.422 1.479 1.265 0.961 1.169 1.124

E+G+GE Yield_Mg_ha_BLUE MOH1_2016 12.381 5.928 9.392 2.089 0.631 1.318

E+G+GE Yield_Mg_ha_BLUE NCH1_2016 5.713 11.008 3.515 0.519 3.132 1.626

E+G+GE Yield_Mg_ha_BLUE NEH1_2016 5.446 5.707 5.214 0.954 1.095 1.045

E+G+GE Yield_Mg_ha_BLUE NYH2_2016 17.271 24.594 19.504 0.702 1.261 0.886

E+G+GE Yield_Mg_ha_BLUE OHH1_2016 2.503 4.763 2.138 0.526 2.227 1.171

E+G+GE Yield_Mg_ha_BLUE WIH1_2016 2.210 5.855 3.805 0.378 1.539 0.581
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conventional NoEC technique. Furthermore, comparing EC and FE

techniques, an average RE of 1.227 was observed, indicating that FE

outperformed NoEC by 22.700% (see Table B5).

In terms of the Yield_Mg_ha_weight trait, Table B5 shows that

the use of NoEC achieved the best performance in most

environments, as evident from the MSE values (DEH1_2016

[0.051], GAH1_2016 [0.026], IAH1_2016 [2.914], IAH2_2016

[0.0689], MIH1_2016 [0.055], MNH1_2016 [0.146], NEH1_2016

[0.033], NYH2_2016 [0.449] and OHH1_2016 [1.202]). The

average RE values indicated slight losses of 2.210% and 2.570%

when comparing EC versus NoEC and FE versus NoEC,

respectively. This implies that EC and FE techniques did not

perform as adequately as the conventional NoEC technique.

However, comparing EC and FE techniques based on RE showed

that FE outperformed EC in most environments, resulting in an

average RE of 1.339, indicating a 33.930% superiority of FE over EC.

For more detailed information, see Table B5.

Predictor: E+G+BRR
In Table B6, it is evident that for the Grain_Moisture_BLUE

trait, the use of FE provided the best performance in most

environments, as indicated by the MSE values (DEH1_2016
Frontiers in Plant Science 24
[4.376], GAH1_2016 [2.002], IAH1_2016 [2.036], IAH3_2016

[1.237], IAH4_2016 [0.496], MNH1_2016 [3.685], MOH1_2016

[0.678], NCH1_2016 [3.499], NYH2_2016 [2.213] and WIH2_2016

[1.648]). On average, the RE values indicate that FE outperformed

EC and NoEC by 67.090% and 129.850%, respectively. Additionally,

comparing NoEC and EC techniques showed that EC outperformed

NoEC by an average of 84.880%. For further information,

see Table B6.

For the Grain_Moisture_weight trait, Table B6 shows that the

use of NoEC provided the best performance in most environments,

as indicated by the MSE values (GAH1_2016 [1.272], IAH1_2016

[401.574], IAH3_2016 [0.199], ILH1_2016 [5.447], MIH1_2016

[0.715[, NCH1_2016 [1.174] and NEH1_2016 [42.758]). On

average, the RE values indicate that FE outperformed EC and

NoEC by 167.270% and 25.410%, respectively. Furthermore,

comparing NoEC and EC shows that EC outperformed NoEC

with an average RE of 3.495, representing a general improvement

of 149.510%. For more detailed information, see Table B6.

Table B6, for the Yield_Mg_ha_BLUE trait, shows that the use

of NoEC led to the best performance in most environments, as

indicated by the MSE values (ARH1_2016 [3.713], GAH1_2016

[3.579], IAH4_2016 [2.576], INH1_2016 [2016], MIH1_2016
TABLE B5 Continued

Predictor Trait Env NoEC EC FE NoEC_vs_EC EC_vs_FE NoEC_vs_FE

E+G+GE Yield_Mg_ha_BLUE WIH2_2016 4.667 4.667 5.288 1.000 0.883 0.883

E+G+GE Yield_Mg_ha_BLUE Across – – – 1.075 1.227 1.117

E+G+GE Yield_Mg_ha_weight ARH1_2016 2.359 1.339 1.540 1.762 0.869 1.532

E+G+GE Yield_Mg_ha_weight DEH1_2016 0.051 0.124 0.284 0.410 0.437 0.179

E+G+GE Yield_Mg_ha_weight GAH1_2016 0.026 0.357 0.258 0.074 1.385 0.102

E+G+GE Yield_Mg_ha_weight IAH1_2016 2.914 3.540 3.508 0.823 1.009 0.831

E+G+GE Yield_Mg_ha_weight IAH2_2016 0.069 0.410 0.076 0.168 5.378 0.903

E+G+GE Yield_Mg_ha_weight IAH3_2016 0.670 0.608 1.186 1.102 0.513 0.565

E+G+GE Yield_Mg_ha_weight IAH4_2016 0.199 0.110 0.082 1.807 1.343 2.426

E+G+GE Yield_Mg_ha_weight ILH1_2016 0.751 0.468 0.539 1.605 0.868 1.394

E+G+GE Yield_Mg_ha_weight INH1_2016 0.112 0.056 0.046 1.981 1.227 2.429

E+G+GE Yield_Mg_ha_weight MIH1_2016 0.055 0.189 0.172 0.291 1.098 0.320

E+G+GE Yield_Mg_ha_weight MNH1_2016 0.146 0.352 0.502 0.415 0.701 0.291

E+G+GE Yield_Mg_ha_weight MOH1_2016 0.283 0.295 0.263 0.959 1.122 1.076

E+G+GE Yield_Mg_ha_weight NCH1_2016 0.113 0.388 0.104 0.292 3.730 1.090

E+G+GE Yield_Mg_ha_weight NEH1_2016 0.033 0.073 0.081 0.458 0.900 0.412

E+G+GE Yield_Mg_ha_weight NYH2_2016 0.449 0.781 0.709 0.575 1.102 0.633

E+G+GE Yield_Mg_ha_weight OHH1_2016 1.202 1.667 1.328 0.721 1.255 0.905

E+G+GE Yield_Mg_ha_weight WIH1_2016 0.204 0.096 0.132 2.125 0.729 1.550

E+G+GE Yield_Mg_ha_weight WIH2_2016 0.185 0.091 0.204 2.036 0.443 0.903

E+G+GE Yield_Mg_ha_weight Across – – – 0.978 1.339 0.974
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TABLE B6 The prediction performance and the relative efficiency (RE) for G2F_2016 dataset in terms of mean squared error (MSE) for each
Environment and for each trait, for the predictor E+G+BRR and E+G+GE+BRR under three different techniques to compute the Kernel for the effect of
the Environment: without Environmental Covariates (NoEC), using Environmental covariates (EC) and using Environmental Covariates with Feature
Engineering (FE).

Predictor Trait Env NoEC EC FE NoEC_vs_EC EC_vs_FE NoEC_vs_FE

E+G+BRR Grain_Moisture_BLUE ARH1_2016 1.733 8.086 2.856 0.214 2.832 0.607

E+G+BRR Grain_Moisture_BLUE DEH1_2016 7.863 5.151 4.376 1.526 1.177 1.797

E+G+BRR Grain_Moisture_BLUE GAH1_2016 6.686 5.025 2.002 1.331 2.511 3.341

E+G+BRR Grain_Moisture_BLUE IAH1_2016 9.814 3.372 2.036 2.911 1.656 4.821

E+G+BRR Grain_Moisture_BLUE IAH2_2016 3.124 1.172 1.650 2.665 0.711 1.894

E+G+BRR Grain_Moisture_BLUE IAH3_2016 1.456 2.060 1.237 0.707 1.665 1.178

E+G+BRR Grain_Moisture_BLUE IAH4_2016 2.495 0.515 0.496 4.845 1.039 5.031

E+G+BRR Grain_Moisture_BLUE ILH1_2016 4.556 2.970 9.745 1.534 0.305 0.468

E+G+BRR Grain_Moisture_BLUE INH1_2016 1.934 12.122 2.526 0.160 4.798 0.766

E+G+BRR Grain_Moisture_BLUE MIH1_2016 2.988 3.562 3.335 0.839 1.068 0.896

E+G+BRR Grain_Moisture_BLUE MNH1_2016 17.117 3.852 3.685 4.444 1.045 4.645

E+G+BRR Grain_Moisture_BLUE MOH1_2016 0.809 1.362 0.678 0.594 2.009 1.193

E+G+BRR Grain_Moisture_BLUE NCH1_2016 21.208 10.060 3.499 2.108 2.875 6.061

E+G+BRR Grain_Moisture_BLUE NEH1_2016 6.193 2.846 9.795 2.176 0.291 0.632

E+G+BRR Grain_Moisture_BLUE NYH2_2016 7.475 2.344 2.213 3.189 1.059 3.378

E+G+BRR Grain_Moisture_BLUE OHH1_2016 4.840 2.898 5.870 1.670 0.494 0.825

E+G+BRR Grain_Moisture_BLUE WIH1_2016 5.143 3.045 4.014 1.689 0.759 1.281

E+G+BRR Grain_Moisture_BLUE WIH2_2016 4.219 6.235 1.648 0.677 3.785 2.560

E+G+BRR Grain_Moisture_BLUE Across – – – 1.849 1.671 2.299

E+G+BRR Grain_Moisture_weight ARH1_2016 30.391 7.962 7.088 3.817 1.123 4.288

E+G+BRR Grain_Moisture_weight DEH1_2016 14.987 0.443 5.442 33.869 0.081 2.754

E+G+BRR Grain_Moisture_weight GAH1_2016 1.272 5.393 2.233 0.236 2.415 0.569

E+G+BRR Grain_Moisture_weight IAH1_2016 401.574 459.125 508.319 0.875 0.903 0.790

E+G+BRR Grain_Moisture_weight IAH2_2016 6.212 1.611 176.584 3.855 0.009 0.035

E+G+BRR Grain_Moisture_weight IAH3_2016 0.199 51.438 110.303 0.004 0.466 0.002

E+G+BRR Grain_Moisture_weight IAH4_2016 311.023 188.044 160.261 1.654 1.173 1.941

E+G+BRR Grain_Moisture_weight ILH1_2016 5.447 22.946 64.425 0.237 0.356 0.085

E+G+BRR Grain_Moisture_weight INH1_2016 1.274 0.691 0.685 1.843 1.009 1.860

E+G+BRR Grain_Moisture_weight MIH1_2016 0.715 31.083 1.554 0.023 20.002 0.460

E+G+BRR Grain_Moisture_weight MNH1_2016 7.866 43.882 6.124 0.179 7.165 1.284

E+G+BRR Grain_Moisture_weight MOH1_2016 27.122 21.394 393.212 1.268 0.054 0.069

E+G+BRR Grain_Moisture_weight NCH1_2016 1.174 5.985 24.041 0.196 0.249 0.049

E+G+BRR Grain_Moisture_weight NEH1_2016 42.758 57.295 90.340 0.746 0.634 0.473

E+G+BRR Grain_Moisture_weight NYH2_2016 1.893 0.666 46.015 2.842 0.015 0.041

E+G+BRR Grain_Moisture_weight OHH1_2016 63.776 7.228 19.206 8.823 0.376 3.321

E+G+BRR Grain_Moisture_weight WIH1_2016 1.373 13.412 1.266 0.102 10.595 1.084

E+G+BRR Grain_Moisture_weight WIH2_2016 16.972 7.246 4.891 2.342 1.482 3.470
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TABLE B6 Continued

Predictor Trait Env NoEC EC FE NoEC_vs_EC EC_vs_FE NoEC_vs_FE

E+G+BRR Grain_Moisture_weight Across – – – 3.495 2.673 1.254

E+G+BRR Yield_Mg_ha_BLUE ARH1_2016 3.713 3.799 14.569 0.977 0.261 0.255

E+G+BRR Yield_Mg_ha_BLUE DEH1_2016 5.330 2.922 3.946 1.824 0.740 1.351

E+G+BRR Yield_Mg_ha_BLUE GAH1_2016 3.580 11.055 5.613 0.324 1.970 0.638

E+G+BRR Yield_Mg_ha_BLUE IAH1_2016 3.187 1.743 1.393 1.829 1.252 2.289

E+G+BRR Yield_Mg_ha_BLUE IAH2_2016 7.921 7.568 8.528 1.047 0.888 0.929

E+G+BRR Yield_Mg_ha_BLUE IAH3_2016 5.918 5.873 6.247 1.008 0.940 0.947

E+G+BRR Yield_Mg_ha_BLUE IAH4_2016 2.576 2.618 3.773 0.984 0.694 0.683

E+G+BRR Yield_Mg_ha_BLUE ILH1_2016 8.719 4.687 7.329 1.860 0.640 1.190

E+G+BRR Yield_Mg_ha_BLUE INH1_2016 2.415 2.675 2.435 0.903 1.098 0.992

E+G+BRR Yield_Mg_ha_BLUE MIH1_2016 4.045 6.342 17.412 0.638 0.364 0.232

E+G+BRR Yield_Mg_ha_BLUE MNH1_2016 1.268 1.350 1.270 0.939 1.063 0.999

E+G+BRR Yield_Mg_ha_BLUE MOH1_2016 7.968 4.093 10.724 1.947 0.382 0.743

E+G+BRR Yield_Mg_ha_BLUE NCH1_2016 4.467 9.870 3.889 0.453 2.538 1.149

E+G+BRR Yield_Mg_ha_BLUE NEH1_2016 4.993 4.703 3.515 1.062 1.338 1.421

E+G+BRR Yield_Mg_ha_BLUE NYH2_2016 16.252 22.892 17.091 0.710 1.339 0.951

E+G+BRR Yield_Mg_ha_BLUE OHH1_2016 1.830 4.374 2.456 0.418 1.781 0.745

E+G+BRR Yield_Mg_ha_BLUE WIH1_2016 3.665 4.548 2.558 0.806 1.778 1.433

E+G+BRR Yield_Mg_ha_BLUE WIH2_2016 4.630 4.859 5.700 0.953 0.853 0.812

E+G+BRR Yield_Mg_ha_BLUE Across – – – 1.038 1.107 0.986

E+G+BRR Yield_Mg_ha_weight ARH1_2016 0.989 1.219 1.311 0.811 0.930 0.755

E+G+BRR Yield_Mg_ha_weight DEH1_2016 0.163 0.029 0.076 5.723 0.375 2.143

E+G+BRR Yield_Mg_ha_weight GAH1_2016 0.035 0.251 0.134 0.138 1.870 0.259

E+G+BRR Yield_Mg_ha_weight IAH1_2016 3.743 3.506 3.050 1.068 1.150 1.227

E+G+BRR Yield_Mg_ha_weight IAH2_2016 0.175 0.372 3.081 0.471 0.121 0.057

E+G+BRR Yield_Mg_ha_weight IAH3_2016 0.788 0.976 2.401 0.808 0.407 0.328

E+G+BRR Yield_Mg_ha_weight IAH4_2016 0.498 0.065 0.179 7.678 0.362 2.782

E+G+BRR Yield_Mg_ha_weight ILH1_2016 1.113 0.336 0.581 3.316 0.578 1.916

E+G+BRR Yield_Mg_ha_weight INH1_2016 0.055 0.044 0.058 1.239 0.761 0.943

E+G+BRR Yield_Mg_ha_weight MIH1_2016 0.121 0.297 0.300 0.406 0.992 0.402

E+G+BRR Yield_Mg_ha_weight MNH1_2016 0.393 0.721 0.682 0.546 1.057 0.577

E+G+BRR Yield_Mg_ha_weight MOH1_2016 0.232 0.521 0.252 0.445 2.066 0.920

E+G+BRR Yield_Mg_ha_weight NCH1_2016 0.083 0.311 0.078 0.266 4.012 1.066

E+G+BRR Yield_Mg_ha_weight NEH1_2016 0.036 0.030 0.031 1.203 0.984 1.183

E+G+BRR Yield_Mg_ha_weight NYH2_2016 0.402 0.419 0.700 0.960 0.598 0.574

E+G+BRR Yield_Mg_ha_weight OHH1_2016 0.533 1.561 1.276 0.341 1.224 0.418

E+G+BRR Yield_Mg_ha_weight WIH1_2016 0.117 0.067 0.207 1.746 0.324 0.566

E+G+BRR Yield_Mg_ha_weight WIH2_2016 0.055 0.424 0.469 0.130 0.904 0.118

E+G+BRR Yield_Mg_ha_weight Across – – – 1.516 1.040 0.902
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TABLE B6 Continued

Predictor Trait Env NoEC EC FE NoEC_vs_EC EC_vs_FE NoEC_vs_FE

E+G+GE+BRR Grain_Moisture_BLUE ARH1_2016 2.003 8.861 8.335 0.226 1.063 0.240

E+G+GE+BRR Grain_Moisture_BLUE DEH1_2016 5.256 4.281 9.799 1.228 0.437 0.536

E+G+GE+BRR Grain_Moisture_BLUE GAH1_2016 5.841 4.396 2.596 1.329 1.693 2.250

E+G+GE+BRR Grain_Moisture_BLUE IAH1_2016 2.857 3.613 2.833 0.791 1.275 1.008

E+G+GE+BRR Grain_Moisture_BLUE IAH2_2016 0.713 1.881 1.708 0.379 1.101 0.418

E+G+GE+BRR Grain_Moisture_BLUE IAH3_2016 2.933 3.283 2.610 0.893 1.258 1.124

E+G+GE+BRR Grain_Moisture_BLUE IAH4_2016 1.622 0.519 0.724 3.127 0.717 2.241

E+G+GE+BRR Grain_Moisture_BLUE ILH1_2016 8.071 4.964 9.657 1.626 0.514 0.836

E+G+GE+BRR Grain_Moisture_BLUE INH1_2016 5.315 11.384 4.258 0.467 2.674 1.248

E+G+GE+BRR Grain_Moisture_BLUE MIH1_2016 2.448 3.737 3.645 0.655 1.025 0.672

E+G+GE+BRR Grain_Moisture_BLUE MNH1_2016 13.571 4.762 6.621 2.850 0.719 2.050

E+G+GE+BRR Grain_Moisture_BLUE MOH1_2016 3.450 2.107 1.221 1.637 1.725 2.825

E+G+GE+BRR Grain_Moisture_BLUE NCH1_2016 14.869 7.756 2.226 1.917 3.485 6.681

E+G+GE+BRR Grain_Moisture_BLUE NEH1_2016 12.527 6.047 10.506 2.072 0.576 1.192

E+G+GE+BRR Grain_Moisture_BLUE NYH2_2016 9.727 4.030 5.378 2.414 0.749 1.809

E+G+GE+BRR Grain_Moisture_BLUE OHH1_2016 6.975 3.072 8.466 2.270 0.363 0.824

E+G+GE+BRR Grain_Moisture_BLUE WIH1_2016 6.024 3.495 6.151 1.723 0.568 0.979

E+G+GE+BRR Grain_Moisture_BLUE WIH2_2016 21.532 5.216 1.584 4.128 3.293 13.594

E+G+GE+BRR Grain_Moisture_BLUE Across – – – 1.652 1.291 2.252

E+G+GE+BRR Grain_Moisture_weight ARH1_2016 14.116 33.005 48.706 0.428 0.678 0.290

E+G+GE+BRR Grain_Moisture_weight DEH1_2016 1.608 0.595 0.683 2.701 0.872 2.355

E+G+GE+BRR Grain_Moisture_weight GAH1_2016 0.862 3.261 1.258 0.264 2.593 0.685

E+G+GE+BRR Grain_Moisture_weight IAH1_2016 501.269 360.363 452.522 1.391 0.796 1.108

E+G+GE+BRR Grain_Moisture_weight IAH2_2016 43.354 1.219 28.797 35.562 0.042 1.506

E+G+GE+BRR Grain_Moisture_weight IAH3_2016 11.456 92.472 220.035 0.124 0.420 0.052

E+G+GE+BRR Grain_Moisture_weight IAH4_2016 265.697 120.354 139.962 2.208 0.860 1.898

E+G+GE+BRR Grain_Moisture_weight ILH1_2016 35.818 10.357 65.451 3.459 0.158 0.547

E+G+GE+BRR Grain_Moisture_weight INH1_2016 51.327 29.589 16.709 1.735 1.771 3.072

E+G+GE+BRR Grain_Moisture_weight MIH1_2016 18.430 47.158 9.360 0.391 5.039 1.969

E+G+GE+BRR Grain_Moisture_weight MNH1_2016 11.304 52.703 0.445 0.215 118.486 25.414

E+G+GE+BRR Grain_Moisture_weight MOH1_2016 3.665 5.633 128.039 0.651 0.044 0.029

E+G+GE+BRR Grain_Moisture_weight NCH1_2016 7.758 2.025 11.167 3.831 0.181 0.695

E+G+GE+BRR Grain_Moisture_weight NEH1_2016 113.669 56.705 50.862 2.005 1.115 2.235

E+G+GE+BRR Grain_Moisture_weight NYH2_2016 80.595 2.534 6.431 31.802 0.394 12.532

E+G+GE+BRR Grain_Moisture_weight OHH1_2016 12.108 4.124 14.744 2.936 0.280 0.821

E+G+GE+BRR Grain_Moisture_weight WIH1_2016 11.902 7.400 2.403 1.608 3.080 4.954

E+G+GE+BRR Grain_Moisture_weight WIH2_2016 0.917 4.113 0.764 0.223 5.385 1.201

E+G+GE+BRR Grain_Moisture_weight Across – – – 5.085 7.900 3.409

E+G+GE+BRR Yield_Mg_ha_BLUE ARH1_2016 3.928 14.301 15.060 0.275 0.950 0.261
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TABLE B6 Continued

Predictor Trait Env NoEC EC FE NoEC_vs_EC EC_vs_FE NoEC_vs_FE

E+G+GE+BRR Yield_Mg_ha_BLUE DEH1_2016 5.964 3.831 3.763 1.557 1.018 1.585

E+G+GE+BRR Yield_Mg_ha_BLUE GAH1_2016 3.379 4.157 4.699 0.813 0.885 0.719

E+G+GE+BRR Yield_Mg_ha_BLUE IAH1_2016 2.287 2.820 2.767 0.811 1.019 0.826

E+G+GE+BRR Yield_Mg_ha_BLUE IAH2_2016 7.505 7.733 8.012 0.971 0.965 0.937

E+G+GE+BRR Yield_Mg_ha_BLUE IAH3_2016 7.908 5.280 4.834 1.498 1.092 1.636

E+G+GE+BRR Yield_Mg_ha_BLUE IAH4_2016 2.565 3.811 3.842 0.673 0.992 0.668

E+G+GE+BRR Yield_Mg_ha_BLUE ILH1_2016 8.036 5.919 7.366 1.358 0.804 1.091

E+G+GE+BRR Yield_Mg_ha_BLUE INH1_2016 6.533 1.994 2.069 3.277 0.964 3.158

E+G+GE+BRR Yield_Mg_ha_BLUE MIH1_2016 4.748 19.667 20.508 0.241 0.959 0.232

E+G+GE+BRR Yield_Mg_ha_BLUE MNH1_2016 1.422 1.265 1.248 1.124 1.014 1.140

E+G+GE+BRR Yield_Mg_ha_BLUE MOH1_2016 12.381 9.392 11.632 1.318 0.807 1.064

E+G+GE+BRR Yield_Mg_ha_BLUE NCH1_2016 5.713 3.515 3.888 1.626 0.904 1.470

E+G+GE+BRR Yield_Mg_ha_BLUE NEH1_2016 5.446 5.214 4.593 1.045 1.135 1.186

E+G+GE+BRR Yield_Mg_ha_BLUE NYH2_2016 17.271 19.504 19.128 0.886 1.020 0.903

E+G+GE+BRR Yield_Mg_ha_BLUE OHH1_2016 2.503 2.138 2.234 1.171 0.957 1.121

E+G+GE+BRR Yield_Mg_ha_BLUE WIH1_2016 2.210 3.805 2.586 0.581 1.471 0.855

E+G+GE+BRR Yield_Mg_ha_BLUE WIH2_2016 4.667 5.288 5.442 0.883 0.972 0.858

E+G+GE+BRR Yield_Mg_ha_BLUE Across – – – 1.117 0.996 1.095

E+G+GE+BRR Yield_Mg_ha_weight ARH1_2016 2.359 0.719 1.152 3.281 0.624 2.047

E+G+GE+BRR Yield_Mg_ha_weight DEH1_2016 0.051 0.020 0.186 2.540 0.108 0.273

E+G+GE+BRR Yield_Mg_ha_weight GAH1_2016 0.026 0.387 0.568 0.068 0.682 0.046

E+G+GE+BRR Yield_Mg_ha_weight IAH1_2016 2.914 2.808 2.836 1.038 0.990 1.027

E+G+GE+BRR Yield_Mg_ha_weight IAH2_2016 0.069 0.110 0.135 0.626 0.813 0.509

E+G+GE+BRR Yield_Mg_ha_weight IAH3_2016 0.670 1.666 3.383 0.402 0.493 0.198

E+G+GE+BRR Yield_Mg_ha_weight IAH4_2016 0.199 0.058 0.113 3.423 0.516 1.766

E+G+GE+BRR Yield_Mg_ha_weight ILH1_2016 0.751 0.594 0.808 1.264 0.736 0.930

E+G+GE+BRR Yield_Mg_ha_weight INH1_2016 0.112 0.099 0.064 1.130 1.550 1.750

E+G+GE+BRR Yield_Mg_ha_weight MIH1_2016 0.055 0.247 0.074 0.223 3.325 0.741

E+G+GE+BRR Yield_Mg_ha_weight MNH1_2016 0.146 0.338 0.673 0.432 0.502 0.217

E+G+GE+BRR Yield_Mg_ha_weight MOH1_2016 0.283 0.522 0.082 0.542 6.396 3.466

E+G+GE+BRR Yield_Mg_ha_weight NCH1_2016 0.113 0.227 0.100 0.499 2.277 1.135

E+G+GE+BRR Yield_Mg_ha_weight NEH1_2016 0.033 0.127 0.076 0.263 1.665 0.438

E+G+GE+BRR Yield_Mg_ha_weight NYH2_2016 0.449 0.418 0.553 1.074 0.756 0.812

E+G+GE+BRR Yield_Mg_ha_weight OHH1_2016 1.202 1.483 0.850 0.811 1.745 1.414

E+G+GE+BRR Yield_Mg_ha_weight WIH1_2016 0.204 0.110 0.066 1.858 1.672 3.107

E+G+GE+BRR Yield_Mg_ha_weight WIH2_2016 0.185 0.073 1.076 2.524 0.068 0.172

E+G+GE+BRR Yield_Mg_ha_weight Across – – – 1.222 1.384 1.114
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[4.045], MNH1_2016 [1.268], NYH2_2016 [16.252], OHH1_2016

[1.829] and WIH2_2016 [4.629]). On average, the RE values

indicate general improvements of 10.650% for FE compared to

EC, and 3.780% for EC compared to NoEC. However, when

comparing the performance of NoEC and FE techniques, an

average RE of 0.986 indicates a slight loss for FE compared to

NoEC. For more detailed information, see Table B6.

For the Yield_Mg_ha_weight trait, the use of NoEC achieved the

best performance in most environments, as indicated by the MSE

values (ARH1_2016 [0.989], GAH1_3016 [0.035], IAH2_2016

[0.175], IAH3_2016 [0.783], MIH1_2016 [0.1201], MHH1_2016

[0.393], MOH1_2016 [0.232], NYH2_2016 [0.402], OHH1_2016

[0.533] and WIH2_2016 [0.055]). On average, the RE values

indicate a general improvement of 51.630% for EC compared to

NoEC and 3.960% for FE compared to EC. However, when

comparing the performance of NoEC and FE based on RE, the best

performance was displayed by NoEC inmost environments, resulting

in an average RE of 0.9012, indicating that NoEC outperformed FE by

9.820%. For more detailed information, see Table B6.

Predictor: E+G+GE+BRR
Table B6 shows that EC yielded the most favorable results for

the Grain_Moisture_BLUE trait in various environments. The

corresponding MSE values for EC were 4.2801 (DEH1_2016),

0.519 (IAH4_2016), 4.964 (ILH1_2016), 4.762 (MNH1_2016),

6.047 (NEH1_2016), 4.030 (NYH2_2016), 3.072 (OHH1_2016),

and 3.495 (WIH1_2016). Additionally, the average RE values

indicated that using FE outperformed both EC and NoEC by

29.090% and 125.150%, respectively (1.291 for EC_vs_FE, and

2.252 for NoEC_vs_FE). Furthermore, when comparing the

NoEC and EC techniques, an average RE of 1.6512 displays the

superior performance of EC over NoEC by 65.180%. For more

comprehensive information, see Table B6.

When considering the Grain_Moisture_weight trait, the use of

EC presented amor adequate performance in most environments
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based on the MSE values provided in Table 6 (DEH1_2016 [0.595],

IAH1_2016 [360.363], IAH2_2016 [1.219], IAH4_2016 [120.354],

ILH1_2016 [10.357], NCH1_2016 [2.0245], NYH2_2016 [2.534],

and OHH1_2016 [4.124]). Moreover, the average RE values reveal

that EC and FE outperformed the conventional NoEC by 408.510%

and 240.900% respectively (5.085 for NoEC_vs_EC and 3.409 for

NoEC_vs_FE). Furthermore, a comparison between EC and FE

techniques indicates that an average RE of 7.899 suggests that FE

outperformed EC by 689.960%. For more detailed information,

see Table B6.

When examining the Yield_Mg_ha_BLUE trait, the use of

NoEC displayed the best performance in most environments

based on the MSE values presented in Table B6 (ARH1_2016

[3.928], GAH1_2016 [3.379], IAH1_2016 [2.287], IAH2_2016

[7.505], IAH4_2016 [2.565], MIH1_2016 [4.748], NYH2_2016

[17.271], WIH1_2016 [2.210] and WIH2_2016 [4.667]).

However, it is worth noting that EC and FE outperformed the

conventional NoEC by 11.690% and 9.490% in terms of average

RE values (1.117 for NoEC_vs_EC and 1.095 for NoEC_vs_FE).

Nevertheless, when comparing FE versus EC techniques, a slight

loss of 0.400% was observed for using FE compared to EC, as

indicated by an average RE of 0.996. For more detailed

information, see Table B6.

Regarding the Yield_Mg_ha_weight trait, Table B6 shows that

the use of EC yielded the best performance in most environments,

as evidenced by the following MSE values: ARH1_2016 (0.719),

DEH1_2016 (0.020), IAH1_2016 (2.808), IAH4_2016 (0.058),

ILH1_2016 (0.594), NYH2_2016 (0.418), and WIH2_2016

(0.073). The average RE values indicated improvements of

22.200% (NoEC_vs_EC) and 11.380% (NoEC_vs_FE),

highlighting the superior performance of EC and FE over the

conventional NoEC technique. Conversely, when comparing EC

and FE techniques, most environments performed better with an

average RE of 1.384, indicating that FE outperformed EC by

38.420%. For additional information, see Table B6.
TABLE B7 Variance components (Var_Comp) for environment (Env) Line and Genotype by environment (Env:Line) interaction for each data set. CV
denotes coefficient of variation and n_Env denotes the average of number of environments in each data set.

Data Component VarComp Trait Heritability CV n_Env

Japonica Env:Line 186065.908 GY 0.285 0.163 3.597

Japonica Line 257287.998 GY 0.285 0.163 3.597

Japonica Env 1860782.427 GY 0.285 0.163 3.597

Japonica Residual 272836.420 GY 0.285 0.163 3.597

Japonica Env:Line 0.000 PHR 0.462 0.073 3.597

Japonica Line 0.000 PHR 0.462 0.073 3.597

Japonica Env 0.001 PHR 0.462 0.073 3.597

Japonica Residual 0.000 PHR 0.462 0.073 3.597

Japonica Env:Line 0.000 GC 0.249 0.818 3.597

Japonica Line 0.001 GC 0.249 0.818 3.597

Japonica Env 0.006 GC 0.249 0.818 3.597
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TABLE B7 Continued

Data Component VarComp Trait Heritability CV n_Env

Japonica Residual 0.001 GC 0.249 0.818 3.597

Japonica Env:Line 0.002 PH 0.624 0.097 3.597

Japonica Line 20.528 PH 0.624 0.097 3.597

Japonica Env 35.950 PH 0.624 0.097 3.597

Japonica Residual 8.576 PH 0.624 0.097 3.597

USP Env:Line 0.983 GY 0.533 0.378 4

USP Line 1.129 GY 0.533 0.378 4

USP Env 2.123 GY 0.533 0.378 4

USP Residual 0.850 GY 0.533 0.378 4

G2F_2014 Env:Line 0.001 Grain_Moisture_BLUE 0.609 0.196 5.376

G2F_2014 Line 3.913 Grain_Moisture_BLUE 0.609 0.196 5.376

G2F_2014 Env 11.492 Grain_Moisture_BLUE 0.609 0.196 5.376

G2F_2014 Residual 2.006 Grain_Moisture_BLUE 0.609 0.196 5.376

G2F_2014 Env:Line 1.061 Grain_Moisture_weight 0.010 1.877 5.376

G2F_2014 Line 0.344 Grain_Moisture_weight 0.010 1.877 5.376

G2F_2014 Env 175.200 Grain_Moisture_weight 0.010 1.877 5.376

G2F_2014 Residual 3.331 Grain_Moisture_weight 0.010 1.877 5.376

G2F_2014 Env:Line 0.697 Yield_Mg_ha_BLUE 0.423 0.271 5.376

G2F_2014 Line 0.822 Yield_Mg_ha_BLUE 0.423 0.271 5.376

G2F_2014 Env 4.475 Yield_Mg_ha_BLUE 0.423 0.271 5.376

G2F_2014 Residual 0.853 Yield_Mg_ha_BLUE 0.423 0.271 5.376

G2F_2014 Env:Line 0.118 Yield_Mg_ha_weight 0.461 0.576 5.376

G2F_2014 Line 0.162 Yield_Mg_ha_weight 0.461 0.576 5.376

G2F_2014 Env 0.699 Yield_Mg_ha_weight 0.461 0.576 5.376

G2F_2014 Residual 0.202 Yield_Mg_ha_weight 0.461 0.576 5.376

G2F_2015 Env:Line 0.001 Grain_Moisture_BLUE 0.603 0.160 4.217

G2F_2015 Line 2.004 Grain_Moisture_BLUE 0.603 0.160 4.217

G2F_2015 Env 3.286 Grain_Moisture_BLUE 0.603 0.160 4.217

G2F_2015 Residual 2.270 Grain_Moisture_BLUE 0.603 0.160 4.217

G2F_2015 Env:Line 0.001 Grain_Moisture_weight 0.109 1.435 4.217

G2F_2015 Line 0.655 Grain_Moisture_weight 0.109 1.435 4.217

G2F_2015 Env 19.808 Grain_Moisture_weight 0.109 1.435 4.217

G2F_2015 Residual 2.699 Grain_Moisture_weight 0.109 1.435 4.217

G2F_2015 Env:Line 1.002 Yield_Mg_ha_BLUE 0.359 0.272 4.217

G2F_2015 Line 0.633 Yield_Mg_ha_BLUE 0.359 0.272 4.217

G2F_2015 Env 2.604 Yield_Mg_ha_BLUE 0.359 0.272 4.217

G2F_2015 Residual 1.164 Yield_Mg_ha_BLUE 0.359 0.272 4.217

G2F_2015 Env:Line 0.007 Yield_Mg_ha_weight 0.361 0.660 4.217

G2F_2015 Line 0.048 Yield_Mg_ha_weight 0.361 0.660 4.217

(Continued)
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TABLE B7 Continued

Data Component VarComp Trait Heritability CV n_Env

G2F_2015 Env 0.284 Yield_Mg_ha_weight 0.361 0.660 4.217

G2F_2015 Residual 0.070 Yield_Mg_ha_weight 0.361 0.660 4.217

G2F_2016 Env:Line 0.000 Grain_Moisture_BLUE 0.830 0.142 10.055

G2F_2016 Line 2.387 Grain_Moisture_BLUE 0.830 0.142 10.055

G2F_2016 Env 3.584 Grain_Moisture_BLUE 0.830 0.142 10.055

G2F_2016 Residual 1.335 Grain_Moisture_BLUE 0.830 0.142 10.055

G2F_2016 Env:Line 0.014 Grain_Moisture_weight 0.109 1.259 10.055

G2F_2016 Line 0.468 Grain_Moisture_weight 0.109 1.259 10.055

G2F_2016 Env 34.317 Grain_Moisture_weight 0.109 1.259 10.055

G2F_2016 Residual 4.322 Grain_Moisture_weight 0.109 1.259 10.055

G2F_2016 Env:Line 1.477 Yield_Mg_ha_BLUE 0.736 0.252 10.055

G2F_2016 Line 1.337 Yield_Mg_ha_BLUE 0.736 0.252 10.055

G2F_2016 Env 2.211 Yield_Mg_ha_BLUE 0.736 0.252 10.055

G2F_2016 Residual 1.133 Yield_Mg_ha_BLUE 0.736 0.252 10.055

G2F_2016 Env:Line 0.020 Yield_Mg_ha_weight 0.341 0.598 10.055

G2F_2016 Line 0.023 Yield_Mg_ha_weight 0.341 0.598 10.055

G2F_2016 Env 0.372 Yield_Mg_ha_weight 0.341 0.598 10.055

G2F_2016 Residual 0.051 Yield_Mg_ha_weight 0.341 0.598 10.055
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