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Counting nematodes made
easy: leveraging AI-powered
automation for enhanced
efficiency and precision
Kanan K. Saikai1,2*, Trim Bresilla1*, Janne Kool1,
Norbert C. A. de Ruijter3, Casper van Schaik4

and Misghina G. Teklu1

1Agrosystems Research, Plant Science Group, Wageningen University and Research,
Wageningen, Netherlands, 2Ceradis B.V., Wageningen, Netherlands, 3Laboratory of Cell and
Developmental Biology, Department of Plant Sciences, Wageningen University and Research,
Wageningen, Netherlands, 4Laboratory of Nematology, Department of Plant Sciences, Wageningen
University and Research, Wageningen, Netherlands
Counting nematodes is a labor-intensive and time-consuming task, yet it is a

pivotal step in various quantitative nematological studies; preparation of initial

population densities and final population densities in pot, micro-plot and field

trials for different objectives related to management including sampling and

location of nematode infestation foci. Nematologists have long battled with the

complexities of nematode counting, leading to several research initiatives aimed

at automating this process. However, these research endeavors have primarily

focused on identifying single-class objects within individual images. To enhance

the practicality of this technology, there’s a pressing need for an algorithm that

cannot only detect but also classify multiple classes of objects concurrently. This

study endeavors to tackle this challenge by developing a user-friendly Graphical

User Interface (GUI) that comprises multiple deep learning algorithms, allowing

simultaneous recognition and categorization of nematode eggs and second

stage juveniles of Meloidogyne spp. In total of 650 images for eggs and 1339

images for juveniles were generated using two distinct imaging systems, resulting

in 8655 eggs and 4742Meloidogyne juveniles annotated using bounding box and

segmentation, respectively. The deep-learning models were developed by

leveraging the Convolutional Neural Networks (CNNs) machine learning

architecture known as YOLOv8x. Our results showed that the models correctly

identified eggs as eggs and Meloidogyne juveniles as Meloidogyne juveniles in

94% and 93% of instances, respectively. The model demonstrated higher than

0.70 coefficient correlation between model predictions and observations on

unseen images. Our study has showcased the potential utility of these models in

practical applications for the future. The GUI is made freely available to the public

through the author’s GitHub repository (https://github.com/bresilla/

nematode_counting). While this study currently focuses on one genus, there

are plans to expand the GUI’s capabilities to include other economically

significant genera of plant parasitic nematodes. Achieving these objectives,

including enhancing the models’ accuracy on different imaging systems, may

necessitate collaboration among multiple nematology teams and laboratories,

rather than being the work of a single entity. With the increasing interest among
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nematologists in harnessing machine learning, the authors are confident in the

potential development of a universal automated nematode counting system

accessible to all. This paper aims to serve as a framework and catalyst for initiating

global collaboration toward this important goal.
KEYWORDS

nematode diagnostic, deep-learning, Meloidogyne, root-knot nematode, (CNN)
convolutional neural network
1 Introduction

The process of nematode counting is both labor-intensive and

time-consuming, yet it serves as a crucial step in numerous

quantitative nematological studies, including the preparation of

initial population and final population densities related to

nematode management in pot, micro-plot and field trials (Barker

and Campbell, 1981). Accurate results heavily depend on the

expertise of taxonomy of nematodes of the individuals conducting

this task. This study aims to streamline the nematode counting

process for Meloidogyne spp. juveniles and eggs by implementing a

deep learning algorithm for automation.

Traditionally, nematode counting has been a manual process

(Hussey and Barker, 1973; Seinhorst, 1988). Following the extraction

of nematodes from plant materials or soil, they are collected in a

water suspension and subjected to counting. Prolonged storage in

water suspension makes the task of counting and identifying

nematodes progressively challenging, even for experienced

nematologists, as nematode might die due to depletion of stored

food. In some cases, all nematodes in the entire sample are counted,

but this can be impractical, especially when dealing with a large

number of samples or a high nematode density per sample, due to the

considerable time required. Consequently, many laboratories opt to

count nematodes by analyzing subsamples from the mother

suspension, although this approach can introduce errors and

diminish statistical accuracy when few nematodes are counted

(Schomaker and Been, 1998). Furthermore, the manual nematode

counting process is susceptible to inconsistency when carried out by

different individuals or prone to errors that may arise when an

individual spends an extended period behind a microscope.

Nematologists have long recognized the challenges associated

with nematode counting, prompting a few research initiatives to

automate the process. Been et al. (1996) introduced ANECS

(Automatic NEmatode Counting System), a software program

designed to count juveniles of Globodera spp in water suspension.

While this method achieved high detection accuracy, its widespread

adoption among nematologists was hindered by the need for

specialized and expensive hardware and image analysis systems. In

more recent years, Holladay et al. (2016) adapted ImageJ, an open-

source image analysis software, to create a standard curve for

automated nematode counting based on the black and white pixel
02
sizes in individual images. However, this method is limited to samples

containing a single species of similarly sized nematodes and excludes

samples with soil and root debris. Given the recent advancements in

artificial intelligence, these challenges encountered during automated

nematode counting can now be effectively tackled.

Deep learning, a broader realm within machine learning

encompassing various architectures like Convolutional Neural

Networks (CNNs), has garnered significant research attention

among nematologists, as indicated by recent studies (Akintayo

et al., 2018; Chen et al., 2020, 2022; Kalwa et al., 2019; Uhlemann

et al., 2020). The utilization of neural networks for computer-

assisted nematode identification dates as early as 2000 when it

was proposed by Diederich et al. (2000). CNNs, the focus of this

study, are computer programs designed to replicate how our brains

process visual information, proving highly effective in the analysis

of biological images, such as microscope pictures. Notably, there are

compelling examples of AI-driven approaches for automating

nematode counting. In their work, Akintayo et al. (2018) applied

a deep learning architecture originally designed for detecting rare

objects in cluttered images to the task of identifying eggs of

Heterodera glycines. They designed the Convolutional Selective

Autoencoder (CSAE) architecture, which facilitated rapid

detection, consistency, and accuracy in identifying nematode eggs

amidst debris. Likewise, Kalwa et al. (2019) developed a modified

version of the U-Net convolutional autoencoder model learning

algorithm, specifically customized for detecting H. glycines eggs in

purified samples. In contrast to typical approaches using

microscopic images, their imaging systems employed a high-

resolution scanner and a light-emitting diode (LED) to illuminate

the processed sample flowing through a microfluidic flow chip,

along with a CMOS image sensor. Both studies necessitated prior

staining. In 2020, Chen et al. adapted the standard U-Net architecture

to automate the counting of worm-shaped objects. Instead of

employing the standard bounding box detection method used in

other studies, they utilized the skeleton to address overlapping and

curled nematodes. Their initial model was primarily assessed on C.

elegans. Subsequently, in 2022, Chen et al. extended their work by

developing a segmentation model for cyst detection in soil debris.

This was accomplished by leveraging the standard U-Net architecture

and ResNet architecture. While not focused on counting, Uhlemann

et al. (2020) effectively employed CNNs to differentiate between three
frontiersin.org
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entomopathogenic nematode species within the same family. To

select the most appropriate architecture for their study, the

researchers initially screened 13 CNN architectures available in

2020. They ultimately decided to employ Xception due to its

highest accuracy among the options. Additionally, Shabrina et al.

(2023) devised a deep-learning model aimed at automatically

identifying 11 different genera of plant-parasitic nematodes

commonly found in Indonesia. Although their primary focus was

classification rather than quantification like Uhlemann et al. (2020),

they investigated four distinct architectures, ResNet101V2, CoAtNet-

0, EfficientNetV2Bo, and EfficientNetV2M, across various

augmentation processes. Their research culminated in the creation

of a website capable of analyzing nematode images and providing

genus-level identification.

While the aforementioned studies have demonstrated the

effectiveness of deep learning for automating nematode counting,

they have primarily been limited to single-class object identification

within individual images. To make this technology more practical,

there is a need for an algorithm capable of simultaneously detecting

and classifying multiple objects, even when they cohabit with other

objects that are confusing shapes and sizes, such as root and soil

debris or non-target nematodes within individual samples. This

study aims to address this challenge by developing a deep learning

algorithm that can simultaneously identify and classify nematode

eggs and juveniles of Meloidogyne spp. while distinguishing them

from free-living nematodes and other clutter in the sample. The

resulting algorithm will be shared as open-source software on

GitHub for public use.

2 Materials and methods

2.1 Sample preparation

Eggs and second stage juveniles (J2) ofMeloidogyne spp (RKN).

were acquired from cultures maintained on tomato plants by the

Plant Science Group at Wageningen University & Research. Eggs

were extracted from tomato roots using the bleach method (Hussey

and Barker, 1973) and J2s were obtained by incubating 5-cm pieces

of infected tomato roots in a mist chamber (Seinhorst, 1988). To

create varying densities of nematodes in water suspension

containing either eggs or J2s, we diluted the original suspensions.

This allowed us to replicate scenarios with specimens in low

abundance (non-overlapping specimens) to high density

(commonly overlapping specimens) (Figure 1). The J2

suspensions occasionally contained free-living nematodes as

contaminations. Before imaging, the J2 suspensions in a petri dish

were subjected to a temperature of 40°C for a period ranging from

30 seconds to 1 minute. This heat treatment was employed to

minimize their movement and facilitate the imaging process. For

further imaging, each well of the CELLSTAR 24 Well Cell Culture

Plate (Greiner Bio-One B.V., Alphen aan den Rijn, The

Netherlands), was filled with 2ml of either the egg or J2 suspensions.
Frontiers in Plant Science 03
2.2 Image acquisition and annotation

The primary imaging tool for both eggs and J2s was the Leica

Stellaris 5 Confocal LSM on a DMi8 microscope (Leica

Microsystems, Wetzlar, Germany). Image acquisition was

facilitated using LAS-X software V4.40 (Leica Microsystems) with

LAS-X Navigator with Assay Editor to automatically visit any

assigned location in Multiwell plates, resulting in a total of 600

images for eggs and 1289 images for J2s, which were automatically

stitched (at 10% overlap) to display overviews of 24 well plates at a

chosen resolution. To ensure image diversity for the algorithm

development, two different magnifications and resolutions were

employed at standard speed of 600 µm/s, using 400 Hz scan speed at

512 x 512 pixels. Eggs and juveniles were imaged with 5x (NA 0.15)

or 10x (NA 0.40) objective. The bright field images used in this

study were captured as full transmission images and do not display

a confocal z-slice. To further enhance the variety of images for

computer learning during the algorithm development process,

another LEITZ DM IRB inverted microscope (Leica

Microsystems, Wetzlar, Germany) was utilized. Image acquisition

was facilitated using ZEISS ZEN lite software (Carl Zeiss NTS Ltd,

Oberkochen, Germany) equipped with a Zeiss Axiocam-712 color

camera. With a 10x objective (NA 0.22), this camera captured 50

images each for both eggs and juveniles for annotation. A confocal

image can be adjusted to any pixel density compatible with the

resolution provided by the objective’s numerical aperture (NA),

while images captured using the LEITZ DM IRB system with the

Axiocam 712 are set at a fixed, high pixel density. The acquisition

methods differ significantly: the confocal acquires data pixel by pixel

using the XY scanner, whereas the CMOS chip in the Axiocam 712

captures entire frames simultaneously.

Annotation for egg images involved two distinct object classes:

dead egg (including eggshells) and nematode egg. These

annotations were created using bounding box annotations

(Figures 1A, B). Nematode eggs possess an oval morphology,

which renders them amenable to straightforward detection

techniques, such as bounding box annotations. Specifically, we

employed LabelImg, an open-source graphical image annotation

tool. Users can access this tool through its GitHub repository at

[https://github.com/tzutalin/labelImg]. In the case of nematode

juvenile images, we annotated two distinct object classes: root-

knot nematode (RKN) and free-living nematode (FLN). This was

achieved through segmentation annotation, utilizing Darwin V7

developed by V7 Labs (Figures 1C, D). The vermiform body

structure of nematodes is well-suited for the use of segmentation-

based methodologies. The segmentation algorithms are particularly

effective in properly delineating objects with distinct shapes due to

the well-adapted bounds of their thin forms. Further details about

Darwin V7 can be found on the V7 Labs website: [https://

www.v7labs.com]. A total of 8655 eggs and 5379 dead eggs were

annotated from the egg images, along with 4742 RKNs and 1153

FLNs from the juvenile images.
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2.3 Model development

2.3.1 Environment setup
The training approach employed a resilient hardware setup. To

facilitate expedited computations for deep learning, a specialized

NVIDIA GTX 4080Ti Graphics Processing Unit (GPU) with a

memory capacity of 12 GB GDDR6X was employed. The necessary

computational assistance was facilitated by an Intel Core i9–10900K

processor, which possesses a default clock speed of 3.7 GHz and is

equipped with 10 cores. The efficiency of data administration and

model optimization was enhanced by the system’s utilization of 64

GB of high-speed DDR4 RAM. Additionally, the inclusion of a 1
Frontiers in Plant Science 04
terabyte Solid-State Drive (SSD) facilitates expedited data retrieval

and efficient storing of model checkpoints.

The training environment utilized Ubuntu 20.04 LTS, a widely-

adopted and reliable Linux system renowned for its robustness in

supporting deep learning activities. The utilization of GPU acceleration

was achieved by the utilization of CUDA Toolkit 11.2, which was

specifically designed for the NVIDIA GTX 4080ti GPU. The assurance

of GPU compatibility was achieved with the installation of NVIDIA

Driver version 465.19.01. Python 3.8.10 was utilized as the principal

programming language to facilitate smooth connection with deep

learning frameworks. Additionally, the OpenCV library version 4.5.3

was incorporated to enable sophisticated image processing operations.
B

C D

A

FIGURE 1

Illustrative samples of nematode egg and juvenile annotated images captured with LEITZ DM IRB. Images show eggs with low abundance (A) and
high abundance (B), annotated using bounding box annotations, as well as juveniles with low abundance (C) and high abundance (D), annotated
using segmentation.
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The Mamba package manager, which serves as a viable

alternative to Conda, was employed to handle the training

environment. The rationale for this choice was rooted in the

enhanced effectiveness of Mamba in handling package

dependencies and resolving conflicts within the environment. The

‘yolo_env’ Conda environment was constructed using Python 3.8.

The integration of Mamba into the installation process facilitated

the design of the environment and the installation of packages,

ensuring a configuration that was free from errors and efficient.

Afterwards, the necessary software packages, such as OpenCV and

other relevant components, were installed via Mamba in order to

achieve a smooth integration of libraries inside the system. This

approach not only facilitated expedited environment configuration,

but also enhanced the reliability and replicability of the

training pipeline.

2.3.2 YOLOv8 model
YOLOv8, the most recent iteration of YOLO (You Only Look

Once) object detection architecture as of January 10 in 2023, was

chosen to build a deep learning model for the classification and

detection of nematode eggs and juveniles. YOLOv8 is a highly

adaptable solution that excels in many tasks related to object

recognition and picture segmentation. It effectively combines

attributes such as speed, accuracy, and user-friendliness, resulting

in a successful and efficient approach. The versatility of the system is

demonstrated by its capacity to handle big datasets, and its

effectiveness across a range of hardware platforms, including both

CPUs and GPUs, is noteworthy. YOLOv8 stands out for its superior

performance in terms of both accuracy and execution speed

compared to other models. To set up the latest version of the

YOLOv8 library in a Python environment, the “ultralytics” package

was imported, as detailed in https://yolov8.com/. The Ultralytic

repository provides a comprehensive description of the YOLOv8

model architecture.

In a nutshell, it’s important to note that YOLOv8’s anchor-free

detection method improves its ability to handle a wide range of

object sizes and shapes, all while simplifying the training process.

The anchor-free detection in YOLOv8, predicting object centers

directly, bypassing the need for predefined anchor boxes. This

improves flexibility and efficiency, eliminating manual selection

challenges and potential suboptimal results. Additional change in

the YOLOv8 architecture which is relevant to our models is the

replacement of C3 with C2f in the backbone, which altered the

structure. Both C3 and C2f refer to distinct layers within the neural

network architecture utilized for object detection. C3 represents a

convolutional layer in the YOLO network, which comprises several

layers followed by fully connected layers. In contrast, C2f serves as

the fully connected layer succeeding the convolutional layers in

YOLO’s architecture. The C2f layer is responsible for processing the

high-level features extracted by the convolutional layers to generate

the final predictions. This alternation in the structure includes

switching a 3x3 for the initial 6x6 convolution in the stem. In

C2f, outputs from the Bottleneck are integrated, unlike in C3 where

only the final output is used. YOLOv8 still maintains YOLOv5’s

Bottleneck structure, with the first convolution shifting from 1x1 to

3x3, aligning with the REsNEt block defined in 2015.
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We employed the YOLOv8 Extra Large (YOLOv8x) model,

which is the most precise but also the slowest among the five

YOLOv8 models currently accessible. We used the default settings

for both the convolutional layers and hyperparameters. The

annotation data was divided into training and validation sets,

with 6800 eggs and 4140 dead eggs in the training set, and 1855

eggs and 1239 dead eggs in the validation set, and 3840 RKN and

897 FLN in the training set and 902 RKN and 256 FLN in the

validation set. The model’s iterations were halted when the mean

Average Precision at a 50% Intersection over Union (IoU) threshold

for bounding boxes (metrics/mAP50(B)) reached a plateau, while

the loss function indicated that the model was learning. IoU

quantifies the overlap between predicted and ground truth

bounding boxes, with values ranging from 0 to 1; 0 indicating no

overlap and 1 indicating perfect overlap. The loss function evaluates

the disparity between a model’s predicted output and the actual

target output, providing a measure of its performance on a given

task. Minimizing this loss function during training aims to enhance

accuracy in object detection. This step was taken to prevent

overfitting. The source code for developing our models is

available to readers on the author’s GitHub repository (https://

github.com/bresilla/nematode_counting).

2.3.3 GUI development
A graphical user interface (GUI) was created to seamlessly

integrate segmentation and detection models for nematode eggs and

juveniles. This GUI was built using Python and leveraged the “Tkinter”

packages. The specific capabilities and features of the GUI are

elaborated in the results section. The source code for the

development of our GUI can be accessed by readers on the author’s

GitHub repository (https://github.com/bresilla/nematode_counting).

Figure 2 demonstrates the operational workflow of SEGNEMA.

Following the user’s selection of either a singular image or a batch of

images, the application proceeds to partition the designated image

into multiple smaller segments. The user retains the autonomy to

specify the level of segmentation or opt for an undivided

representation. Subsequent to this, the segmented images undergo

simultaneous processing by two distinct models: the nematode

detection model, responsible for segmentation, and the egg

detection model, tasked with generating bounding boxes. Both

models result in outputs detailing the quantity of detected and

segmented objects. The segmented images are subsequently

consolidated, and comprehensive labels, encompassing both

detections and segmentations, are embedded. Furthermore, an

independent module examines the results, probing for potential

overlaps between segmentations and detections. To mitigate

potential anomalies, such as duplicate edge detections, a post-

consolidation step is employed to rectify redundant counts. This

de-duplication process utilizes Intersection over Union (IoU)

metrics. IoU measures the overlap between two bounding boxes

drawn around detected objects, calculated as the area of overlap

divided by the area of union between the two bounding boxes. By

setting a threshold for IoU, redundant or overlapping detections

can be effectively removed, thereby enhancing the accuracy and

efficiency of object detection systems. Additionally, instances

wherein an egg is erroneously identified as a nematode are
frontiersin.org
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addressed, with any overlaps exceeding the threshold of 60%

leading to the elimination of the misidentified egg.
2.4 Inference on unseen images

The performance of GUI SEGNEMA was evaluated using a

dataset of previously unseen images that included both eggs and

juveniles. In total, 100 images were captured, with 50 from the

Stellaris 5 Confocal LSM and 50 from the LEITZ DM IRB

microscope, each taken at a magnification of 10x. Before being

processed by the trained model, an expert conducted object

counting for each class within individual images. To evaluate the

model’s accuracy, the object count results obtained through the

trained model were compared with those determined by the expert.

In this evaluation, we examined the relationship between the two

counting approaches by calculating the correlation coefficient and

analyzing the discrepancies (residuals) between them. Furthermore,

linear regression was conducted to assess a linear relationship

between the observation and the model prediction for the classes of

eggs and J2s. Given the premise that no objects should be detected in

the absence of class objects within the images, we set the intercept to

zero. This decision was made after conducting additional test runs of

linear regression with an intercept and verifying that it was not

significantly different from zero. The analyses mentioned earlier were

carried out using R version 4.2.2, along with the default library.

Additionally, 10 well overviews from a 24-multiwell plate were

made by stitching images with the Stellaris 5 Confocal LSM at a

speed of 600 µm/s at a magnification of 10x. Each well contained

2ml of a water with both nematode eggs and juveniles. All images

being auto-captured with 10% overlap and stitched by the LAS-X

software V4.40, were processed with SEGNEMA to assess the

model’s performance. The adjacent images used in the stitching

process overlap by 10% of their width and height. This overlap helps

in ensuring smooth transitions between the images when they are

stitched together, reducing the chances of visible seams or
Frontiers in Plant Science 06
discontinuities in the final stitched image. After being processed

by the GUI, an expert performed object counting on the same 2ml

of the test suspension using the conventional method of taking

aliquot subsamples. In this method, the nematode eggs and

juveniles were individually counted in one milliliter of the

suspension in four repetitions after diluting to in total of 10ml

with water, and the average count was used to determine the total

number of test objects in the entire suspension volume. Similarly, to

the aforementioned inference images, the relationship between

the two counting approaches was analyzed by calculating

the correlation coefficient and the residuals to estimate the

discrepancy between the two approaches.
3 Results

3.1 Model trained for eggs

By the time it reached the 500th iteration, the model achieved its

highest level of accuracy. This was evident through the mean

Average Precision at a 50% Intersection over Union (IoU)

threshold for bounding boxes (metrics/mAP50(B)) reaching to

0.86, which serves as a measure of the overall quality of object

detection (Supplementary Figure 1A). Furthermore, the box loss

score suggested that the trained model was still in the midst of

learning, confirming that overfitting had not occurred yet.

(Supplementary Figure 1B). Examining the confusion matrix

(Figure 3), it was found that 94% of instances correctly identified

eggs as eggs, and 78% accurately classified dead eggs as dead eggs.

Conversely, there was a 2% error rate where instances mistakenly

categorized eggs as dead eggs, and a 9% error rate where they

erroneously labeled dead eggs as eggs. The model exhibited a failure

to detect eggs in 4% of instances and had a similar failure rate of

13% for dead eggs. In specific cases, the model also mistakenly

labeled background as one of the two classes, with an 54%

occurrence for egg and a 46% occurrence for dead egg, respectively.
FIGURE 2

The operational workflow of SEGNEMA.
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3.2 Model trained for second stage
juveniles of Meloidogyne spp.

In a manner akin to the trained model for eggs, mAP50(M),

which is similar to mAP50(B) but for segmentation, reached its

zenith at 0.87 around the 200th iteration (Supplementary

Figure 2A). Both the mAP50(M) and box loss score affirmed that

the model attained the utmost level of accuracy without the risk of

overfitting problem (Supplementary Figure 2B). Analysis of the

confusion matrix (Figure 4) revealed that J2s of RKN were correctly

identified as RKN in 93% of cases, and FLN were accurately

classified as FLN in 79% of instances. Conversely, there was a 4%

misclassification rate instances where J2s of RKN were mistakenly

categorized as FLN, and 18% misclassification rate where FLN

instances were erroneously labeled as J2s of RKN. Furthermore,

the model encountered a failure to detect 3% of instances for J2s of

RKN and 3% for FLN. In certain scenarios, the model also made the

mistake of mislabeling the background as one of the two classes.
Frontiers in Plant Science 07
When it occurs, 70% of such instances were for J2s of RKN and the

remaining 30% were for FLN.
3.3 Instructions for GUI SEGNEMA

The GUI, named SEGNEMA, was developed with individual

models trained for egg and juvenile detection and classification

(Figure 5). To use this GUI, the user system must meet certain

environment requirements; The GUI itself doesn’t need any special

requirements apart from a Python environment. However, to run

the models, the computer needs to be set up to run neural networks.

Specifically, it needs Pytorch installed. All the requirements and

setup guide are within the shared link for the code (https://

github.com/bresilla/nematode_counting). Users are prompted to

make a choice between selecting a folder or an image for analysis

through the user interface, specifying the file path accordingly. The

interface offers additional options, such as “Threshold” to establish

a detection accuracy threshold for each juvenile (“Threshold JUV”)

and egg model (“Threshold EGG”), which are set at 50% as default.

Users are responsible for adjusting the thresholds through trial and

error to achieve optimal detection performance. This can be visually

assessed by examining the location of each class object with its

bounding box and the associated detection probability values when

the models are executed using images captured with a new imaging

system. The “Set Grids” option to partition an image into selected

grid sizes. Furthermore, users need to define the output file path for

a CSV file, which contains the numbers of computer-detected

objects for each class, and for output images that display

bounding boxes indicating the object locations within the image,

as exemplified in Figure 6.
3.4 Inference for unseen images

The SEGNEMA GUI was used to perform inference on

previously unseen images containing both nematode eggs and

juveniles. The predefined thresholds were configured at 0.5 and

0.75 for juveniles, and 0.5 and 0.45 for eggs, specifically for the

Stellaris 5 Confocal LSM and LEITZ DM IRB images, respectively.

It normally took approximately 4 to 5 seconds to process a single

image with the environment facilitated in this study. The model’s

performance resulted in correlation coefficient values of 0.81 and

0.98 for J2s of RKNs, and 0.72 and 0.96 for eggs in the Stellaris 5

Confocal LSM and LEITZ DM IRB images, respectively (Table 1).

The model performed well for eggs and J2s, as evidenced by the

results in Table 1, even in scenarios where the samples were densely

populated with objects (Figure 7). The model demonstrated the

capability to differentiate between overlapped nematodes when

their heads were oriented in different directions, effectively

treating them as distinct entities. Moreover, the models exhibited

successful object detection, even when the objects were only

partially visible within the image. However, the model exhibits a

tendency to encounter difficulties when processing irregularly

shaped objects, such as nematodes forming spiral patterns or

when two objects overlap, giving the impression of a single entity.
FIGURE 4

Confusion matrix for the detection of nematode juveniles using the
YOLOv8x deep-learning model.
FIGURE 3

Confusion matrix for the detection of nematode eggs using the
YOLOv8x deep-learning model.
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On occasion, the model may mistakenly identify fibers present in

the samples or plate scratches as nematodes, particularly

categorizing them as free-living nematodes. Additionally, when

nematodes adopt a curled configuration, resembling a round

shape, the model tends to struggle in distinguishing whether it is

a nematode or an egg. The linear regression models showed that the

predicted number of eggs could be obtained by multiplying the

manual counting (observation) by 0.98 for Stellaris 5 Confocal LSM

and 0.94 for LEITZ DM IRB (P-value < 0.01). Similarly, the

predicted number of J2s could be obtained by multiplying the
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manual counting by 0.75 and 0.89 for Stellaris Confocal LSM and

LEITZ DM IRB, respectively (P-value < 0.01).

Furthermore, the performance of SEGNEMA was assessed on

10 stitched images of an entire well that contained 1 ml of nematode

suspension captured using Stellaris 5 Confocal LSM (Figure 8). The

alteration made from the aforementioned configuration for the

stitched images involved setting the grid size to 10x10 (Grid Size:

10x10). This adjustment allowed for the segmentation of a large-

scale image, such as a 69.7MB stitched image, into a 10x10 grid.

Consequently, this segmentation enabled processing by

SEGNEMA. As per the conventional counting method, the counts

of 10 stitched images for juveniles varied between 547 and 1553,

while the counts for eggs ranged from 168 to 455. In contrast, using

SEGNEMA, the counts of 10 stitched images for juveniles ranged

from 492 to 1520, and for eggs, they ranged between 182 and 432.

The correlation coefficients between the traditional nematode

counting using subsampled aliquots and the counts produced by

SEGNEMA were 0.99 for RKNs and 0.98 for eggs. The average and

median values of the residuals for the J2s of RKN were 42.5 and

38.5, respectively. Similarly, for eggs, the average and middle values

were -2.6 and -2.25, respectively. SEGNEMA processed 10 stitched

images in about 3.5 minutes, while performing the same task

manually took around 2.5 hours.
4 Discussion

Our research showcased the effectiveness of the trained models,

which attained a detection accuracy of over 90% for both life stages

of Meloidogyne spp. eggs and juveniles, a genus known for its

economic importance in various crops (Jones et al., 2013). To make

these models easily accessible, we have created an open-source

application called SEGNEMA, which can be found on the author’s

GitHub account (https://github.com/bresilla/nematode_counting).

SEGNEMA enables the simultaneous detection and classification of

nematodes and eggs. In the future, additional models can be

independently created for different genera, including cyst

nematodes like Globodera spp. and Heterodera spp., as well as

Pratylenchus spp. These models can then be seamlessly

incorporated into the same GUI through the use of transfer

learning techniques.

While our models have exhibited high accuracy in detecting and

classifying objects, they have encountered challenges that are

commonly reported in similar studies, as noted by Akintayo et al.

(2018), Been et al. (1996), and Chen et al. (2022). Like the models

developed by Akintayo et al. (2018) and Been et al. (1996), our

models faced difficulties in distinguishing overlapped objects as

distinct entities and in discerning nematodes from organic debris

within samples. Furthermore, our models exhibited reduced

detection accuracy when it came to FLN compared to the other

class objects in this study. This can be attributed to both the limited

number of instances for this particular class and the diverse range of

lengths and shapes that FLN can assume. Nevertheless, these

challenges can be mitigated by incorporating additional images

that specifically address these conditions. This study has introduced

a framework that can serve as a universal automation solution for
FIGURE 5

The interface of the GUI, SEGNEMA, which comprising the both
nematode egg and juvenile detection models using YOLOv8x deep-
learning models.
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nematode detection amidst multiple objects. However, it’s crucial to

recognize that no model is flawless, and ongoing improvements in

object detection and classification are essential. Therefore,

developers and users alike should remain vigilant in identifying

scenarios where models may fall short.

In addressing some of the challenges encountered during the

development of our model for this study, we experimented with

various techniques. Initially, we employed bounding boxes for

annotating nematodes, a method commonly used in object

detection (Huang et al., 2016), as seen in the work by Akintayo

et al. (2018). However, we found that this approach did not yield the

desired level of detection accuracy, especially when dealing with

objects like nematodes that exhibit diverse shapes, overlap with each

other, or are surrounded by debris in the sample. Subsequently,

after the unsuccessful attempt with bounding boxes, we explored

alternative annotation methods and ultimately concluded that

segmentation offered the highest level of detection accuracy. We

also investigated the utilization of the skeleton, referred to as key-

point detection, as suggested in the study by Chen et al. (2020),

which demonstrated successful detection of intertwined and
B

A

FIGURE 6

Illustrative samples of the output images of SEGNEMA, displaying the location of each class object with bounding box and their corresponding
detection probability values, on the input images captured by Stellaris 5 Confocal LSM (A) and LEITZ DM IRB (B).
TABLE 1 Correlation coefficients, mean, and median of residuals (the
number of observed instances in an image - the number of model-
predicted instances in an image) for each class taken by two different
imaging systems.

Image
system Class

Coefficient
Correlation

Residual
mean*

Residual
median

Stellaris 5
Confocal
LSM Egg 0.72 -0.32 0

Dead-egg 0.71 2.32 2

RKN 0.81 2.32 2

FLN 0.34 -2.04 -1.5

LEITZ
DM IRB Egg 0.96 0.52 0

Dead-egg 0.96 -0.82 0

RKN 0.98 4.44 4

FLN 0.10 0 0
*Residual = (observation)-(model prediction).
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overlapping worm-shaped objects. However, for the small

preliminary dataset we used, segmentation proved to be more

effective in distinguishing RKN J2s from FLN. Additionally, it’s

worth mentioning that even with 10 key-points required to

annotate an object, the process was quite labor-intensive and

frequently necessitated additional key-points, particularly when

annotating curled nematodes. With Darwin V7, the annotation

system we employed, which allows for auto-segmentation of

objects, facilitated the generation of the large annotated dataset in

our study. The utilization of segmentation has also been applied

successfully in other studies, such as the detection and phenotyping

of cysts in samples with debris, as demonstrated by Chen et al.

(2022). Segmentation proved to be a valuable technique for

annotating nematodes with diverse shapes, leading to noticeable
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enhancements in the model’s ability to correctly identify curled

nematodes as nematodes, rather than misclassifying them as eggs.

However, it’s important to note that further improvement in this

regard would benefit from an increased dataset comprising more

images depicting such cases.

Moreover, we observed a notable enhancement in our models’

object detection performance across different images and a notable

increase in the mAP50 after integrating annotated images obtained

from an additional microscope system. Specifically, the mAP50 for the

egg model improved from 0.79 to 0.86, while for the juvenile model, it

increased from 0.82 to 0.87. Prior to the inclusion of annotated images

from the LEITZ DM IRB microscope, our models exhibited high

accuracy in object detection primarily on images taken by the Stellaris

5 Confocal LSM system only. However, this performance improved
B

A

FIGURE 7

Linear regression analysis between model predictions and observation for nematode eggs (A) and Meloidogyne J2s (B) for two imaging systems.
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considerably, as illustrated in Table 1 for the final model. Despite the

fact that we utilized only two imaging systems in this study, this

expansion in the variety of images has a profound impact on the

models’ ability to achieve accurate detection. As machine learning

models benefit from exposure to a wider array of images, this

development translates to enhanced detection accuracy across

different imaging systems, beyond those used in this particular study.

An issue previously raised in the context of automated counting

systems was their reliance on specialized and costly hardware and

image analysis systems, as highlighted by Been et al. (1996). In our

study, we addressed this concern by creating a user-friendly GUI

called SEGNEMA, which is open source and freely accessible

(https://github.com/bresilla/nematode_counting). Once the

optimal detection threshold is determined for eggs and juveniles,

users should be able to maintain it consistently for the same imaging

system, streamlining the usability of SEGNEMA for their specific

needs. While SEGNEMA does necessitate a computer environment

equipped with substantial graphics processing units (GPUs), this

requirement remains reasonably accessible to a wide range of users.

The processing time per image using SEGNEMA was typically

around 4 to 5 seconds for our images, though this duration may

vary depending on the image size. This provides a significantly

faster alternative to manual labor for nematode counting,

contributing to increased efficiency and productivity in the

analysis process. For example, at a magnification of x10 and a

speed of 600 µm/s with the Stellaris 5 Confocal LSM, capturing 10

stitched images required 58 minutes. Adjusting the speed can
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enhance image resolution, but this comes at the cost of a longer

image capture time. It’s essential for readers to recognize the trade-

off between efficiency (speed) and reliability (resolution). Even

when considering the processing time using SEGNEMA, the total

time is still less than half of what is typically needed for the

conventional nematode counting method involving aliquot

subsampling. Moreover, because the imaging system’s stitching

process is automated, the waiting period during image acquisition

can be utilized for other tasks. Crucially, SEGNEMA ensures

consistency in nematode counting, uninfluenced by variations in

conditions, unlike manual counting methods.

Our research has effectively demonstrated the promising

practical applications of these models, particularly through the

user-friendly GUI that enables simultaneous detection and

classification of nematodes. Presently, this GUI is tailored for

nematode juveniles and eggs, but it possesses significant potential

for broader applications across various nematode genera and in

different media beyond aqueous solutions. The potential of

acquiring fluorescent images simultaneous with the bright field

images obtained from the confocal microscope is large and opens

doors to automated multiplex (high content) acquisition with no

time loss. Without any incubation or staining the autofluorescent

images or spectra of nematodes can e.g. provide information on

their viability (Forge and MacGuidwin, 1989), and probes can be

used to add further specificity to the nematode discrimination.

It’s also crucial to address the challenges identified in our study

and similar research endeavors. However, tackling these challenges
FIGURE 8

Illustrative sample of the output image of SEGNEMA, displaying the location of each class object with bounding box on the stitched input images
captured by Stellaris 5 Confocal LSM.
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cannot be the sole responsibility of a single laboratory or research

institution. Instead, it requires a collaborative effort, bringing

together expertise from both nematologists and AI researchers

across multiple organizations and research groups. For our GUI

to be thorough in nematode detection and diagnostics, it’s

imperative to acquire a wider array of images captured through

diverse imaging systems and develop models for different genera.

Achieving this goal necessitates enhanced collaboration with fellow

nematologists to access their image collections and tap into their

expertise in nematode diagnostics. Given the growing interest

among nematologists in harnessing the potential of machine

learning, we are confident that the development of a universal

automated nematode counting system accessible to everyone is

within reach. The authors of this paper hope that it serves as a

framework and catalyst for initiating global collaboration toward

this important goal.
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Scores of mAP50(B) (A) and Box Loss (B) over iterations for the YOLOv8x

deep-learning model for nematode egg detection.
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deep-learning model for nematode juvenile detection.
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