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and related pathways, protein
N-glycosylation and
O-GlcNAcylation: their
interconnection and
role in plants
Ya-Huei Chen and Wan-Hsing Cheng*

Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
N-Acetylglucosamine (GlcNAc), a fundamental amino sugar moiety, is essential

for protein glycosylation, glycolipid, GPI-anchor protein, and cell wall

components. Uridine diphosphate-GlcNAc (UDP-GlcNAc), an active form of

GlcNAc, is synthesized through the hexosamine biosynthesis pathway (HBP).

Although HBP is highly conserved across organisms, the enzymes involved

perform subtly distinct functions among microbes, mammals, and plants. A

complete block of HBP normally causes lethality in any life form, reflecting the

pivotal role of HBP in the normal growth and development of organisms.

Although HBP is mainly composed of four biochemical reactions, HBP is

exquisitely regulated to maintain the homeostasis of UDP-GlcNAc content. As

HBP utilizes substrates including fructose-6-P, glutamine, acetyl-CoA, and UTP,

endogenous nutrient/energy metabolites may be integrated to better suit

internal growth and development, and external environmental stimuli.

Although the genes encoding HBP enzymes are well characterized in microbes

andmammals, they were less understood in higher plants in the past. As the HBP-

related genes/enzymes have largely been characterized in higher plants in recent

years, in this review we update the latest advances in the functions of the HBP-

related genes in higher plants. In addition, HBP’s salvage pathway and GlcNAc-

mediated twomajor co- or post-translational modifications, N-glycosylation and

O-GlcNAcylation, are also included in this review. Further knowledge on the

function of HBP and its product conjugates, and the mechanisms underlying

their response to deleterious environments might provide an alternative strategy

for agricultural biofortification in the future.
KEYWORDS

N-acetylglucosamine, hexosamine biosynthesis pathway, salvage pathway,
N-glycosylation, O-GlcNAcylation, abiotic stress
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1 Introduction

Plants, as sessile organisms, frequently suffer from deleterious

environmental stimuli. Many cellular metabolic processes, such as

carbohydrates, amino acids, lipids, and energy metabolism, are

influenced by different developmental stages and abiotic stresses

(Van Zelm et al., 2020; Mansour and Hassan, 2022). In response to

developmental changes and external challenges, plants have evolved

sophisticated mechanisms to better suit plant growth and

environmental changes by integrating their internal metabolic

status and optimizing metabolic reprogramming. One of these

metabolic processes is the so-called hexosamine biosynthesis

pathway (HBP), which utilizes fructose-6-phosphate (Fru-6-P),

glutamine, acetyl-coenzyme A (acetyl-CoA), and uridine

triphosphate (UTP) as substrates to synthesize uridine

diphosphate-N-acetylglucosamine (UDP-GlcNAc) (Figure 1). As

the metabolic flux through HBP integrates glycolysis, amino acid,

lipid, and nucleic acid pathways to maintain their balance and keep

UDP-GlcNAc homeostasis, HBP may function as a metabolic

integrator or hub for sensing nutrients (Buse, 2006; Chiaradonna

et al., 2018) to link cellular nutrients/or energy signals and external

cues. The HBP flux that generates UDP-GlcNAc is primarily

regulated by the rate-limiting enzyme glutamine:fructose-6-

phosphate amidotransferase (GFAT) activity and the obligatory

substrate of O-linked GlcNAc transferase (OGT). The increased

flux through HBP might be linked to insulin resistance, the vascular

complications of diabetes, and cancer formation in mammals (Buse,

2006; Chiaradonna et al., 2018).
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UDP-GlcNAc, the active form of GlcNAc, is a fundamental

amino sugar moiety essential for the glycosylation of proteins and

lipids (Ebert et al., 2018), glycosylphosphatidylinositol (GPI)-anchor

proteins (Lalanne et al., 2004), a cell wall component of chitin in

yeast, and an exoskeleton of arthropods (Maia, 1994; Kato et al.,

2002; Arakane et al., 2011). UDP-GlcNAc is synthesized through an

HBP that involves four consecutive reactions orderly catalyzed by a

GFAT (Hassid et al., 1959; Durand et al., 2008), a glucosamine-6-P

N-acetyltransferase (GNA) (Vetting et al., 2005; Wang et al.,

2008a), an N-acetylglucosamine-phosphate mutase (AGM)/or

phosphoacetylglucosamine mutase (Mio et al., 2000), and an N-

acetylglucosmine-1-P-uridylyltransferase (GlcNAc1pUT, Yang et al.,

2010) or a UDP-N-acetylglucosamine pyrophosphorylase (UAP;

Wang et al., 2015, Wang et al., 2021). These processes are essential

for cell growth and stress response and are conserved across

organisms (Milewski et al., 2006). Dysfunction of HBP enzymes

frequently causes severe phenotypes (Schimmelpfeng et al., 2006);

moreover, a complete block of HBP normally results in lethality in

yeast, mammals, and plants (Milewski et al., 2006; Chen et al., 2014;

Pantaleon, 2015; Vu et al., 2019; Jia et al., 2023).

In the past, the function and regulation of HBP have been more

intensively studied in microbes and mammals than in plants. The

application of HBP products or intermediates through dietary

treatment has been proposed as a therapy for human genetic

disorders (Paneque et al., 2023). Elegant reviews have been

recently reported on the function and regulation of HBP, which

are primarily stressed in microbes (Wyllie et al., 2022) and

eukaryotes of mammals (Paneque et al., 2023); however, an
BA

FIGURE 1

UDP-GlcNAc biosynthesis through hexosamine biosynthesis and salvage pathways. (A) Hexosamine biosynthesis and salvage pathways. The
hexosamine biosynthesis pathway (HBP) is composed of four reactions catalyzed sequentially by glutamine:Fru-6-P amidotransferase (GFAT),
glucosamine-6-P N-acetyltransferase (GNA), N-acetylglucosamine-phosphate mutase (AGM) and N-acetylglucosamine-1-P uridylyltransferase
(GlcNAc1pUT or UAP) to synthesize uridine diphosphate N-acetylglucosamine (UDP-GlcNAc). UDP-GlcNAc is presumably interconverted to UDP-N-
acetylgalactosamine (UDP-GalNAc) by an uncharacterized UDP-Glc-4-epimerase (UGE) in plants. In the salvage pathway (purple lines), GlcN is used
and converted to GlcN-6-P catalyzed by a hexokinase (HK), followed by entering HBP to form UDP-GlcNAc. In addition, GlcNAc can be converted
to GlcNAc-6-P catalyzed by an N-acetylglucosamine kinase (GNK); GlcNAc-6-P further enters the HBP to form UDP-GlcNAc. The green dashed
lines represent HBP in prokaryotes. This HBP diagram is modified from Furo et al. (2015) and Chen et al. (2022). (B) Biochemical structures of HBP.
These chemical structures are derived from the BRENDA database (https://www.brenda-enzymes.org/fulltext.php?overall=1).
frontiersin.org

https://www.brenda-enzymes.org/fulltext.php?overall=1
https://doi.org/10.3389/fpls.2024.1349064
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Chen and Cheng 10.3389/fpls.2024.1349064
overview of HBP functions in plants is lacking. As research progress

has greatly advanced in plant HBP study in recent years, in this

review, we update our current knowledge of HBP function in plants

and its stress responses. In addition, we provide an overview of the

salvage pathway of HBP and the targets of UDP-GlcNAc in two

major co- or post-translational modifications, N-linked

g lycosy la t ion (N-g lycosy la t ion) and O- l inked b -N-

acetylglucosamine (O-GlcNAcylation). Further knowledge of HBP

function and its response to abiotic stress may provide an

alternative strategy to manipulate plant growth and tolerance to

abiotic stress.
2 Hexosamine biosynthesis
pathway enzymes

2.1 L-glutamine:D-fructose-6-
phosphate amidotransferase

The first committed step of HBP is the transamination of D-

fructose-6-phosphate from L-glutamine to form D-glucoamine-6-

phosphate and L-glutamate, catalyzed by an L-glutamine:D-

fructose-6-phosphate amidotransferase (GFAT; EC2.6.1.16)

(Figure 1), also known as glucosamine-6-phosphate synthase

(GlcN6P synthase). GFAT acts as the rate-limiting enzyme in the

de novo HBP in fungi and animals (Olchowy et al., 2007; Walter

et al., 2020; Paneque et al., 2023). Based on its origins in prokaryotes

and lower or higher eukaryotes, the GFAT-encoded gene has been

termed Glms, GFA, or GFAT (Durand et al., 2008). The function of

GFAT is conserved among organisms, including microorganisms,

mammals, and plants (Milewski et al., 2006). Yeast GFA1 activity is

inhibited by UDP-GlcNAc and this inhibition is noncompetitive. In

the pathogenic yeast Candida albicans, GFA activity increases

during the yeast-to-mycelium morphological transformation,

ensuring that UDP-GlcNAc production is increased when more

amino sugars are needed in mycelium cells (Milewski et al., 1999,

Milewski et al., 2006). GFA1 is the primary target molecule of

methylmercury in Saccharomyces cerevisiae and yeast cells

overexpressing GFA1 confer resistance to methylmercury, an

important environmental pollutant that causes neurological

toxicity in mammals (Miura et al., 1999; Naganuma et al., 2000).

In plants, GFAT activity was first described by Hassid et al.

(1959), and GFAT activity from mung bean Phaseolus aureus was

partially purified and characterized (Vessal and Hassid, 1972). The

Arabidopsis genome only contains a single copy of the GFAT gene

(At3g24090), termed GFAT1, and its expression is primarily

restricted to mature pollen grains (Wang et al., 2008b; Vu et al.,

2019). Nevertheless, Arabidopsis GFAT1 transcripts are also

detectable in roots, flowers, and siliques by reverse transcription-

quantitative polymerase chain reaction (RT-qPCR) (Jia et al., 2023).

The loss-of-function AtGFAT1 displays defects in a polar

deposition of pectin and callose in the pollen wall, leading to

inactivation of pollen activity; thus, the knockout mutant Atgfat1-

2 is lethal. In contrast, the knockdown mutant Atgfat1 or GFAT1

RNAi lines show reductions in glucosamine (GlcN) and UDP-
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GlcNAc levels in association with the reduced protein N-

glycosylation but increased sensitivity of tunicamycin, an ER

stress inducer agent. The RNAi lines also impair vegetative and

reproductive development and display partial sterility. The

abnormal phenotypes observed in Atgfat1 can be largely rescued

by the exogenous application of GlcN (Vu et al., 2019). It was

reported that GlcN inhibits Arabidopsis hypocotyl elongation due

to the induction of reactive oxygen species (ROS). Arabidopsis

transgenic plants overexpress E. coli glucosamine-6-phosphate

deaminase (NagB) to scavenge endogenous GlcN and confer

tolerance to oxidative, drought, and cold stresses. Moreover,

overexpression of E. coli GlmS in Arabidopsis promotes cell death

at an early stage (Chu et al., 2010).
2.2 D-Glucosamine-6-phosphate
N-acetyltransferase

The second enzyme in the HBP pathway is D-Glucosamine-6-

phosphate N-acetyltransferase (GNA; EC 2.3.1.4), which converts

GlcN-6-phosphate and acetyl-CoA to N-acetylglucosamine-6-

phosphate (GlcNAc-6P) and CoA (Figure 1). GNA is a single-

copy gene in the genome of most characterized organisms

characterized. For example, the yeast S. cerevisiae gene (YFL017C)

was demonstrated to exhibit GNA activity and is thus designated as

ScGNA1 (Mio et al., 1999). Additionally, the Arabidopsis genome

also contains one GNA (AtGNA, At5g15770), the expression of

which is ubiquitous in all organs (Riegler et al., 2012) and shows a

slightly diurnal expression pattern (Usadel et al., 2008). In contrast

to Arabidopsis, rice possesses two GNAs, including OsGNA1

(LOC_Os09g31310) and OsGNA (LOC_Os02g48650). OsGNA1 is

highly expressed in root tissues (Jiang et al., 2005) but OsGNA is

less characterized (Riegler et al., 2012) and has low expression levels

in all tissues as revealed by the rice eFP browser (Jain et al., 2007).

Based on the transient expression of the AtGNA-GFP fused protein

in Arabidopsis protoplasts, its subcellular localization is primarily in

the endoplasmic reticulum (ER) (Riegler et al., 2012), This result

supports the role of UDP-GlcNAc, the end product of the HBP

pathway, in protein glycosylation and synthesis of the GPI anchor

in the ER. It was observed that deletion of yeast ScGNA1 or AfGNA1

and the loss-of-function of AtGNA by a T-DNA insertion

(AtGNA1-2 and AtGNA1-3), resulting in a complete block of

GlcNAc production, is lethal (Mio et al., 1999; Riegler et al., 2012;

Lockhart et al., 2020); this phenotype is similar to that obtained for

the knockout mutants of Arabidopsis in GFAT, phospho-N-

acetylglucosamine mutase or the double mutant glcnac.ut1/

glcnac.ut2 (Chen et al., 2014; Vu et al., 2019; Jia et al., 2023). This

result also reflects the vital role of UDP-GlcNAc in plant growth.

Although AtGNA has a low protein sequence identity to Homo

sapiens HsGNA (~39.1%) and S. cerevisiae ScGNA (~35.0%), this

protein crystal structure at 1.5 Å resolution exhibited very high

structural similarity to these two orthologs (Riegler et al., 2012).

An EMS-mutagenized missense mutation in Arabidopsis GNA,

known as lignescens (lig), causes plant growth defects and ectopic

lignin accumulation under high temperature (28°C) conditions.

Compared to the wild type, the ligmutant plants exhibit lower levels
frontiersin.org
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of UDP-GlcNAc than the wild type, accompanied by defects in N-

linked protein glycosylation, ER stress, and unfolded protein

response (UPR). Supporting evidence reveals the upregulation of

BiP3 expression, an ER stress marker, under high-temperature

conditions and treatments with the ER stress-inducing agents,

tunicamycin, and DTT, resulting in plants with phenotypes that

mimic the lig mutant. Moreover, exogenous application of UDP-

GlcNAc, GlcNAc, or GalNAc rescues the high-temperature

sensitivity and ectopic accumulation of lignin observed in the

gna/lig mutants. Thus, dysfunction of GNA causes a high-

temperature-dependent defect in UDP-GlcNAc biosynthesis,

which further affects N-linked protein glycosylation and lignin

accumulation, mostly through the UPR (Nozaki et al., 2012).

The function of rice OsGNA1 was also reported by Jiang et al.

(2005). Osgna1 is a T-DNA insertion mutant that shows lower

levels of UDP-GlcNAc and defects in N-linked protein

glycosylation, as well as a reduction in O-linked glycosylation

activity. The short-root phenotype of Osgna1 is temperature-

sensitive, particularly at 25°C, which can be largely rescued by a

high temperature of 32°C. This low temperature-sensitive response

in rice may be opposite to that of the Arabidopsis Atgna mutant,

which shows greater sensitivity to high temperature. This

discrepancy remains to be investigated in the future. These short

roots observed in Osgna1 are linked to defects in mitochondrial

dehydrogenase activity, root viability, cell shape, and microtubule

stability. The latter may result from a defect in O-linked

glycosylation of microtubule-associated proteins (Jiang et al., 2005).
2.3 N-acetylglucosamine-phosphate
mutase/phosphoacetylglucosamine mutase

N-acetylglucosamine-phosphate mutase (AGM; EC 5.4.2.3) or

phosphoacetylglucosamine mutase catalyzes the isomerization of

N-acetylglucosamine-6-P (GlcNAc-6-P) into N-acetylglucosamine-

1-P (GlcNAc-1-P) (Figure 1). The growth of the yeast ScAGM

deletion mutant (Scagm) cannot progress through five cell cycles.

Overexpression of ScAGM may complement the growth defect of a

phosphoglucomutase (PGM) double deletion mutant (pgm1/pgm2);

however, overexpression of ScPGM2, a major PGM, cannot restore

the growth of Scagm1 deletion mutant cells. These data suggested

that the different hexosephosphate mutases of S. cerevisiae share

partially overlapping substrate specificities but they have distinct

physiological functions (Hofmann et al., 1994). In mice, severely

reduced AGM1/PGM3 activity causes lethality during embryonic

development, whereas mutated mice with partial AGM1/PGM3

activity do not perish but display severe syndromes, such as sterility

(Greig et al., 2007). Human patients with mutations in PGM3/

AGM1 will die in early infancy or have congenital immune system

defects, developmental delays, and neurocognitive disorders (Ben-

Khemis et al., 2017).

The Arabidopsis AGM gene (At5g18070) was first identified by

selecting for complementation of Escherichia coli UV-sensitive

mutants, and the identified gene was termed DNA-DAMAGE-

REPAIR/TOLERANCE 101 (DRT101). The N-terminus of AGM/

DRT101 contains an amino acid region similar to the chloroplast
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transit peptide, suggesting its possible subcellular localization in

chloroplasts (Pang et al., 1993). Arabidopsis AGM shares 38 to 44%

amino acid identity with Homo sapiens, S. cerevisiae, and Aspergillus

fumigatus, and their protein structures are highly conserved. Although

two members of the Arabidopsis a-D-phosphoglucosamine mutase

family, At5g17530 and At1g70820, are phylogenetically similar to

AtAGM, only AtAGM functions in the isomerization of GlcNAc-1-P

and GlcNAc-6-P. AtAGM has promiscuous substrates and catalyzes

the interconversion of GlcNAc-1-P and GlcNAc-6-P and Glc-1-P and

Glc-6-P; the catalytic reaction by AtAGM requires divalent cations,

such as Mg2+ or Mn2+ (Jia et al., 2023).

Based on the RT-qPCR analyses, AtAGM is highly expressesed

in the roots, flowers, and siliques, similar to the AtGFAT expression

pattern. Moreover, unlike other HBP enzymes present in the cytosol

or ER membrane surface, overexpression of the 35S::AGM-GFP

transgene in the Atagm background, i.e., Atagm-OE, reveals

AtAGM localization in the cytosol, cytomembrane, chloroplasts,

and mitochondria (Jia et al., 2023).

Similar to other HBP mutants, the homozygous knockout

mutants, such as Atagm2 (SAIL_187_F01) are lethal; however, the

knockdown mutants, Atagm1 (SALK_039132C) and Atagm2 (+/-)

can survive. The expression of the AtAGM gene in both Atagm1 and

Atagm2 (+/-) is greatly reduced, and these mutants show a ~40%

reduction in UDP-GlcNAc content compared to wild-type plants.

Interestingly, overexpression of AtAGM in the Atagm background,

i.e., Atagm-OE, does not increase UDP-GlcNAc contents; this likely

results from feedback inhibition of UDP-GlcNAc, which affects the

glutaminase function of GFAT (Olchowy et al., 2007; Walter et al.,

2018; Vu et al., 2019). Thus, exogenous tunicamycin impairs UDP-

GlcNAc inhibition and enhances AtGFAT activity, leading to

increasingly higher levels of UDP-GlcNAc in Atagm-OE plants

than in the wild-type plants (Jia et al., 2023). Thus, HBP is

exquisitely regulated to maintain UDP-GlcNAc homeostasis,

which plays a critical role in normal plant growth and

development. Although these knockdown mutants display no

conceivable phenotype, they show more vigorous growth than the

wild type and Atagm-OE at maturity under normal growth

conditions. This vigorous growth observed in the mutants

presumably results from high chlorophyll contents that enhance

photosynthetic capability. Moreover, these mutants show

temperature-dependent (28°C) growth defects, including short

roots and germination delay. Temperature-sensitive phenotypes

can be abolished by exogenous UDP-GlcNAc (Jia et al., 2023).

These data suggest that a small amount of UDP-GlcNAc is sufficient

for normal plant growth, which is also observed in mouse

embryonic fibroblasts (Boehmelt et al., 2000). However, plants

need more UDP-GlcNAc when adapting to abiotic stress, and the

mutant plants, such as Atagm1 and Atagm2 (+/-), cannot produce

adequate UDP-GlcNAc under deleterious environments, leading to

stress-induced growth defects.

Total protein blots stained with concanavalin A (ConA) lectin

revealed that glycoproteins show no significant difference, whereas

the N-glycan composition varies among wild type, Atagm2 (+/-), and

Atagm-OE. Moreover, an obvious impairment of O-GlcNAcylation

is observed in the Atagm mutants. The temperature-sensitive

growth defects are primarily linked to the impairment of protein
frontiersin.org
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O-GlcNAcylation but not N-glycosylation because the O-

GlcNAcylation deficient mutants Atsecs, in which O-GlcNAc

transferase (OGT, Figure 2) is defective, also display temperature-

sensitive phenotypes; however, no significant phenotype was

observed in the N-glycosylation deficient mutant Atstt3a, in which

oligosaccharyltransferase (OST, Figure 2) is defective (Jia et al., 2023).
2.4 N-acetylglucosamine-1-P
uridylyltransferase/or UDP-N-
acetlyglucosamine-1-P pyrophosphorylase

The last reaction of HBP is the uridylation of GlcNAc-1-P into

UDP-GlcNAc by N-acetylglucosamine-1-P uridylyltransferase

(GlcNAc1pUT), named after a forward catalytic reaction (Yang

et al., 2010) or UDP-N-acetylglucosamine-1-P pyrophosphorylase

(UAP; EC 2.7.7.23), named after a reverse reaction (Figure 1).

Although the biosynthesis of UDP-GlcNAc in prokaryotes and

eukaryotes is similar, their catalytic specificity is diverse (Mengin-

Lecreulx and Van Heijenoort, 1993). In bacteria, GlmU is a

bifunctional enzyme that exhibits both the phosphoglucosamine

acetyltransferase and UDP-N-acetylglucosamine pyrophosphorylase

activities; however, these two enzymatic activities are encoded by
Frontiers in Plant Science 05
distinct essential genes in eukaryotes. Thus, GlmU catalyzes the

acetylation of GlcN-1-P into GlcNAc-1-P followed by the

uridylation of GlcNAc-1-P into UDP-GlcNAc (Figure 1, green

dashed line). Inactivation of the GlmU gene reduces glycoprotein

synthesis, leading to changes in cell shape and lysis changes (Mengin-

Lecreulx and Van Heijenoort, 1993). In yeast, a null mutation of yeast

UAP1/QRI1 is lethal, which mainly shows swollen and lysed cell

shapes (Mio et al., 1998). In Drosophila melanogaster, the cabrio/

mummy mutant derived from EMS mutagenesis loses DmUAP

function and exhibits defects in dorsal closure, central nervous

system, and embryo development (Schimmelpfeng et al., 2006). Two

human UAPs (AGX1 and AGX2) were identified with only a 17-

amino acid difference and these UAPs were derived from alternative

splicing and led to preferential substrate specificity in GalNAc-1-P and

GlcNAc-1-P, respectively (Wang-Gillam et al., 1998; Peneff

et al., 2001).

In Arabidopsis, two UAPs termed GlcNAc1pUT1 and

GlcNAc1pUT2 are encoded by GlcNA.UT1 and GlcNA.UT2,

respectively. They were first cloned and their biochemical

specificity was characterized by Yang et al. (2010). In general,

GlcNAc1pUT1 uses GlcNAc-1-P or GalNAc-1-P as substrates

together with UTP to form UDP-GlcNAc or UDP-GalNAc and

PPi. This uridylation activity is similar to that of human AGX1.
FIGURE 2

Schematic diagram of N-glycosylation and O-GlcNAcylation. GlcNAc is the fundamental amino sugar moiety essential for N-glycosylation and
GlcNAcylation. (A) N-glycosylation. UDP-GlcNAc is generated by the hexosamine biosynthesis pathway (HBP) and provides GlcNAc for the initial
biosynthesis of oligosaccharide precursors at the cytosolic side of the ER. The oligosaccharide precursor (Man5GlcNAc2-PP-Dol) enters the ER
lumen for N-glycan modification and N-glycosylation of proteins. Complex and hybrid N-glycan processing occurs in the Golgi apparatus. Proteins
with mature N-glycans will be secreted to their destinations. (B) O-GlcNAcylation. UDP-GlcNAc also provides the GlcNAc molecular unit directly to
the Ser/Thr amino acids of proteins localized in the cytosol and nucleus. (1) Asparagine-linked glycosylation (ALG) enzyme ALG7, a UDP-N-
acetylglucosamine:dolichol phosphate N-acetylglucosamine-1-P transferase; (2) ALG13 and ALG14, UDP-N-acetylglucosamine transferase subunits;
(3) ALG1/2/11, mannosyltransferases; (4) Flippase-like protein; (5) ALG3/9/12, mannosyltransferases; (6) ALG6/8/10, glucosyltransferases; (7) OST,
oligosaccharyltransferase complex; (8) GCSI/II, glucosidases; (9) MNS3, ER-a-mannosidase I; (10) MNS1/2, Golgi-a-mannosidase I; (11) GnTI, b-(1-
>2)-N-acetylglucosaminyltransferase I or COMPLEX GLYCAN LESS 1 (CGL1); (12) GMII, Golgi a-mannosidase II; (13) GnTII, b-(1->2)-N-
acetylglucosaminyltransferase II; (14) XYLT, b-(1->2)-xylosyltransferase; FUT11/12, core a-(1->3)-fucosyltransferases; GALT1, b-(1->3)-
galactosyltransferase 1; FUT13, a-(1->4)-fucosyltransferase; (15) SEC, SECRET AGENT (O-GlcNAc transferase, OGT); ROCK1, REPRESSOR OF
CYTOKININ DEFICIENCY 1; UGNT1, UDP-GlcNAc transporter; NOPE1, NO PERCEPTION 1. The nomenclature of enzymes is generally based on the
report by Strasser et al. (2021).
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GlcNAc1pUT2 has broader substrate specificities and may utilize

Glc-1-P as a substrate in addition to GlcNAc-1-P and GalNAc-1-P.

Thus, the enzymatic activity of AtGlcNAc1pUT2 is closer to that of

yeast UAP1/QRI1 (Mio et al., 1998) and rice OsUAP1/SPL29

(Wang et al. , 2015). The substrate specificity between

GlcNAc1pUT1 and GlcNAc1pUT2 is likely related to their

protein structures, which share a similar fold but vary in some

loop regions. The biochemical assay also indicated that Arabidopsis

GlcNAc1pUTs require divalent ions (such as Mg2+ or Mn2+) for

their enzymatic activity. Gel-filtration analysis revealed the

monomer structure of the native GlcNAc1pUT1 protein (Yang

et al., 2010), which is different from the dimer structure of human

AGX1 (Wang-Gillam et al., 1998) and yeast UAP1/QRI1 (Milewski

et al., 2006). Although GlcNAc1pUT1 and human AGX1 share 32%

protein sequence identity, their three-dimensional protein structure

models display a conserved catalytic fold and key conserved motifs

(Yang et al., 2010).

AtGlcNAc1pUT1 may utilize both UDP-GlcNAc and UDP-

GalNAc as substrates (Yang et al., 2010). UDP-GalNAc has been

found in several plant species, including squash (Tolstikov and Fiehn,

2002) and dahlia tubers (Gonzalez and Pontis, 1963). In barley, UDP-

Glc 4-epimerase or UDP-Gal 4-epimerase (UGE; EC 5.1.3.2)

catalyzes the interconversion of UDP-Glc and UDP-Gal; the

enzyme can also reversibly catalyze UDP-GlcNAc and UDP-

GalNAc (Zhang et al., 2006). Although several UGE genes have

been cloned in plants, such as peas, Arabidopsis, and the

endospermous legume guar (Dörmann and Benning, 1996; Lake

and Slocum, 1998; Joersbo et al., 1999), the GalNAc targets of glycans

and glycoproteins and their physiological significance remain to be

further examined. As UDP-GlcNAc and UDP-GalNAc contain the

same molecular mass, they cannot be distinguished by mass

spectrometry analysis. Specific HPLC analysis can separate these

two hexosamines obtained from Arabidopsis tissues (Nozaki et al.,

2012). In general, UDP-GlcNAc is more abundant than UDP-

GalNAc in plant tissues under normal or temperature-stress

conditions (Nozaki et al., 2012).

Mutation of Arabidopsis GlcNAc.UT1 or GlcNAc.UT2 shows no

conceivable phenotype, whereas the double mutant is lethal (Chen

et al., 2014), reflecting functional redundancy and the pivotal role of

these genes in normal plant growth and development. The

heterozygous double mutant GlcNA.UT1/glcna.ut1 glcna.ut2/

glcna.ut2 obtained from the F2 segregating population following

reciprocal crosses of glcna.ut1 and glcna.ut2, displays sterility.

Furthermore, this heterozygous double mutant reveals the

aberrant transmission of (glcna.ut1, glcna.ut2) gametes, which is

consistent with the defects in male gametophytes during late

vacuolation (or pollen mitosis I stage) and in female

gametophytes during the uninucleate embryo sac stage.

Interestingly, one normal allele of GlcNA.UT2 in the glcna.ut1/

glcna.ut1 GlcNA.UT2/glcna.ut2 mutant has normal gamete

transmission of (glcna.ut1, glcna.ut2) and gametophytic

development, except that the development of numerous embryos

is arrested during the early globular stage (Chen et al., 2014). Thus,

GlcNA1pUT1 and GlcNA1pUT2 differentially regulate

gametophytic and embryonic development, which may be

associated with their spatiotemporal expression, subtle difference
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in GlcNAc1pUTase activity, and metabolic complementation

(Bonhomme et al., 1998). To further study Arabidopsis GlcNA.UT

function, the RNAi transgenic plants, termed iU1s, were generated

by RNA interference of GlcNA.UT1 expression in the glcna.ut2 null

mutant background. The iU1 transgenic plants resemble the

heterogeneous double mutant GlcNA.UT1/glcna.ut1 glcna.ut2/

glcna.ut2 showing sterility under normal growth conditions. The

iU1s possess normal levels of hexosamine (UDP-GlcNAc and UDP-

GalNAc) compared to the wild type under normal growth

conditions, whereas they show reduced hexosamine biosynthesis,

altered protein N-glycosylation, and an unfolded protein response

under salt-stressed conditions. Moreover, the iU1s confer slat

hypersensitivity, including delay of seed germination and early

seedling establishment, in association with the induction of ABA

biosynthesis and its signal networks under salt stress. Furthermore,

microarray analysis data support the upregulation of genes involved

in ABA (such as NCED3, ABI5, and ABCG25) and salt stress

responses (such as RD29A, RD29B, and DREB2A) (Chen

et al., 2022).
2.4.1 Biochemical variations and UDP-
GlcNAc transport

Likewise, rice GlcNA.UTs termed UAP1 or SPOTTED LEAF 29

(SPL29) and UAP2 (Wang et al., 2015, Wang et al., 2021) can catalyze

GlcNAc-1-P and GalNAc-1-P as substrates to form UDP-GlcNAc

(Xiao et al., 2018; Wang et al., 2021). OsUAP1/SPL29 irreversibly

catalyzes the decomposition of uridine 5’-diphosphoglucose (UDPG)

to form UTP and Glc-1-P. The loss-of-function Osuap1/spl29mutant

accumulates UDPG, which may be involved in ROS accumulation,

early leaf senescence, plant cell death (PCD), and leaf lesion mimics

(or defense response) (Wang et al., 2015; Xiao et al., 2018). It remains

unknown whether Arabidopsis GlcNAc1pUTs may use UDPG as a

substrate similar to rice. As spotted leaves are a lesion-mimic

phenotype of the hypersensitive response, the Osuap1/spl29 mutant

causes induction of the defense response by upregulation of defense-

responsive genes and bacterial blight resistance. In addition, early leaf

senescence and defense response enhancement are linked to the

accumulation of jasmonic acid, abscisic acid, and reactive oxygen

species (ROS) in Osuap1/spl29 mutant plants (Wang et al., 2015).

OsUAP2 overexpression may rescue Osuap1/spl29 mutant

phenotypes, reflecting that they share functional redundancy.

OsUAP2 is primarily expressed in the early leaf development and

OsUAP1/SPL29 at the whole leaf developmental stages, and both genes

synergistically regulate rice leaf development and protect them from

early senescence (Wang et al., 2021). Thus, unlike Arabidopsis single

mutant glcna.ut1 or glcna.ut2, which show no conceivable phenotype,

the single Osuap1/spl29 mutant displays early senescence and lesion-

mimic spotted leaves, presumably indicating that rice plants are more

sensitive to the defense response. The functions of HBP-related genes/

proteins are summarized in Table 1.

It was reported that NO PERCEPTION 1 (NOPE1) acts as the

GlcNAc transporter localized in the plasma membrane of the root

tissues of rice and maize. NOPE1 transports GlcNAc into the

rhizosphere, where it serves as a molecular signal to enhance

branching hyphae of arbuscular mycorrhiza (AM) and benefit the
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symbiosis between AMs and host plants (Nadal et al., 2017).

Arabidopsis genome contains UDP-GlcNAc transporters, one was

termed UDP-GlcNAc transporter (UGNT1; At4g32272), in the

Golgi membrane, which transports UDP-GlcNAc from the

cytosol to the Golgi to initiate complex glycan processing. The

Atugnt1 null mutant plants lack complex and hybrid N-glycans, and

the N-glycopeptides primarily contain high-mannose structures.

Moreover, AtUGNT1 is also needed for the biosynthesis of

GlcNAc-containing glycosyl inositol phosphorylceramides

(GIPCs) (Ebert et al., 2018). Another transporter for UDP-

GlcNAc and UDP-GalNAc is the REPRESSOR OF CYTOKININ

DEFICIENCY 1 (ROCK1, At5g65000), which is localized in the ER

membrane and involved in ER quality control. The Atrock1 mutant

reduces the activity of cytokinin oxidases/dehydrogenases (CKXs,

cytokinin-degrading enzymes) and impairs the cytokinin-deficient

mutant phenotype. Although the N-glycosylation of CKX1 is not

affected in Atrock1, the stability of CKX1 is enhanced in the mutant

(Niemann et al., 2015) (Figure 2). The function of ROCK1 in

providing UDP-GlcNAc for the ER lumen remains unknown

because GlcNAc conjugates in the ER have not been uncovered to

date. One possibility is that UDP-GlcNAc in the ER may be
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transported to the Golgi apparatus for complex glycan

modification (Ebert et al., 2018).
3 Salvage pathway of GlcN
and GlcNAc

In addition to de novo biosynthesis through HBP, UDP-GlcNAc

can be generated by the salvage pathway. In mammals, GlcN and

GlcNAc can be retrieved from environmental resources and the

degradation of glycans or glycoconjugates. These salvage nutrients

can be used as dietary supplements to benefit from the treatment of

disorders linked to glycosylation. GlcN can be phosphorylated to

form GlcN-6-P by hexokinase and then enters the HBP to produce

UDP-GlcNAc (Figure 1, purple line) (Kornfeld, 1967; Krug et al.,

1984). In Arabidopsis, the exogenous application of GlcN to Atgfat1

mutant plants may rescue mutant phenotypes, indicating that the

GlcN can be converted into GlcN-6-P, which further enters HBP to

form UDP-GlcNAc (Vu et al., 2019).

GlcNAc can be phosphorylated to form GlcNAc-6-P by

GlcNAc kinase (GNK) or N-acetylglucosamine kinase (NAGK)
TABLE 1 Summary of HBP-related gene functions.

Enzyme Other
names

Substrates Products Localization Stress Mutant phenotypes

Glutamine:Fru-6-P
amidotransferase
(GFAT) (A13g24090)

GFAT, GlcN6P
synthase
(eukaryotes);
Glms
(prokaryotes);
GFA
(lower
eukaryotes)

D-Fru-6-P
L-glutamine

D-GlcN-6-P
L-glutamate

Cytoplasm2 Oxidation,
drought, cold

Inactive pollen activity, reduced GlcN,
UDP-GlcNAc, and protein N-glycosylation;
impaired plant development and partial
sterility; increased tunicamycin sensitivity

GlcN-6P acetyltransferase
(GNA) (At5g15770)

GNA1 (yeast,
rice) GNA
LIG
(Arabidopsis)

D-GlcN-6-P
acetyl-CoA

GlcNAc
CoA

ER Arabidopsis:
sensitive to
high
temperature
(28 °C) rice:
sensitive to
low
temperature
(25°C)

Arabidopsis: reduced UDP-GIcNAc, protein
N-glycosylation, and O-GlcNAcylation
activity; induced ER stress and UPR; rice:
temperature-dependent root elongation and
lignin deposition

N-acetylglucosamine-
phosphate mutase (AGM)
or
phosphoacetylglucosamine
mutase (A15g18070)

AGM, DRT101
(Arabidopsis);
AGM1/
PGM3 (mice)

GlcNAc-6-P
Glc-6-P

GlcNAc-1-P
Glc-1-P

Cytosol,
cytomembrane,
chloroplast,
mitochondrium

Temperature Arabidopsis: vigorous growth, reduced
UDP-GIcNAc; high temperature-dependent
(28°C) growth defects, including short roots
and germination delay; impairment of
O-GlcNAcylation

N-acetylglucosamine-1-P
uridylyltransferase
(GlcNAc1pUT); UDP-N-
acetylglucosamine
pyrophosphorylase (UAP)
(AT1G31070, AT2G35020)

GlcNAc1pUT1
and 2
(Arabidopsis);
UAP1, SPL29
(rice); GlmU
(prokaryote);
UAP1, QRI1
(yeast); AGX1,
AGX2
(human)

GlcNAc-1-
P UDPG3

UDP-
GlcNAc
UDP-
GalNAc Glc-
1-P

Cytoplasm,
plasma
membrane

Arabidopsis:
salt-sensitive,
response to
UV rice:
bacterial blight
resistance,
defense
response,
sensitivity to
high
temperature

Arabidopsis: defective in gametogenesis and
embryo development; salt-induced delay of
seed germination and early seedling growth;
reduced UDP-hexoNAc, altered N-
glycosylation, and induced UPR under salt
stress rice: leaf senescence and defense
response, UDPG and ROS accumulation,
short root and germination delay at high
temperature, reduced N-glycosylation
1Mutant phenotypes represent knockdown mutant plants because the knockout mutants are lethal.
2Localization of GFAT and GlcNAc1pUTs is based on the annotation of The Arabidopsis Information Resource (TAIR).
3UDPG, uridine 5’-diphosphoglucose.
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(Gindzieński et al., 1974; Allen and Walker, 1980; Hinderlich et al.,

2000; Berger et al., 2002; Ryczko et al., 2016). This intermediate

GlcNAc-6-P further enters the HBP to form UDP-GlcNAc

(Figure 1, purple line). In mammals, NAGK is needed for

embryonic mouse development (Dickinson et al., 2016). Deletion

of NAGK increases de novo hexosamine biosynthesis; conversely,

glutamine deprivation inhibits de novo HBP but triggers the

NAGK-dependent salvage pathway in pancreatic ductal

adenocarcinoma (PDAC) (Campbell et al., 2021), suggesting that

cross-talk occurs between the salvage and de novo HBP. In higher

plants, the GNK was first identified and characterized in

Arabidopsis by Furo et al. (2015). Arabidopsis GNK (At1g30540)

and human NAGK proteins share high structural conservation,

particularly in GlcNAc and ATP binding domains. The kinase

activity of AtGNK was confirmed by an enzymatic activity assay

in vitro through recombinant AtGNK protein. Substrate analysis

further supports that AtGNK exhibits high specificity for GlcNAc

and less specificity for GalNAc. Furthermore, although the null

mutant Atgnk shows no conceivable phenotype, the mutant plants

reveal lower levels of UDP-GlcNAc than the wild type and are

insensitive to the exogenous application of GlcNAc (Furo et al.,

2015). The GlcNAc salvage pathway is also observed in the Atgna/

lig mutant, which is defective in the conversion of GlcN-6-P to

GlcNAc-6-P and leads to a reduction in UDP-GlcNAc levels, high-

temperature sensitivity, and ectopic accumulation of lignin.

Exogenous application of GlcNAc rescues the Atgna/lig mutant

phenotypes and increases the UDP-GlcNAc content (Nozaki et al.,

2012). Therefore, the Atgna/lig mutant fails to convert GlcN6-P to

GlcNAc-6P; however, exogenous GlcNAc can be catalyzed by

AtGNK to form GlcNAc-6-P, which further enters the HBP to

produce UDP-GlcNAc. Similarly, wild-type plants (Col-o) produce

more UDP-HexNAc (UDP-GlcNAc and UDP-GalNAc) by

exogenous GlcNAc under normal and salt-stressed conditions

(Chen et al., 2022). The coexistence of HBP and salvage pathways

may finetune the homeostasis of UDP-GlcNAc contents in plants in

response to nutrient fluctuations and environmental stimuli.
4 N-linked glycosylation

Asparagine (Asn- or N-) glycosylation is among the most

common co- or post-translational modifications, which is

essential for plant growth and stress responses and is conserved

across eukaryotes (Banerjee et al., 2007; Bao and Howell, 2017;

Nagashima et al., 2018). N-glycosylation regulates protein folding,

transport, sorting, degradation, and intracellular signaling

(Helenius and Aebi, 2001; Molinari, 2007; Aebi, 2013; Lannoo

and Van Damme, 2015; Shin et al., 2018). Most secreted and

membrane-associated proteins are N-glycosylated proteins (N-

glycoproteins), and they are involved in a wide range of cellular

processes, including cell wall biosynthesis (Jose-Estanyol and

Puigdomenech, 2000), pollination (Hancock et al., 2005),

pathogen defense (Pearce et al., 2007), and cell-to-cell

communication (Taoka et al., 2007). Biosynthesis of N-glycan

occurs in multiple subcellular compartments, including the

cytosol, endoplasmic reticulum (ER) lumen, and Golgi apparatus
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(Pattison and Amtmann, 2009). Initially, N-glycan is formed as an

oligosaccharide precursor on a lipid-linked carrier, dolichol

pyrophosphate (PP-Dol), on the cytosolic side of the ER

membrane (Figure 2). Two GlcNAc molecules are first transferred

to PP-Dol by GlcNAc-1-phosphotransferase (GPT) or asparagine-

linked glycosylation (ALG) enzyme ALG7 and the ALG13/14.

Subsequently, five mannose (Man) residues are added by

mannosyltransferases, ALG1/2/11, to form Man5GlcNAc2-PP-

Dol (Burda and Aebi, 1999; Strasser et al., 2021). This

oligosaccharide precursor is then flipped to face the ER lumen for

further modification (Pattison and Amtmann, 2009; Strasser

et al., 2021).

In the ER lumen, four more Man and three Glc residues are

sequentia l ly added to form the core ol igosaccharide

Glc3Man9GlcNAc2-PP-Dol, which is assembled by a series of

membrane-bound mannosyltransferases (ALG3/9/12) and

glycosyltransferases (ALG6/8/10) (Snider et al., 1980; Helenius

and Aebi, 2001; Nagashima et al., 2018; Strasser et al., 2021). N-

glycosylation occurs in the ER lumen by transferring the core

oligosaccharide to Asn in the Asn-X-Ser/Thr motif (X, any amino

acid except Pro) of a nascent peptide, which is mediated by an

oligosaccharyltransferase (OST) complex (Burda and Aebi, 1999;

Pattison and Amtmann, 2009; Strasser, 2016). The N-linked

Glc3Man9GlcNAc2 glycan is further processed by the sequential

removal of three Glc residues by glucosidase I and II (GCSI and

GCSII) (Trombetta and Parodi, 2003; Nagashima et al., 2018;

Strasser et al., 2021), and a Man residue is removed by the ER-a-
mannosidase I (MNS3; Liebminger et al., 2009). The correctly

folded glycoproteins leave the ER and move into the Golgi

apparatus for further complex and hybrid N-glycan modification

(Strasser, 2016).

In the Golgi, the first N-glycan processing is carried out by

a-1,2-mannosidase I (MNS1/2), which removes three Man residues

from Man8GlcNAc2 to form Man5GlcNAc2, the product for the

subsequent complex and hybrid N-glycan processing. The

formation of complex and hybrid N-glycan is initiated by the N-

ACETYLGLUCOSAMINYL TRANSFERASE I (GnTI)-mediated

addition of the GlcNAc residue to the a-1,3-linked Man of the

Man5GlcNAc2 to form GlcNAcMan5GlcNAc2 (von Schaewen et al.,

1993; Strasser et al., 1999). Subsequently, alternative processing

pathways can occur in plants (Bencúr et al., 2005). In the canonical

pathway, two Man residues are cleaved from GlcNAcMan5GlcNAc

by Golgi-a-mannosidase II (GMII), followed by GnTII-mediated

addition of another GlcNAc residue to the a1,6-linked Man to

form GlcNAc2Man3GlcNAc2. Afterward, Xyl, Fuc, and two Gal

are added to the acceptor substrate GlcNAc2Man3GlcNAc2,

which are catalyzed by XylT (xylosyltransferase), FUT11/12

(fucosyltransferases), and GALT1 (galactosyltransferase),

respectively. Finally, FUT13 (a-(1->,4)-fucosyltransferase) transfers
a Fuc residue to the a-(1->4)-linked GlcNAc to complete the Lewis

A-type structure, which is a trisaccharide structure (Figure 2)

(Strasser, 2016; Strasser et al., 2021). The resulting products could

be secreted to their destinations. Golgi-resident GnTI is the key

enzyme in complex and hybrid N-glycan processing. The

Arabidopsis complex glycan less 1 (cgl1) mutant, which is defective

in GnTI activity, lacks complex and hybrid N-glycans and exhibits
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reduced N-glycosylation efficiency (von Schaewen et al., 1993;

Strasser et al., 2005; Frank et al., 2008; Farid et al., 2013). However,

the cgl1 mutant displays no apparent phenotype under normal

growth conditions but confers salt hypersensitivity (Kang et al.,

2008). In contrast to the Arabidopsis cgl1 mutant, the rice gnt1

mutant displays severe phenotypes showing arrest in postseedling

development, defects in cell wall biosynthesis, and reduced cytokinin

signaling (Fanata et al., 2013). The mechanisms that cause these

markedly different phenotypes between Arabidopsis cgl1 and rice

gnt1 remain to be illustrated in the future.

Interruption with N-glycan biosynthesis at any step by

mutation of genes or treatments of pharmaceutical drugs, such as

tunicamycin and DTT, will lead to incomplete N-glycans and affect

N-glycosylated proteins (Pattison and Amtmann, 2009). Unfolded

or misfolded proteins will accumulate in the ER and result in ER

stress; eventually, the unfolded protein response (UPR) is activated

to enhance the capacity for protein folding, increase the ER quality

control, impair general protein translation, and maintain ER

homeostasis (Bao and Howell, 2017; Yu et al., 2022). Defects in

N-glycan processing may impair plant growth and stress responses

or cause lethality (Lane et al., 2001; Koiwa et al., 2003; Lerouxel

et al., 2005; Zhang et al., 2009; Fanata et al., 2013; Bao and Howell,

2017; Nagashima et al., 2018). Despite the significance of N-

glycosylation, most studies in the past have focused on the core

N-glycan formation in the ER lumen and the modification of

complex N-glycans on glycoproteins in the Golgi apparatus. The

effect of cytosolic oligosaccharide precursor production on plant

growth and stress response is less addressed. As mentioned above,

HBP generates UDP-GlcNAc to provide GlcNAc donors and

initiate oligosaccharide precursor production on the cytosolic side

of the ER. Defects in HBP enzymes may reduce UDP-GlcNAc

levels, impair N-linked glycosylation, and alter plant growth under

normal (Wang et al., 2015; Xiao et al., 2018) or abiotic stress

conditions (Zhang et al., 2009; Nozaki et al., 2012; Chen et al., 2022).

Moreover, a complete block of HBP normally leads to lethality

(Chen et al., 2014; Vu et al., 2019; Jia et al., 2023).

It has been reported that N-glycan processing mutants alter the

abiotic stress responses, such as salt stress. The staurosporine and

temperature sensitive 3a (stt3a) mutant, in which a catalytic subunit

of the OST complex in the ER is defective, and leaf wilting 3 (lew3), a

mutant that lacks a-1,2-mannosyltransferase, induce UPR-mediated

BiP gene expression and enhance salt stress sensitivity (Koiwa et al.,

2003; Zhang et al., 2009; Jiao et al., 2020). However, Arabidopsis

complex glycan 1 (cgl1), a mutant that lacks GnTI activity, shows a

deprived complex and hybrid N-glycans and confers salt

hypersensitivity (Frank et al., 2008; Kang et al., 2008). Unlike

stt3a, which shows a UPR response, the cgl1 mutant fails to induce

a UPR response. Thus, the UPR is likely not the major player that

enhances salt hypersensitivity in the mutants with defective N-

glycan processing. Furthermore, the mutation of UDP-GlcNAc

transporter 1 (UGNT1) leads to deprived complex and hybrid N-

glycan in the Golgi apparatus and does not increase salt

hypersensitivity (Ebert et al., 2018). These data suggest that

mature complex N-glycans are not the major factor leading to salt

hypersensitivity. It was generally proposed that mutants defective in

N-glycan processing in the ER lumen or Golgi apparatus might alter
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a different set of glycoprotein and/or glycolipid functions, which

further integrate to alter plant growth and abiotic stress response.

Compared to the Arabidopsis stt3a mutant showing short root

elongation under salt stress, glcna.ut mutants, such as the RNAi

knockdown mutants iU1s, display normal root elongation under salt

stress (Chen et al., 2022). Although the UPR response is induced and

N-linked glycosylation is impaired in iU1 mutants, these mutants

exhibit salt hypersensitivity in terms of delayed seed germination

and early seedling establishment, the phenotypes of which are

different from those of stt3a mutant plants. The stt3a mutant, such

as stt3a-2, also displays a higher stomatal density and transpiration

rate in association with low endogenous ABA and auxin (IAA)

levels. Thus, stt3a mutant plants are more sensitive to salt and

drought stresses. These mutant phenotypes are correlated with the

underglycosylation of b-glucosidase (AtBG1), catalyzing the

conversion of conjugated ABA or IAA to its active form (Jiao

et al., 2020). Consistently, exogenous application of ABA or IAA

to stt3a-2 may partially rescue the mutant phenotypes. In contrast,

the GlcNA.UT knockdown lines iU1s, reveal higher levels of ABA

under salt stress conditions (Chen et al., 2022). Thus, although stt3a

and iU1 affect the N-glycosylation of proteins, they could use

different mechanisms in response to salt stress. It is conceivable

that GlcNAc1pUTs produce UDP-GlcNAc not only for N-glycan

synthesis in the ER lumen andmaturation in the Golgi apparatus but

also for the O-GlcNAcylation of primarily cytosolic and nuclear

proteins (Figure 2). Thus, in addition to N-glycan processing, HBP

has a wider range of effects on plant growth and abiotic stress

response through diverse GlcNAc targets or conjugates.
5 O-GlcNAcylation

O-GlcNAcylat ion is the addit ion of O-l inked N-

acetylglucosamine (O-GlcNAc) to the serine (Ser) and threonine

(Thr) residues of nucleocytoplasmic andmitochondrial proteins (Hu

et al., 2009; Ma et al., 2022), which was first reported by Torres and

Hart (1984). In contrast to N-linked glycosylation, which involves

the attachment of complex glycans to proteins for the secretary

pathway, O-GlcNAcylation involves the direct addition of a single

GlcNAc residue to the Ser/Thr residues of proteins, which primarily

occurs in the cytosol or nucleus (Figure 2). O-GlcNAcylation is also

among the most common co- or post-translational modifications

and is conserved across organisms (Joshi et al., 2018; Ma et al., 2022).

O-GlcNAcylated proteins are involved in most aspects of cellular

functions including metabolism, transcriptional regulation,

signaling, cell cycle regulation, protein trafficking, protein-protein

interaction, and cell structure (Wells et al., 2001; Love and Hanover,

2005; Hart et al., 2011; Liu et al., 2022). In mammals, dysregulation

of O-GlcNAcylation may be linked to chronic disorders, including

the occurrence and progression of cancer (Slawson and Hart, 2011;

Singh et al., 2015), diabetic complications (Peterson and Hart, 2016),

neurodegeneration (Hart et al., 2011; Gong et al., 2012), and

cardiovascular diseases (Wang et al., 2023), and the immune

system (Golks and Guerini, 2008). Thus, manipulating O-

GlcNAcylation may be a potential strategy for cancer therapy (Lu

et al., 2022).
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O-GlcNAcylated proteins are usually phosphorylated. As O-

GlcNAcylation and phosphorylation are dynamic reactions that

cycle rapidly, both post-translational modifications compete with

the same Ser/Thr sites or modify nearby/or distant sites to show

complex interplay and coordinate protein stability and function in

response to external stimuli (Slawson and Hart, 2003; Wang et al.,

2008c; Butkinaree et al., 2010; Zeidan and Hart, 2010; Hart et al.,

2011; Martıńez-Turiño et al., 2018; Xu et al., 2019). For instance, O-
GlcNAcylation and phosphorylation coexist in the capsid protein

(CP) of the plum pox virus (PPV). Although O-GlcNAcylation of

PPV CP is not needed for virus viability, it increases viral infection

(Pérez Jde et al., 2013; Martıńez-Turiño et al., 2018). Moreover,

vernalization increases the O-GlcNAc modification of nuclear

TaGRP2 (a repressor in vernalization) and the phosphorylation of

VER2 (an activator in vernalization); both modified proteins

antagonistically regulate the expression of TaVRN1 to mediate

flowering in winter wheat (Xiao et al., 2014; Xu et al., 2019).

The first public bioinformatics resource of O-GlcNAcylated

proteins was established by Wang et al. (2011), in which

approximately 1240 proteins are potentially O-GlcNAcylated. Later,

over 1000 O-GlcNAcylated proteins were uncovered in different

studies of mammalian cells (Trinidad et al., 2012; Hahne et al.,

2013). Recently, with more improved techniques, over 5000 O-

GlcNAcylated proteins were identified using human models (Wulff-

Fuentes et al., 2021). In Arabidopsis, Xu et al. (2017) identified 262

proteins with O-GlcNAcylation. Among them, the O-GlcNAcylated

and O-fucosylated protein AtACINUS is involved in ABA sensitivity

through alternative splicing of HIGH LEVEL OF BETA-AMYLASE

ACTIVITY 1 (HBA1) and ABA HYPERSENSITIVE 1 (ABH1),

negative regulators of ABA signaling, and in flowering through

transcriptional regulation of the floral repressor FLOWERING

LOCUS C (FLC) (Bi et al., 2021). In addition, a total of 168 O-

GlcNAcylated proteins were found in winter wheat (Xu et al., 2019);

these proteins perform functions in metabolism, response to stimuli,

cellular processing, signal transduction, and transcriptional regulation.

Thus, the total number of identified proteins of O-GlcNAcylation is

far lower in plants than in mammalian cells.

O-GlcNAcylation is catalyzed by O-GlcNAc transferase (OGT)

(Figure 2). Phylogenetic analysis revealed that metazoans contain a

single OGT, whereas vascular plants and moss have two homologs

of OGTs (Olszewski et al., 2010). Considering that GlcNAc is

needed for O-GlcNAcylation and UDP-GlcNAc, the donor of

GlcNAc, is synthesized through HBP, HBP might perform

crosstalk with O-GlcNAcylation to optimize nutrient status and

O-GlcNAcylation cycling. In Drosophila, protein O-GlcNAcylation

displays a circadian rhythm mediated by the HBP enzyme GFAT

and the O-GlcNAcylation enzymes, OGT and O-GlcNAcase

(OGA), an enzyme removing GlcNAc from O-GlcNAcylated

proteins (Liu et al., 2021). The Arabidopsis knockdown mutant

Atagm reduces UDP-GlcNAc production and shows a temperature-

dependent growth defect that is associated with the impairment of

protein O-GlcNAcylation (Jia et al., 2023). In Arabidopsis, two OGT

homologs, SECRET AGENT (SEC) and SPINDLY (SPY), catalyze

O-GlcNAcylation and O-linked fucosylation, respectively

(Hartweck et al., 2002; Zentella et al., 2016, Zentella et al., 2017).

The Arabidopsis null sec mutant only displays a subtle phenotype
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(Hartweck et al., 2002), but the spy mutant shows an apparent GA

response, indicating that SPY acts as a negative regulator of GA

signaling (Wilson and Somerville, 1995; Jacobsen et al., 1996).

Moreover, the sec/spy double mutant is lethal, with defects in

gamete and seed development that are similar to the knockout

OGTmutants in mice and Drosophila, in which embryonic lethality

occurs (Shafi et al., 2000; Gambetta et al., 2009). These data indicate

that although SEC and SPY have overlapping functions involved in

GA signaling, they also have distinct roles and may play a

synergistic function in plant growth and development (Hartweck

et al., 2002, Hartweck et al., 2006; Zentella et al., 2016, Zentella et al.,

2017). Later, it was reported that the Arabidopsis sec mutant

displays an early-flowering phenotype, which is associated with

the inhibition of O-GlcNAcylation of ARABIDOPSIS HOMOLOG

OF TRITHORAX1 (ATX1), a histone lysine methyltransferase

(HKMT). The impaired activity of ATX1 reduces histone H3

lysine 4 trimethylation (H3K4me3) of the FLC gene, a negative

regulator of flowering (Xing et al., 2018). The Arabidopsis DELLA

protein RGA (REPRESSOR OF ga1-3), a master negative regulator

of the GA response, is O-GlcNAcylated by SEC; this suppresses the

interactions of RGA with other key transcription factors, such as

PIFs, BZR1, and JAZ1, which are involved in light, brassinosteroid,

and jasmonate signalings, respectively (Zentella et al., 2016). In

addition to DELLA proteins, several important transcription factors

involved in plant hormone signaling are O-GlcNAcylated, such as

ARFs, TCPs, EIN2, and ABF3, which are involved in the signaling

of auxin, cytokinin, ethylene, and ABA, respectively (Xu et al.,

2017). Compared to mammals, numerous proteins of O-

GlcNAcylation in plants remain to be uncovered, and further

characterization of these modified proteins will shed light on the

significance of O-GlcNAcylation biology.
6 Hexosamine biosynthesis and
related pathways in response
to stresses

UDP-GlcNAc biosynthesis through HBP is essential for the

glycosylation of proteins and lipids (Ebert et al., 2018). Thus, the

endogenous levels of UDP-GlcNAc levels intimately affect the

glycosylation of proteins and lipids. For example, partial loss-of-

function mutations in HBP-related genes normally reduce UDP-

GlcNAc levels and impair N-glycosylation and/or O-GlcNAcylation

of proteins (Jiang et al., 2005; Nozaki et al., 2012; Vu et al., 2019;

Chen et al., 2022; Jia et al., 2023). Interestingly, these knockdown

mutants largely display no apparent phenotype under normal

growth conditions; however, these mutants exhibit stress-induced

growth defects. This indicates that a small amount of UDP-GlcNAc

is sufficient to maintain normal plant growth but more UDP-

GlcNAc levels and protein glycosylation are needed for plants to

adapt to deleterious environments. Most N-glycoproteins are

membrane-associated and secreted proteins. Thus, changes in N-

glycosylation through adverse environments or mutations of genes

involved in HBP and N-glycan processing may alter glycoprotein

functions in cell wall biosynthesis and integrity and membrane-
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associated proteins, resulting in altered sensitivities to biotic, such as

bacterial blight tolerance (Wang et al., 2015), abiotic stresses, such

as drought, salt, cold, and high temperature (Jiang et al., 2005; Xiao

et al., 2018; Nozaki et al., 2012; Vu et al., 2019; Chen et al., 2022; Jia

et al., 2023), or phytohormones, such as ABA, auxin, and JA (Zhang

et al., 2009; Fanata et al., 2013; Wang et al., 2015; Jiao et al., 2020;

Chen et al., 2022). Defects in N-glycoproteins might also cause the

accumulation of unfolded or misfolded proteins in ER, leading to

ER stress and further induction of UPR to enhance protein folding

capacity and diminish ER stress (Bao and Howell, 2017; Yu et al.,

2022). Therefore, ER stress or UPR can be observed in the

mutations of HBP-related genes, such as GFAT, GNA, and

GlcNA.UTs/or UAP/SPL29 (Xiao et al., 2018; Nozaki et al., 2012;

Vu et al., 2019; Chen et al., 2022) and N-glycan processing mutants,

stt3a and lew3 (Koiwa et al., 2003; Zhang et al., 2009). As UDP-

GlcNAc is also essential for O-GlcNAcylation, defects in UDP-

GlcNAc biosynthesis through HBP, such as AGM, or mutation of

O-GlcNAcylation-related genes, such as SEC, might affect the

functions of O-GlcNAcylated proteins, such as ATX1 and DELLA

proteins, which further change temperature-dependent growth

defects and cellular signalings, such as phytohormones ABA, GA,

auxin, CK, and JA (Zentella et al., 2016; Jia et al., 2023),

vernalization (Xiao et al., 2014; Xu et al., 2019), and viral

infection (Pérez Jde et al., 2013; Martıńez-Turiño et al., 2018).

Hexosamine biosynthesis and related pathways in response to

stresses are summarized in Figure 3.
7 Conclusions and future perspectives

Although the HBP is considered a minor side pathway of

glycolysis, it integrates the endogenous nutrient status of plants

and rewires the metabolic programs to improve plant development

and adaption to environmental challenges. Thus, HBP serves as a

metabolic integrator or sensor to fine-tune the nutrient balance and
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maintain UDP-GlcNAc homeostasis. Dysfunction of HBP often

causes severe phenotypes or even lethality. Research progress on

HBP in plants has been much slower than that in microbes and

mammals. To date, despite HBP’s studies having made a great step

in plants, several aspects remain to be further explored in the future.
1. HBP-related enzymatic proteins, such as GlcNAc1pUT2,

UAP1/SPL29, and AtAGM, often have multiple substrates

and products (or intermediates). The functions of these

products’ targets or conjugates remain to be illustrated.

2. In addition to the cytosol and ER surface of the cytosolic

side, enzymes, such as AGM and GlcNAc1pUT1, have

several subcellular localizations, such as nuclei and

organelles. It remains to be determined whether these

proteins perform additional functions in addition to their

involvement in the HBP.

3. How nutrient availability and environmental conditions

control the HBP flux needs to be further examined

in plants.

4. The total proteins of N-glycosylation and O-GlcNAcylation

were underestimated in plants compared to mammals.

Thus, high-throughput analysis of more GlcNAc-

conjugated proteins needs to be performed, and the

functions of these modified proteins remain to

be characterized.

5. In addition to phosphorylation, O-GlcNAcylation sites of

proteins can also compete with other post-translational

modifications. The biological functions of these modified

proteins also need to be unraveled in the future.
A better understanding of the functions of HBP, GlcNAc

conjugates, and the mechanisms by which HBP responds to

abiotic stress will reveal possible strategies to modify HBP in the

biofortification of agriculture in the future.
FIGURE 3

Hexosamine biosynthesis and related pathways in response to stresses. This diagram depicts that the HBP integrates several key metabolites to
synthesize UDP-GlcNAc, an essential amino sugar moiety of glycosylation of proteins and lipids. Under stress conditions, HBP integrates
endogenous metabolites and energy status to maintain UDP-GlcNAc homeostasis and reprogram metabolic pathways including glycosylation to
benefit plant adaptation to deleterious environments. Fru-6-P, fructose-6-phosphate; L-Gln, L-glutamine; CoA, coenzyme A; UTP, uridine
triphosphate; ABA, abscisic acid; JA, jasmonic acid; CK, cytokinin; GA, gibberellic acid.
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