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Introduction: The study addresses challenges in detecting cotton leaf pests and

diseases under natural conditions. Traditional methods face difficulties in this

context, highlighting the need for improved identification techniques.

Methods: The proposed method involves a new model named CFNet-VoV-

GCSP-LSKNet-YOLOv8s. This model is an enhancement of YOLOv8s and

includes several key modifications: (1) CFNet Module. Replaces all C2F

modules in the backbone network to improve multi-scale object feature

fusion. (2) VoV-GCSP Module. Replaces C2F modules in the YOLOv8s head,

balancing model accuracy with reduced computational load. (3) LSKNet

Attention Mechanism. Integrated into the small object layers of both the

backbone and head to enhance detection of small objects. (4) XIoU Loss

Function. Introduced to improve the model's convergence performance.

Results: The proposedmethod achieves high performancemetrics: Precision (P),

89.9%. Recall Rate (R), 90.7%. Mean Average Precision (mAP@0.5), 93.7%. The

model has a memory footprint of 23.3MB and a detection time of 8.01ms. When

compared with other models like YOLO v5s, YOLOX, YOLO v7, Faster R-CNN,

YOLOv8n, YOLOv7-tiny, CenterNet, EfficientDet, and YOLOv8s, it shows an

average accuracy improvement ranging from 1.2% to 21.8%.

Discussion: The study demonstrates that the CFNet-VoV-GCSP-LSKNet-

YOLOv8s model can effectively identify cotton pests and diseases in complex

environments. This method provides a valuable technical resource for the

identification and control of cotton pests and diseases, indicating significant

improvements over existing methods.

KEYWORDS

artificial intelligence, cotton, pests and diseases, deep learning, machine learning,
XIoU, YOLO
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1 Introduction

Cotton is one of the vital fiber crops in China, extensively

employed in textile production and the manufacturing of cotton

goods. However, the cotton industry in China has been severely

jeopardized by the pervasive threats of diseases and pests, leading to

adverse impacts on the yield (Chohan et al., 2020; Abbas et al.,

2021). Traditional methods of pest and disease detection often rely

on seasoned experts who gauge the health of cotton leaves through

visual inspection. Despite its widespread use, this conventional

approach suffers from multiple shortcomings. First, these

methods are labor-intensive and time-consuming, requiring

significant human resources, especially in large-scale cotton

cultivation. Second, the manual inspections depend on the

subjective assessments of experts, introducing variability and

compromising the consistency and accuracy of the results.

With the advent of advancements in computer vision

technology and deep learning algorithms (Wang C. et al., 2023),

the agricultural sector has witnessed new avenues for pest and

disease detection (Meng et al., 2023; Ye et al., 2023). These

technologies not only automate the identification process but also

enhance the speed and accuracy of detections. Notably, the YOLO

(You Only Look Once) algorithm (Jiang et al., 2022; Zhang Y. et al.,

2023) has achieved remarkable success in this context, acclaimed for

its real-time processing, multi-scale support, automation, and

efficient data handling, thus providing a robust tool for pest and

disease monitoring and management in agriculture.

Several researchers have made notable advancements in the

field of cotton disease identification and monitoring. Caldeira, R. F.

et al (Caldeira et al., 2021)used the convolutional neural network

learning models GoogleNet and Resnet50 to monitor the health

status of cotton crops, and obtained accuracy rates of 86.6% and

89.2% respectively.

Nannan Zhang et al. (Nannan et al., 2020) presented the

CBAM-YOLO v7 algorithm, an improved attention mechanism

YOLO v7, with a mAP of 85.5%, providing a strong theoretical

foundation for real-time cotton leaf disease monitoring. Yuanjia

Zhang et al. (2022a) developed a real-time, high-performance

detection model based on an enhanced YOLOX algorithm. The

comparative results also demonstrated that the improved model

achieved mAP values 11.50%, 21.17%, 9.34%, 10.22%, and 8.33%

higher than the other five algorithms, meeting real-time speed

detection requirements. According to Liu and Wang (2020), the

feature layer of the Yolo V3 model using an image pyramid to

achieve multi-scale feature detection, resulting in improved

accuracy and speed for the detection of diseases and pests in

tomatoes. Zhenyang Xue et al. (2023) proposed YOLO-Tea, an

enhanced model based on You Only Look Once version 5

(YOLOv5), outperforming YOLOv5s by 0.3% to 15.0% across

all test data. Furthermore, Liu et al. (2023) introduced MRF-

YOLO, a deep learning method with multi-receptive field

extraction based on YOLOX, integrating a small target detection

layer to enhance precision. Jajja et al. (2022) proposed a Compact

Convolutional Transformer (CCT)-based approach is to classify the

image dataset, achieving an impressive accuracy of 97.2% and

proving its effectiveness compared to state-of-the-art approaches.
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Additionally, Patil and Patil (2021) developed a deep CNN model

that accurately collected images throughout the complete process of

training and validation in image pre-processing, ensuring high

efficiency and accuracy for cotton disease detection. Liang, X

(Liang, 2021) proposed a metric learning method for extraction

and classification of cotton leaf spot characteristics. By constructing

a metric space and using KNN as a point classifier, common models

such as Vgg, DenseNet and ResNet were compared. The spatial

structure optimizer (SSO) is introduced to perform local

optimization of the model. Experimental results show that the

average classification accuracy of S-DenseNet is 7.7% higher than

the other two networks, and DenseNet shows the highest

classification accuracy. Tao, Y et al (Tao et al., 2022). proposed an

automatic detection method for cotton diseases, using ConvNeXt to

combine the convolutional neural network architecture with the

inherent advantages of Transformer. The Multi-Scale Spatial

Pyramid Attention (MSPA) module can help ConvNeXt focus on

important areas of feature maps. The results show that the model

performs well in terms of recognition accuracy and detection speed.

In the realm of identifying pests, diseases, and behaviors using

YOLO algorithms, extensive research has been conducted,

highlighting their current significance. However, when applied to

cotton pests and diseases identification, conventional YOLO

algorithms encounter challenges in detecting cotton leaf diseases

under natural conditions, difficulty in extracting features from small

targets, and low efficiency (Terven and Cordova-Esparza, 2023). To

overcome these challenges, this study presents an enhanced method

for cotton peat and disease identification, built upon YOLOv8s (Xie

and Sun, 2023). This method involves replacing the C2F modules in

the backbone network with CFNet modules (Zhang G. et al., 2023)

and substituting all C2F modules in the YOLOv8s header with

VoV-GCSP modules (Li et al., 2022). It also integrates the

LSKNet attention mechanism (Li et al., 2023) into the small

target layers of both the backbone network and header.

Furthermore, the XIoU loss function is introduced to streamline

the model while preserving accuracy, ultimately enhancing the

model’s convergence performance.
2 Materials and methods

2.1 Experimental data

The data used in this study were sourced from six publicly

available cotton pest and disease datasets on KAGGLE (https://

www.kaggle.com/datasets/saeedazfar/customized-cotton-disease-

dataset; https://www.kaggle.com/datasets/paridhijain02122001/

cotton-crop-disease-detection). Images that were blurry or had

indistinct features were removed during data cleaning, resulting

in a total of 4,703 images for pests and diseases, as illustrated in

Figure 1. Due to data imbalance, data augmentation techniques

such as rotation, brightness adjustment, and random cropping were

applied (Tang et al., 2020), expanding the dataset to 5,927 images.

The training and test datasets were then divided in an 8:2 ratio using

random sampling, as shown in Table 1 below. During training, the

image size was set to 640×640 pixels.
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2.2 Cotton pest and disease identification

2.2.1 YOLOv8 network structure
YOLOv8 is a state-of-the-art (SOTA) model that builds upon

the successes of previous YOLO versions, incorporating novel

features and enhancements to further improve performance and

versatility. Specific innovations include a new backbone network, a

new Anchor-Free detection head, and a novel loss function.

Anchor-Free Detection Head: Traditional object detection models

utilize anchor boxes to determine the position and size of targets. In

contrast, the Anchor-Free detection head learns the key-points or

bounding boxes of the targets, thus eliminating the need for anchor

boxes. This approach enables the model to better adapt to targets of
Frontiers in Plant Science 03
varying sizes and shapes while reducing the complexity associated

with tuning anchor boxes. Novel Loss Function: The loss function

serves as feedback during training, assisting the model in fine-

tuning its parameters for better target approximation. Currently,

the YOLOv8 series has introduced five different versions, namely

YOLOv8n, YOLOv8s, YOLOv8m, YOLOv8l, and YOLOv8x. The

model’s parameter and computational complexity increase with the

depth and width of the model. Users can choose the appropriate

network structure based on their application scenarios. The

YOLOv8s version employs a lighter network structure and fewer

training data, aiming to maintain relatively fast detection speed and

high accuracy while efficiently deploying on embedded devices and

small applications (Wang G. et al., 2023). This makes YOLOv8s an

ideal choice for real-time object detection applications. Therefore,

this paper adopts the YOLOv8s model to meet the demand for

efficient object detection. The YOLOv8 model detection network

structure, as illustrated in Figure 2 below, comprises the Backbone,

FPN, and Head.

The Backbone serves as YOLOv8’s primary feature extraction

network. Images fed into this network initially undergo feature

extraction to produce what is commonly referred to as feature

layers, a comprehensive set of features derived from the input

images. These Feature Pyramid Network (FPN) in YOLOv8 is an

augmented feature extraction component. Three significant feature

layers obtained from the backbone network are further integrated in

this section. The objective of this feature fusion is to combine

feature information from various scales. The FPN continues to

extract features from the already obtained significant feature layers.
TABLE 1 Information on cotton pest and disease data sets.

Pest and
disease

categories

Original
data

quantity

Quantity
after

expansion
Label

Army worm 799 799 Army_worm

Bacterial Blight 1136 1136 Bacterial_Blight_edited

Cotton Boll Rot 916 916 Cotton_Boll_Rot

Diseased
cotton leaf

340 1020 diseased_cotton_leaf

Healthy 968 968 Healthy

Target spot 544 1088 Target_spot
A B

D E F

C

FIGURE 1

Examples of Images of (A) Nocturnal moth larvae (B) Cotton angular leaf spot (C) cotton boll rot (D) Cotton hoarfrost (E) Health and (F) Alternaria
leaf spot of cotton.
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YOLOv8 still employs the Panet architecture, which not only up-

samples the features for fusion but also down-samples them for an

additional fusion. The Head in YOLOv8 serves as the classifier and

regressor. Through the Backbone and FPN, we can obtain three

enhanced, significant feature layers.

2.2.2 CFNet-VoV-GCSP-LSKNet-YOLOv8s
network structure

The network structure of the cotton pest and disease

identification model based on CFNet-VoV-GCSP-LSKNet-

YOLOv8s proposed in this paper is illustrated in Figure 3.

YOLOv8 is a state-of-the-art (SOTA) model, further

categorized into YOLOv8n, YOLOv8s, YOLOv8m, YOLOv8l, and

YOLOv8x. The YOLOv8 detection network structure consists of

Backbone, FPN, and Head. While the Backbone has a large number

of parameters and a long training time, it falls short in the detection

of small objects. To address these limitations, we propose a cotton

pest and disease identification model based on CFNet-VoV-GCSP-

LSKNet-YOLOv8s. Firstly, the CFNet module replaces all C2F

modules in the YOLOv8s Backbone. Then, a feature integration

operation is inserted in the Backbone, effectively utilizing a large
Frontiers in Plant Science 04
proportion of the Backbone to fuse multi-scale features, thereby

improving the model’s recognition rate. Secondly, in the Head of

YOLOv8s, the VoV-GCSP module replaces all C2F modules,

enhancing the features extracted by the Backbone while also

reducing the model size without sacrificing accuracy.

Additionally, the LSKNet attention mechanism is incorporated

into both the Backbone and Head to improve the detection of

small objects. Lastly, the XIoU loss function is introduced to

enhance model convergence, thereby achieving accurate

identification of cotton pests and diseases.

2.2.3 Cascaded fusion network
In the YOLOv8 Backbone, the C2F module attempts to fuse

shallow feature maps with high resolution but limited semantic

information with deep feature maps that have low resolution but

rich semantic content. However, we argue that this approach might

be insufficient for effective multi-scale feature fusion, especially

when compared to heavy classification backbones where the

parameters allocated for feature fusion are limited. To address

this issue, we propose a new architecture named Cascaded Fusion

Network (CFNet). Apart from the initial high-resolution feature-
P2

P3

P4

P5

P1

YOLOv8
Backbone
(P5)

Backbone P5

P4

P3

640×640×3

Conv
k=3,s=2,p=1

0

P1

Conv
k=3,s=2,p=1

1

P2

C2f
shortcut=True,n=3×d

2

Conv
k=3,s=2,p=1

3

P3

C2f
shortcut=True,n=6×d

4

Conv
k=3,s=2,p=1

5

P4

C2f
shortcut=True,n=6×d

6

Conv
k=3,s=2,p=1

7

P5

C2f
shortcut=True,n=3×d

8

SPPF 9

C2f
shortcut=True,n=3×d

12

10

Unsample 13

Concat 14

C2f
shortcut=True,n=3×d

15

P3

Concat 11

Conv
k=3,s=2,p=1

16

P3

Concat 17

C2f
shortcut=True,n=3×d

18

P4

Conv
k=3,s=2,p=1

19

C2f
shortcut=True,n=3×d

21

P5

Concat 20

Detect

Detect

Detect

C

C

C

C C2f
U

U

C2f

C2f

C2f

Conv

Conv Detect

Detect

Detect

640×640×64×w

160×160×128×w

160×160×128×w

80×80×256×w

80×80×256×w

40×40×512×w

40×40×512×w

20×20×512×w×r

20×20×512×w×r

Unsample

20×20×512×w×r

Stride=32

20×20×512×w×r

40×40×512×w×r

40×40×512×w×(1+r)

40×40×512×w

80×80×256×w

80×80×512×w 80×80×256×w

80×80×256×w

40×40×256×w

40×40×512×w

40×40×512×w

20×20×512×w

20×20×512×w×(1+r)

20×20×512×w×r

40×40×512×w

Head

Backbone Head

FIGURE 2

YOLOv8s Network Architecture.
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extracting Backbone and several blocks, we introduce multiple

cascading stages to generate multi-scale features within CFNet.

Each stage consists of a sub-backbone for feature extraction and

an extremely lightweight transformation block for feature

integration. This design allows for a more in-depth and effective

fusion of features, leveraging a large proportion of the Backbone’s

parameters. By replacing all C2F modules in the Backbone with

CFNet and then inserting feature integration operations, we achieve

effective fusion of multi-scale features across a significant portion of

the Backbone.

The core design philosophy of CFNet involves introducing

multiple cascading stages, each stage consisting of a specialized

feature extraction sub-backbone and an extremely lightweight

transformation block, effectively capturing and merging multi-

scale features from fine-grained to coarse-grained. These

cascading stages not only process the output from the previous

stage but also deeply interact with the corresponding features of the

main backbone network, achieving complex feature integration.

The feature maps produced by each cascading stage are optimized

and merged through specifically designed transformation blocks,

enhancing the model’s ability to represent features. This structure is

especially suitable for object detection tasks that require efficient
Frontiers in Plant Science 05
multi-scale feature fusion. By optimizing and deeply integrating

features at different levels, CFNet improves model performance

while maintaining relatively low computational costs.

Suppose Xi represents the output feature map of the ith

cascading stage of the input image, where i represents the

sequence number of the cascading stage. F represents the feature

extraction function, and T represents the feature transformation

function (lightweight transformation block). Thus, each cascading

stage can be formally represented as shown in Equation 1:

Xiþ1 = T(F(Xi)),        for       i = 0, 1,…,M − 1 (1)

In CFNet, M represents the total number of cascading stages. X0

is the initial high-resolution feature map (as shown in Equation 2).

For feature fusion, suppose Pj denotes the j fused feature map,

corresponding to different spatial resolutions, such as P3, P4, P5 etc.

Each Pj can be calculated through the output of the cascade and the

corresponding transformation function Tj.

Pj = Tj(XM),        for      j ¼ 3; 4; 5 (2)

In CFNet,. refers to the output of the final cascading stage. The

network architecture of CFNet is illustrated in Figure 4.
P2

P3

P4

P5

P1

YOLOv8
Backbone
(P5)

Backbone P5

P4

P3

640×640×3

Conv
k=3,s=2,p=1

0

P1

Conv
k=3,s=2,p=1

1

P2

FocalNeXtF
shortcut=True,n=3×d

2

Conv
k=3,s=2,p=1

3

P3

FocalNeXtF
shortcut=True,n=6×d

4

Conv
k=3,s=2,p=1

5

P4

FocalNeXtF
shortcut=True,n=6×d

6

Conv
k=3,s=2,p=1

7

P5

FocalNeXtF
shortcut=True,n=3×d

8

SPPF 10

VoVGSCSP
shortcut=True,n=3×d

13

11

Unsample 14

Concat 15

VoVGSCSP
shortcut=True,n=3×d

16

P3

Concat 12

Conv
k=3,s=2,p=1

18

P3

Concat 19

VoVGSCSP
shortcut=True,n=3×d

20

P4

Conv
k=3,s=2,p=1

21

VoVGSCSP
shortcut=True,n=3×d

23

P5

Concat 22

Detect

Detect

Detect

C

C

C

C C2f
U

U

C2f

C2f

C2f

Conv

Conv Detect

Detect

Detect

640×640×64×w

160×160×128×w

160×160×128×w

80×80×256×w

80×80×256×w

40×40×512×w

40×40×512×w

20×20×512×w×r

20×20×512×w×r

Unsample

20×20×512×w×r

Stride=32

20×20×512×w×r

40×40×512×w×r

40×40×512×w×(1+r)

40×40×512×w

80×80×256×w

80×80×512×w 80×80×256×w

80×80×256×w

40×40×256×w

40×40×512×w

40×40×512×w

20×20×512×w

20×20×512×w×(1+r)

20×20×512×w×r

40×40×512×w

Head

Backbone Head

LSKblock
shortcut=True,n=3×d

9

LSKblock
shortcut=True,n=3×d

17

FIGURE 3

CFNet -VoV-GCSP-LSKNet-YOLOv8s network structure.
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The CFNet architecture commences by inputting an image with

spatial dimensions of H × W through a neck and N successive

blocks, extracting high-resolution features with dimensions of H
4 �

W
4 . These features are subsequently directed into M cascaded stages

for the extraction of multi-scale features. Prior to entry into the M

cascaded stages, the extracted high-resolution features are

downscaled using a 2×2 convolution kernel with a stride of 2.

The network’s architecture at each stage maintains a consistent

structural format but varies in scale, comprising differing numbers

of processing blocks. Each stage consists of a sub-backbone network

and an ultra-lightweight transition block, both dedicated to the

extraction and integration of features. For clarity, the assemblage of

blocks within each stage, addressing features of the same scale, is

termed a block group. The three block groups within the ith stage

encompass n1i , n
2
i , and n3i blocks, respectively. In the final block

group of each stage, a so-called focal block is implemented to

enhance feature processing. Each stage outputs features P3, P4, P5

with strides of 8, 16, 32, respectively, of which only P3 features are

utilized for input into the subsequent stage. In the network’s final

stage, features P3, P4, and P5 are amalgamated, serving dense

prediction tasks. By substituting all C2F modules in the backbone

with CFNet and incorporating feature integration operations,

effective fusion of multi-scale features is achieved throughout a

significant portion of the backbone. Figures 5 and 6 provide more

details about transition blocks and focus blocks.

As depicted in Figure 5, When given C3, C4, and C5 as inputs,

the transition block produces outputs P3 and P4. The term “Conv

-dx” refers to a 1×1 convolution operation that outputs a channel

number of dx, where dx matches the channel number of the input
Frontiers in Plant Science 06
feature Cx. The circles marked with “+” and “C” represent element-

wise addition and concatenation operations, respectively.

Additionally, the notation “2x” is used to indicate the upsampling

of features by a scaling factor of 2.

This design facilitates the effective integration of multi-scale

features. By adjusting the channel dimensions through 1×1

convolutions and managing the spatial resolutions via addition,

concatenation, and upsampling operations, the transition block

efficiently processes the varied scales of the input features (C3, C4,

C5) and transforms them into the desired output formats (P3, P4),

which are then suitable for subsequent stages of the network’s

processing pipeline.

As shown in Figure 6, N is the number of channels of the output

feature. d7×7 represents the 7×7 depth convolution, a7×7

represents the window size, and R is the expansion rate of the

additional convolution. GELU is the activation function. Each d7×7

or a7×7 is followed by a LayerNorm layer and a GELU unit. This

paper proposes a novel focus block to enlarge the receptive fields of

neurons in the last block group of each stage as an effective

alternative strategy. The design of the focus module introduces

extended depth convolution and two skip connections in the

ConvNeXt module, thereby achieving the integration of fine-

grained local interaction and coarse-grained global interaction.

2.2.4 VoV-GCSP network structure
The YOLOv8 network employs a substantial number of C2F

modules in its neck for feature extraction. However, this structure

results in an increase in computational complexity and the number

of parameters, leading to significant time consumption. Lightweight
FIGURE 5

Transition block.
FIGURE 4

CFNet network architecture.
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networks like Exception and ShuffleNet address the time-

consuming issue of standard convolutions by utilizing depth-wise

separable convolutions (DSC), albeit at the cost of sacrificing

accuracy. The GSConv convolution module is an innovative

approach that combines Standard Convolution (SC), Depth-Wise

Convolution (DWConv), and channel shuffle operations. The core

idea involves partitioning the input channels into multiple groups,

performing independent depth-wise separable convolutions on

each group to reduce computational complexity. This design aims

to mitigate the issue of low recognition accuracy due to insufficient
Frontiers in Plant Science 07
feature extraction and fusion capabilities. The groups are then

recombined through channel shuffling. GSConv combines SC,

DSC, and Shuffle, exhibiting performance similar to SC but with

lower computational costs. The depth layer calculation is shown

in Equation 3, and the GSConv layer calculation is shown in

Equation 4.

DSC = W�H�m� n� 1� Pout (3)

GSConv = W�H�m� n� 1� Pout

2
+ (Pout + 1) (4)

W and H represent the width and height of the feature map,

respectively, and m×n is the size of the convolution kernel. Pin and

Pout represent input and output function channel numbers. In

scenarios where the input feature channel count escalates, the

computational demand of the GSConv convolution diminishes,

yet it retains a feature extraction proficiency analogous to its

contemporaries. The integration of GSConv has been

instrumental in the strategic simplification of the model’s

complexity. To augment the inference velocity of the network

model, while concurrently preserving its precision in detection,

we have implemented the VoV-GSCSP module, building upon the

foundational GSConv module. The VoV-GSCSP represents a

sophisticated hybrid network architecture, which skillfully merges

the attributes of GSConv with the essence of VoVNet,

supplemented by the incorporation of (Squeeze-and-Excitation,

SE) blocks. This architectural design is meticulously tailored to

enhance both the quality and efficiency of feature extraction. By

segmenting the convolutional layers into discrete groups, the

Grouped Separable Convolution effectively minimizes the

parameter count and computational complexity. The Squeeze-

and-Excitation blocks intensify the network’s representational

prowess by concentrating on salient channel features. This

innovative structural design endows the VoV-GSCSP module

with the capability to sustain high computational efficiency while

simultaneously elevating the feature representation and overall

performance of the network. The module, engineered with a one-

off aggregation methodology, markedly amplifies the inference

speed of the network model, all the while maintaining its superior

detection accuracy. The configurations of the GSConv convolution

and the VoV-GCSP network are exemplified in Figure 7

and Figure 8.

2.2.5 Attention mechanism LSK
Attention mechanisms serve as a straight forward effective

approach yet to enhance neural representations. Channel

attention modules like SE blocks utilize global average

information to re-weight feature channels, while spatial attention

modules such as GENet, GCNet, and SGE enhance the network’s

capability to model contextual information via spatial masks.

Techniques like CBAM and BAM amalgamate channel and

spatial attentions, leveraging the strengths of both. Beyond

channel/spatial attention mechanisms, kernel selection is another

adaptive and effective technique for dynamic contextual modeling.
FIGURE 6

Focal NeXt block.
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LSKNet is designed based on attention mechanisms and kernel

selection technologies to better model the features of different

targets in remote sensing scenarios. It also boasts advantages like

relatively fewer parameters and computational complexity, thereby

facilitating improved computational efficiency and speed in

practical applications. LSKNet is a novel neural network

architecture specifically aimed at remote sensing object detection

tasks. It enhances contextual modeling and feature extraction

through selective mechanisms and adaptive spatial aggregation,

consequently improving the performance in small object

detection. A detailed structural comparison is shown in Figure 9.

2.2.6 XIoU
The Loss Function is a metric that measures the difference

between the predicted values of a model and the actual values.

During training, the model attempts to minimize the value of the

loss function to improve its accuracy. YOLOv8s adopts the CIoU

loss function, composed of position, confidence, and class

functions. This traditional loss function generally relies on the

aggregation of bounding box regression indicators, without

considering the mismatch in direction between the required

ground truth boxes and predicted boxes, leading to slow

convergence and low efficiency. The XIoU loss function plays a

crucial role in object detection tasks by emphasizing varying degrees

of overlap between targets. By combining the regression of

predicted boxes with real boxes, this loss function prevents issues

such as overlapping center points and identical aspect ratios that

would degrade into the IOU loss function. This ensures the effective

completion of boundary box regression, improving the robustness

of the bounding boxes. Therefore, in this study, the XIoU loss

function is introduced as an improvement to the model. Compared
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to the original CIoU loss function, the penalty term gradient of

XIoU is smoother, resulting in smaller regression errors and better

regression performance. It also effectively enhances the recognition

accuracy of cotton leaf diseases and pests.

XIoU calculation formula is as shown in Equation 5:

XIoU = 1 − IoU +
r2 b, bgtð Þ

c2
+ aυ (5)
a =
n

(1 − IoU) + n
(6)

n = e
wgt

hgt − e
w
h

� �2
(7)

The penalty term is defined as shown in Equation 8:

ℜCIoU =
r2 b, bgtð Þ

c2
+ aυ (8)

As shown in Equations 5–8, IoU stands for the traditional

regression loss. r2 represents the squared Euclidean distance

between the two rectangular bounding boxes. c2 represents the

square of the diagonal distance between two rectangular boxes. b

and bgt denote the central points of the two bounding boxes. a
weight coefficient.v is used to measure the consistency of the

relative proportions between the two boxes. wgt, hgt, w and h

are the width and height of the two boxes, respectively. The

primary goal of XIoU is to improve the IoU metric by

considering the intersection area between the boxes, offering a

better representation of their overlap. The parameter a is used to

adjust the difference between XIoU and IoU, thereby reflecting the

similarity between the boxes more accurately and accelerating the

network’s convergence.
FIGURE 7

GSConv.
FIGURE 8

VoV-GSCSP.
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3 Results and discussion

3.1 Improve model identification results
and analysis

3.1.1 Experimental setup and evaluation metrics
The model was trained using the PyTorch framework on a

laboratory server equipped with an Intel Core i9-10900KF

processor, 16 GB of CPU memory, and an NVIDIA GeForce

RTX 3080 GPU. The operating environment was Windows 10,

with Python 3.8, PyTorch 1.11.0, and CUDA 13.0 used for

algorithmic optimization. Training parameters included

150 epochs, a batch size of 8, and an image input resolution of

640×640 pixels . All other settings were kept at their

default values.

Performance metrics used for model evaluation included

Precision (P), Recall (R), Mean Average Precision (mAP), and

model size. Precision is defined as the fraction of true positives

among the predicted positives, while Recall measures the fraction of

actual positives correctly identified by the model. Mean Average

Precision (mAP) serves as a comprehensive performance metric.

The above indicators such as Equations 9–12 shown.

P =
TP

TP + FP
(9)

R =
TP

TP + FN
(10)

AP = ∫
1

0
P(r)dr (11)

mAP  =  
1
no

n

i−1
APi (12)

In the equations, TP represents the number of true positives, FP

stands for false positives, and FN signifies false negatives.

3.1.2 Cotton pest and disease recognition results
To validate the superior performance of the proposed CFNet-

VoV-GCSP -LSKNet -YOLOv8 architecture for the identification of

six types of cotton pests and diseases, we compared our model with

the original YOLOv8s algorithm, as shown in Table 2.
Frontiers in Plant Science 09
From Table 2, it can be observed that the method proposed in

this paper for identifying six types of cotton pests and diseases—

namely, noctuid larvae, cotton angular leaf spot, cotton boll rot,

cotton powdery mildew, healthy cotton, and cotton black spot—

achieves an average precision mean (mAP@0.5) improvement

compared to the original model of 0.9%, 0.6%, 0.1%, 2.4%, 1.1%,

and 2.2%, respectively.

Among the six types of cotton pests and diseases, the average

precision mean (mAP@0.5) for cotton black spot is the lowest, with

only 74.3%. Analysis indicates that the blurriness of the original

data images led to this subpar performance. However, with the

application of our method, there is a 2.2% improvement over the

original model, resulting in an overall average precision mean

(mAP@0.5) of 93.7%, an increase of 1.2% compared to YOLOv8s.

This demonstrates that our model’s feature extraction capability has

been enhanced for images with suboptimal quality. The results of

the method proposed in this paper for identifying cotton pests and

diseases are shown in Figure 10:

3.1.3 Ablation study results
To validate the efficacy of the improvements made to the

original algorithm by the cotton pest and disease identification

method based on the CFNet-VoV-GCSP-LSKNet-YOLOv8s

network structure proposed in this paper, an ablation study was

designed. The original network and the network improved with

various modules were tested on a test dataset. The results are shown

in Table 3:
FIGURE 9

Conceptual diagram of the LSK module.
TABLE 2 Comparison of average precision mean values for cotton pests
and diseases.

Cotton pest and
disease categories

mAP@0.5/%

Proposed
Method

YOLOv8s

Nocturnal moth larvae 98.6 97.7%

Cotton angular leaf spot 97.1 96.5

cotton boll rot 99.5 99.4

Cotton hoarfrost 98.5 96.1

Health 92.0 90.9

alternaria leaf spot of cotton 76.5 74.3

All pests and diseases 93.7 92.5
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Fron
1. Model 2, the first improvement, replaces all C2F modules in

the backbone with CFNet modules, resulting in a 2.7%

increase in Precision (P), a 0.3% increase in Recall (R), and

a 0.8% increase in Mean Average Precision (mAP). This

indicates that the CFNet module effectively fuses multi-

scale features and improves model recognition accuracy.

2. Model 3 replaces all C2F modules in the YOLOv8s head

with VoV-GCSP modules, leading to a 1% increase in R

and a 0.4% increase in mAP. However, P decreased by

0.5%, but the overall performance is still better than the

original model, suggesting that the neck structure

composed of VoV-GCSP modules enhances the features

extracted by the backbone.

3. Model 4 adds the LSKNet attention mechanism compared

to YOLOv8s, resulting in a 1% increase in P and a 0.2%
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increase in mAP, suggesting that the LSKNet attention

mechanism strengthens the model’s ability to recognize

small objects.

4. Model 5 incorporates both CFNet and VoV-GCSP

modules, leading to a 1.2% increase in P, a 0.1% increase

in R, and a 0.9% increase in mAP.

5. Model 6, based on the improvements in Model 5,

further incorporates the LSKNet attention mechanism

and replaces the loss function with XIoU. It turns out

that Model 6 has the highest precision among all the

models. Compared to the original model, it increases P

by 2%, R by 1%, and mAP by 1.2%, demonstrating that the

improved model outperforms YOLOv8s in recognition

per formance and e ff ec t ive ly enhances cherry

detection capabilities.
A B

D E F

C

FIGURE 10

Recognition results of this paper’s method: (A) Nocturnal moth larvae (B) Cotton angular leaf spot (C) cotton boll rot (D) Cotton hoarfrost (E) Health
and (F) Alternaria leaf spot of cotton.
TABLE 3 Ablation test results.

Model
Baseline
model

CFNet VoV-GCSP LSKNet XIoU P/% R/%
mAP@0.5/

%

Model 1 YOLO v8s × × × × 87.9 89.7 92.5

Model 2 YOLO v8s √ × × × 90.6 89.4 93.3

Model 3 YOLO v8s × √ × × 87.4 90.7 92.9

Model 4 YOLO v8s × × √ × 88.9 88.2 92.7

Model 5 YOLO v8s √ √ × × 89.1 89.8 93.4

Model 6 YOLO v8s √ √ √ √ 89.9 90.7 93.7
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To further validate the effectiveness and practicality of the

method proposed in this paper, the location loss values of CFNet-

VoV-GCSP-LSKNet-YOLOv8s and YOLOv8s are shown in

Figure 11 after 150 training iterations. As can be seen from

Figure 11, the convergence speed of the proposed method is

faster, and its convergence performance is superior to that of the

YOLOv8s model.

3.1.4 Comparison of different models
To verify the effectiveness of the cotton pest and disease

identification method based on the CFNet-VoV-GCSP-LSKNet-

YOLOv8s model proposed in this paper, we compared it with

YOLO v5s (Jiang et al., 2022), YOLOX (Ge et al., 2021; Zhang et al.,

2022b), YOLOv7 (Cao et al., 2023; Wang C-Y. et al., 2023), Faster

R-CNN (Li, 2021; Qiao et al., 2021).
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YOLO v8s, YOLOv8n, YOLOv7-tiny, CenterNet and

EfficientDet. Among them, YOLOv8s, YOLO v5s, YOLOv7,

YOLOv8n, YOLOv7-tiny, CenterNet and EfficientDet are

currently mainstream object detection algorithms, while YOLO X

and Faster R-CNN have shown better performance in other studies.

To validate the superiority of the proposed method, all model

training processes maintained consistent parameter settings. The

comparison results are shown in Table 4.

As delineated in Table 4, the proposed method demonstrates

marked improvements in performance metrics over existing

methods. Specifically: When compared with YOLO v5s, YOLO

v7, YOLOv8n, YOLOv7-tiny, EfficientDet and YOLOv8s, the

precision of our model improved by 1.4%, 11.4%, 5.5%, 2.2%,

2.1% and 2% respectively. Additionally, recall rates saw increases

of 1.9%, 11.6%, 5.4%, 49.2%, 20% and 1%, and the mean average
FIGURE 11

Comparison of positional loss values.
TABLE 4 Comparison of recognition effect of different models.

Model P/% R/% mAP@0.5/%
volume

modulus/MB
Detection
Time/ms

YOLO v5s 88.5 88.8 91.4 14.4 10

YOLOX 90.6 86.7 88.7 34.4 9.1

YOLO v7 78.5 79.1 81.2 74.8 11.2

Faster R-CNN 60.8 91.2 84.7 521.9 9.9

YOLO v8n 84.4 85.3 90.0 6.2 7.0

YOLOv7-tiny 87.7 41.5 71.9 23.5 8.2

CenterNet 95.8 65.1 88.8 124 10.4

EfficientDet 87.8 70.7 81.6 25.7 9.3

YOLO v8s 87.9 89.7 92.5 21.4 7.7

Proposed Method >89.9 >90.7 >93.7 >23.3 8.01
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precision (mAP) advanced by 2.3%, 12.5%, 3.7%, 21.8%, 12.1% and

1.2%. While our method registers a slight decline in precision

relative to YOLOX, it compensates with a 4% increase in recall

and a 5% boost in mAP. As for Faster R-CNN, although the recall

rate was marginally lower by 0.5%, the model achieved a substantial

enhancement in precision by 29.1%, along with a 9% improvement

in mAP. Compared with CenterNet, although the precision is 5.9%

lower, the mAP is 4.9% higher and the recall rate is 25.6% higher. In

terms of computational resource consumption, our model is second

only to YOLO v5s, YOLOv8n and YOLO v8s. The detection time of

the improved algorithm is 8.01ms. Although slightly lower than the

fastest detection speed YOLOv8n and YOLO v8s, other

performance indicators of the detection algorithm are better than

this model. Therefore, based on the overall detection performance

indicators of the model, the algorithm in this paper has great

advantages in both recognition accuracy and speed. Collectively,

these results validate the effectiveness of the proposed method,

positioning it as superior in object detection performance. Figure 12

offers further insights into the comparative performance of various

models. While the proposed method slightly lags behind YOLO v5s

in terms of convergence speed during the initial 17 iterations, it

surpasses all competing models in both convergence speed and

mAP following the 17th iteration.
4 Discussion

In order to verify the robustness and effectiveness of the model,

the YOLOv8s original model and the Proposed Method were tested

on datasets collected from the Kaggle website, which include grape

and coffee disease datasets. The grape disease dataset consists of four

types of diseases (Black Rot, Grape Esca, Grape Healthy, and Leaf

Blight), totaling 3330 images. The coffee disease dataset consists of

ten types (Coffee White Stem Borer, Citrus Mealybug, Coffee Berry

Borer, Coffee Root-knot Nematode, Coffee Berry Moth, Coffee Leaf

Miner, Coffee Twig Borer, Coffee Seedling Sudden Collapse Disease,

Coffee Seedling Damping-off Disease), totaling 4500 images. The

experimental results are shown in the table below.
Frontiers in Plant Science 12
As shown in the table above, the precision, recall rate, and mAP

of Proposed Method have improved in grape disease identification,

increasing by 0.1%, 0.1%, and 0.15% respectively. The precision,

recall rate, and mAP of Proposed Method in identifying coffee

diseases have been greatly improved, increasing by 1%, 2.8%, and

1.8% respectively. It shows that the Proposed Method has a good

recognition effect on public plant disease data sets, thus proving that

the model has good robustness and effectiveness. In the future, the

Proposed Method can be applied in various fields.
5 Conclusions

This paper proposes a cotton pest and disease recognition

method based on CFNet-VoV-GCSP-LSKNet-YOLOv8s. By

replacing all C2F modules in the backbone of YOLO v8s with

CFNet modules and incorporating feature fusion operations, the

method effectively utilizes a significant proportion of the backbone

network to fuse multi-scale features. In the head of YOLOv8s, we

replaced all C2F modules with VoV-GCSP modules. This enhances

the features extracted by the backbone while reducing the model’s

complexity and maintaining its accuracy. We also introduced the

LSKNet attention mechanism in both the backbone and the head to

improve the model’s ability to recognize small targets. Finally, the

XIoU loss function was introduced to improve the model’s

convergence performance. As shown in Table 5: experimental

results show that the proposed method can effectively identify

cotton pests and diseases with an average accuracy of 93.7%,

demonstrating its effectiveness.

Compared with YOLO v5s, YOLOX, YOLO v7, Faster R-CNN,

YOLOv8n, YOLOv7-tiny, CenterNet, EfficientDet and YOLOv8s,

the average accuracy improved by 2.5%, 5%, 12.5%, 9%, 3.7%,

21.8%, 4.9%, 12.1% and 1.2% respectively, indicating that the

method proposed in this paper performs better in recognizing

cotton pests and diseases. In addition, the model in this article

was applied to grape and coffee diseases, which greatly improved the

disease identification rate, indicating that the model has good

robustness and effectiveness.
FIGURE 12

Variation curves of mAP for different models.
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While CFNet-VoV-GCSP-LSKNet-YOLOv8s demonstrates

considerable prowess in numerous domains, there is still potential

for advancement in its efficacy in detecting cotton leaf spot disease.

Looking forward, our ambition is to enrich YOLOv8s’s backbone

network with a sophisticated multi-channel scale attention

mechanism, aimed at enhancing the precision in capturing the

characteristics of plant diseases. Concurrently, by refining the final

prediction bounding box optimization and the Adam optimizer

within YOLOv8s, we aspire to elevate the model’s recognition

proficiency. Moreover, in tandem with real-world application

demands, our objective includes the development of mobile

applications. This endeavor is geared towards translating our

research findings into pragmatic tools, offering robust and practical

solutions in the realms of agriculture and plant protection, thereby

facilitating the deployment of this technology in real-world scenarios.
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