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Field-based measurement tools
to distinguish clonal Typha taxa
and estimate biomass: a
resource for conservation
and restoration
Brian M. Ohsowski1*, Cassidy Redding1, Pamela Geddes2

and Shane C. Lishawa1

1School of Environmental Sustainability, Loyola University Chicago, Chicago, IL, United States,
2Department of Biology and Environmental Science Program, Northeastern Illinois University,
Chicago, IL, United States
Two species of clonal Typha [T. latifolia (native) and T. angustifolia (exotic)]

hybridize to form the highly invasive, heterotic (high vigor) T. × glauca in North

American wetlands leading to increased primary production, litter accumulation,

and biodiversity loss. Conservation of T. latifolia has become critical as invasive

Typha has overwhelmedwetlands. In the field, Typha taxa identification is difficult

due to subtle differences in morphology, and molecular identification is often

unfeasible for managers. Furthermore, improved methods to non-destructively

estimate Typha biomass is imperative to enhance ecological impact

assessments. To address field-based Typha ID limitations, our study developed

a predictive model from 14 Typha characters in 7 northern Michigan wetlands to

accurately distinguish Typha taxa (n = 33) via linear discriminant analysis (LDA) of

molecularly identified specimens. In addition, our study developed a partial least

squares regression (PLS) model to predict Typha biomass from field collected

measurements (n = 75). Results indicate that two field measurements [Leaf

Counts, Longest Leaf] can accurately differentiate the three Typha taxa and

advanced-generation hybrids. The LDAmodel had a 100% correct prediction rate

of T. latifolia. The selected PLS biomass prediction model (sqrt[Typha Dry Mass] ~

log[Ramet Area at 30 cm] + Inflorescence Presence + Total Ramet Height + sqrt

[Organic Matter Depth]) improved upon existing simple linear regression (SLR)

height-to-biomass predictions. The rapid field-based Typha identification and

biomass assessment tools presented in this study advance targeted management

for regional conservation of T. latifolia and ecological restoration of wetlands

impacted by invasive Typha taxa.
KEYWORDS

Typha identification, biomass prediction, field assessment, Typha latifolia, ecological
restoration, Typha × glauca, conservation
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1 Introduction

Hybridization is a common and important evolutionary

mechanism that drives phenotypic diversity, environmental

adaptation capacity, and speciation (Mallet, 2005; Goulet et al.,

2017). In some cases, plants exhibit heterosis (i.e., hybrid vigor)

where hybrid offspring show increased fitness resulting in increased

biomass, yield, and root density compared to parental counterparts

(Hochholdinger and Baldauf, 2018). Path analysis models suggest

plant taxa hybridization propensity at the genus level is significantly

correlated with a perennial life cycle, woodiness, and reliance on

vegetative reproduction systems (Mitchell et al., 2019). An invasive

plant case study also documented that hybridization is often

associated with perennial plants exhibiting clonal growth habits as

a mechanism leading to fixed heterotic genotypes (Ellstrand and

Schierenbeck, 2000). Thus, plant introductions exhibiting

hybridization potential with closely related endemic plant

populations and clonal growth habits may serve as a precursor to

stimulate invasiveness (Ellstrand and Schierenbeck, 2000). In

wetland systems, herbaceous wetland plants with clonal growth

habits are common among the most highly invasive taxa

(Galatowitsch et al., 1999; Zedler and Kercher, 2004).

In North America, two species within the clonal Typha (cattail)

genus [native T. latifolia, non-native T. angustifolia (Ciotir et al.,

2013)] have hybridized to form T. × glauca (Godron) (Smith, 1967).

In wetlands, T. × glauca exhibits heterosis which typically results in

more productive, taller, and faster growing clones that become

more dominant compared to either parent species (Zapfe and

Freeland, 2015; Bansal et al., 2019). Backcrossing and advanced-

generation hybrids are also common (Travis et al., 2010; Kirk et al.,

2011; Freeland et al., 2013; Geddes et al., 2021), complicating Typha

genetic identity in the region (hereafter we will refer to all taxa as

Typha unless otherwise specified).

The complicated genetics of Typha presents a problem for both

the management of invasive Typha and the conservation of native

T. latifolia. In the Great Lakes, Typha taxa classified as invasive [T. ×

glauca and T. angustifolia; hereafter, “invasive Typha”] are

dominant in more than 13% of the total area of ecologically

critical coastal wetland ecosystems (Carson et al., 2018). Along

with its continued spread, management of invasive Typha has

increasingly become a restoration priority (Bansal et al., 2019).

Conservation of T. latifolia has simultaneously become imperative,

due to increased dominance by invasive taxa, hybridization, and

backcrossing of hybrids to T. latifolia (Pieper et al., 2017; Bansal

et al., 2019; Geddes et al., 2021), which could result in extinction by

demographic or genetic swamping (Todesco et al., 2016).

Unfortunately, field identification of the three taxa and

advanced-generation hybrids using standard morphological

characters (e.g., leaf width, gap between inflorescences) can be

unreliable due to wide trait variability (Geddes et al., 2021).

Molecular methods to identify Typha taxa may be impractical, if

not entirely unfeasible, for many field practitioners managing

invasive species populations and practicing conservation.

Although the cost of molecular methods has been decreasing due

to technological advancements, application of these techniques is

still unrealistic for many practitioners (Hauser and Seeb, 2008;
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Sagarin et al., 2009). Thus, identifying field morphological

characteristics that allow for the accurate differentiation of Typha

is critical to advance the conservation of T. latifolia and the

continued management of invasive Typha.

Invasive Typha taxa are associated with a range of ecological

impacts to wetlands. They tend to thrive in wetlands with

anthropogenically disturbed hydrology (Boers and Zedler, 2008;

Hall and Zedler, 2010; Bunbury-Blanchette et al., 2015). They also

outcompete native sedge species (i.e., Carex stricta, C. lacustris, C.

lasiocarpa) in wetlands experiencing nutrient enrichment (Woo

and Zedler, 2002). Furthermore, invasive Typha magnifies nutrient

availability by increasing sediment retention (Horppila and

Nurminen, 2001) and enhancing internal nutrient cycling (Currie

et al., 2014), thus compounding the effects of nutrient enrichment.

Invasive Typha forms monodominant stands in wetlands by

outcompeting native plants and creating a thick layer of slowly

decomposing leaf litter (Larkin et al., 2012). Further, they can more

than double annual productivity in invaded wetlands (Woo and

Zedler, 2002; Angeloni et al., 2006). Once established, invasive

Typha reduces biodiversity and productivity of native plants

(Tuchman et al., 2009), fishes (Schrank and Lishawa, 2019), and

aquatic macroinvertebrates (Lawrence et al., 2016).

Accurate and stable methods to estimate productivity are

necessary when quantifying metrics of plant dominance,

population change, and drivers of biodiversity loss in invasion

research (Crystal-Ornelas and Lockwood, 2020). Increased

prediction accuracy is also highly desirable when integrating plot-

level results (e.g., plant stock concentrations of nutrients, carbon,

and heavy metals) across biological scales. Furthermore, plant

biomass analyses can confirm and calibrate remote sensing

estimates to improve model development for ecological

management (Vaz et al., 2018).

Simple linear regression (SLR) standard curves of height-to-

biomass have been used to non-destructively predict Typha biomass

from field traits (Lishawa et al., 2015). Allometric equations are

commonly used to non-destructively estimate biomass from forest

systems (Henry et al., 2013), but tend to be less robust for

herbaceous species with varied morphology and large

environmental gradients (Niklas and Enquist, 2002; Pottier and

Jabot, 2017). A two-step approach employing Bayesian information

criterion (BIC) model selection of plant traits followed by

multivariate partial least squares regression (PLS) modeling can

produce highly accurate biomass predictions (Ohsowski et al.,

2016). This PLS method avoids the pitfalls of excessive destructive

sampling, accounts for collinearity among predictor variables, and

can employ categorical and continuous data (Ohsowski et al., 2016).

Our study developed new methods that use easily quantified field

measurements to accurately identify Typha taxa and accurately

quantify Typha biomass to the benefit of conservation and

ecological restoration. Our specific objectives developed prediction

models that selected simple field measurements to: 1) accurately

classify Typha taxa determined by diagnostic microsatellite markers

using linear discriminant analysis, and 2) improve Typha taxa

biomass assessment using BIC model selection and PLS.

Additionally, we compared historically employed height-to-biomass

SLR model predictions with PLS prediction.
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2 Materials and methods

2.1 Study site selection and
experimental design

In July 2021, we identified seven wetlands in northern Michigan

(U.S.A.) to conduct the study [eastern Upper Peninsula (3 sites);

northern Lower Peninsula (4 sites)]. Six of the seven wetland sites

are classified as Great Lakes coastal wetlands (Munuscong Marsh,

Mackinaw Bay, St. Ignace Marsh, Cecil Bay, Cheboygan Marsh, and

Duncan Bay) and the remaining site was an inland emergent marsh

(Alpena Wildlife Sanctuary) (Figure 1). All wetlands in the study

had Typha stands within emergent vegetation zones.

In each wetland, we established a minimum of one continuous

transect through the geographic center of established Typha stands.

In two expansive wetlands with varied water levels and lake

exposures (Cheboygan Marsh and St. Ignace Marsh), we

increased the number of transects to 3 to capture environmental

heterogeneity, resulting in 11 transects total. Nine of 11 transects

had a standardized design to include 7 plots (1 m2 quadrats)

equidistant along a varied transect length depending upon stand

extent. The remaining 2 stands were small (< 10 m diameter) but

included in the study because we identified the plants as likely T.

latifolia based on morphology (wide leaves and no separation

between staminate and pistillate inflorescences) (Voss and

Reznicek, 2012).
Frontiers in Plant Science 03
2.2 Field data collection:
morphological characteristics

At each plot, we visually estimated areal coverage (< 1 – 100%)

for plant community living vegetation, Typha living vegetation, and

Typha standing-detritus above the water surface at all plots

(Figures 2I–IV). We also collected total Typha ramet count in

each plot to estimate ramet density. Water depth was estimated

from the organic matter surface to water surface (Figure 2G).

Organic matter depth was collected by firmly pushing a

graduated PVC pole (1.9 cm diameter) through the decomposed

organic layer until contacting mineral sediment (Figure 2H).

Following plot-level estimations, we unbiasedly selected the

centermost Typha ramet to measure variables that potentially predict

Typha biomass and discriminate Typha taxa. Adapted from Ohsowski

et al. (2016), we collected the following measurements (Figures 2A–F):

1) inflorescence presence (yes/no), 2) total ramet height from organic

matter surface (including inflorescence if present), 3) longest leaf length

from organic matter surface, 4) maximum leaf width on the identified

longest leaf (or longest leaf width), 5) ramet green leaf count, 6) widest

ramet diameter at 30 cm, and 7) narrowest ramet diameter at 30 cm.

We calculated ramet cross-section area at 30 cm assuming an oval:

Area = pi ∗ widest cross-section/2 ∗ narrowest cross-section/2. When

present, we measured the gap between pistillate and staminate

inflorescences. Following all field measurements, each selected ramet

was collected, dried at 60° C, and weighed.
FIGURE 1

Wetland sites where Typha were sampled in northern Michigan (U.S.A.). Black dots represent the geographic center of each wetland site selected for
the study.
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2.3 Field data collection: molecular analysis

We established a priori Typha leaf tissue collection for

molecular analysis from three non-adjacent plots per transect to

minimize the probability of collecting clones; for the 2 small stands,

tissue was collected from each plot (total replication = 33). Green

leaf tissue (length = 10 cm) from the centermost ramet was clipped,

bagged, and stored on ice (Geddes et al., 2021). Each leaf sample was

then flash frozen in liquid nitrogen in the lab and stored in a

cryogenic freezer (-80° C) until molecular analysis. The collected

leaf tissue sample wet mass was converted to dry mass and added to

total Typha dry mass described in Section 2.2.
2.4 Molecular analysis

Frozen Typha leaf tissue samples were ground with dry ice

followed by DNA extraction using Qiagen DNEasy Plant kits. We

selected six diagnostic microsatellite markers [TA 3, TA 5, TA 8,

and TA 16 (Tsyusko-Omeltchenko et al., 2003), and TM 4 and TM
Frontiers in Plant Science 04
11 (Csencsics et al., 2010)], shown to be accurate in distinguishing

Typha species, backcrosses, and advanced-generation hybrids

(Geddes et al., 2021 and references therein). PCR amplification of

microsatellite primers was accomplished following established

protocols (Geddes et al., 2021) using 2-step PCR (Schuelke, 2000),

after which a 1.4% agarose gel electrophoresis confirmed successful

microsatellite amplification.

We performed microsatellite analyses on a Beckman Coulter

gene sequencer with fragment sizing (400 bp ladder), scoring, and

microsatellite interpretation analyzed using Beckman Coulter

software. Following microsatellite scoring, each of the six

microsatellite markers per tissue sample were separated into one of

four molecular ID classes: T. latifolia, T. angustifolia, T. × glauca, or

advanced-generation hybrid (AGH). A sample was categorized as an

F1 hybrid (i.e., T. × glauca) if one allele from each parental species (T.

latifolia and T. angustifolia) was present. The final taxonomic

classification used for statistical analyses was determined when at

least 5 of 6 diagnostic microsatellite markers agreed in the molecular

ID classification. If diagnostic microsatellite markers did not meet the

minimum 5 of 6 consensus among hybrid and/or both parental loci,
FIGURE 2

Field measurements collected at each plot (1.0 m2 quadrat) and the centermost identified Typha ramet. Units are given in parentheses next to each
variable listed. Variables (I.-IV.) were collected at the plot scale to assess areal cover and Typha ramet density. Plant morphological measurements
(A–F) and environmental variables (G, H) were collected from the centermost Typha ramet that was subsequently collected for dry mass and
genetic analysis.
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the sample molecular ID was classified as AGH (Snow et al., 2010;

Travis et al., 2010; Travis et al., 2011).
2.5 Statistical analysis: Typha molecular
ID classification

Plot-level Typha ramet measurements (Figure 2) were used to

separate Typha molecular ID classes (T. latifolia, T. angustifolia, T.

× glauca, AGH) using linear discriminant analysis (LDA)

(replication = 33). Typha dry mass and all predictor variables in

Figure 2 were transformed (when required), centered, and scaled to

meet statistical assumptions. We used Spearman’s rank correlation

coefficients to determine highly collinear variables (rs > 0.90) and

remove one of the variable pairs from the analysis. We employed

recursive feature elimination with 10-fold cross-validation to select

the most relevant class separation variables using the rfe() function

in R’s caret package (Kuhn, 2008; Chen et al., 2020). The selected

LDA model was built with the lda() function in R’s MASS package

(Venables and Ripley, 2013). Model and class prediction

performance metrics were generated using a confusion matrix in

R’s caret package (Kuhn, 2008).

We developed an LDA permutation model to estimate test data

prediction performance for Typha molecular ID classes. For each

permutation (n = 1,000), the full dataset (replication = 33) was

randomly split into a training data set (replication = 26) to establish

an LDA model. The remaining test data (replication = 7) were

classified into molecular ID classes by the trained LDA model. We

calculated an agreement percentage for predicted within-model

training data and external model test data for each iteration as %

correctly predicted cases/total cases predicted.
2.6 Statistical analysis: biomass prediction

We used plot-level and Typha ramet measurements (Figure 2)

to develop Typha dry mass prediction models (replication = 75).

Variable standardization, Bayesian Information Criterion (BIC)

model selection, and model dry mass prediction workflow

followed Ohsowski et al. (2016) and references within. All

predictor variable combinations and associated 2nd order

polynomial terms were scored with BIC model selection with the

dredge function in R’s MuMin package (Bartoń, 2023). Equivalent

multi-variate prediction models (DBIC ≤ 2) were averaged using the

model.avg() function in MuMin to provide our selected statistical

model employed for Typha dry mass prediction.

We trained the selected multi-variate model using partial least

squares regression (PLS) (replication = 75) in R’s pls package

(Liland et al., 2023). Four model components were retained as

determined by lowest root mean squared error of cross-validation

(RMSECV) calculated from 10-fold cross-validation. For

comparison, we developed a simple linear regression (SLR) model

for sqrt[Typha Dry Mass] ~ Total Ramet Height (replication = 75)

using the lm function in R’s base package (R Core Team, 2023).

RMSECV estimates for the SLR model were calculated with 10-fold

cross-validation with the errorest() function in R’s ipred package
Frontiers in Plant Science 05
(Peters and Hothorn, 2023). Similar to Ohsowski et al. (2016), we

calculated a simple DIFF term for all Typha dry mass predictions

with the following formula to assess model prediction performance:

DIFF = predicted Typha dry mass – reference Typha dry mass.

We developed a permutation model for the PLS and SLR

models to estimate test data (i.e., external data) prediction

performance for Typha dry mass, thus assessing model robustness

and real-world model applicability. For each permutation

(n = 1,000), the full dataset (replication = 75) was randomly split

into training data (replication = 63) to develop the PLS and SLR

models. The remaining test data (replication = 12) were predicted

by the trained PLS and SLR models, back-transformed, and DIFF

term was calculated for the resulting permutation model.
3 Results

3.1 Variable selection: molecular
ID classification

We developed a linear discriminant analysis (LDA) to predict

Typha molecular ID classes: T. latifolia, T. angustifolia, T. × glauca,

and AGH. To meet test assumptions, we dropped three collinear

variables from the analysis using Spearman’s rank correlation

coefficients: Longest Leaf Length (collinear with Total Ramet

Height, rs = 0.996), Widest Ramet Diameter at 30 cm (collinear

with Ramet Area at 30 cm, rs = 0.974), and Narrowest Ramet

Diameter at 30 cm (collinear with Ramet Area at 30 cm, rs = 0.928).

Total ramet height was selected over longest leaf length as this

character is a very simple field measurement. We also dropped the

widest and narrowest ramet diameter measurements as they were

highly collinear with the calculated ramet areas due to formula

inclusion. In total, ten variables were used to determine the most

parsimonious LDAmodel via recursive feature elimination with 10-

fold cross-validation: sqrt[Organic Matter Depth], sqrt[Water

Depth], sqrt[Living Typha Cover], log[Typha Detritus Cover], sqrt

[Leaf Count], sqrt[Longest Leaf Width], sqrt[Longest Leaf Length],

sqrt[Typha Ramet Count], Typha Height, log[Ramet Area at 30 cm].

We determined the most relevant LDA class separation

variables for the final LDA model: Molecular ID Class ~ sqrt[Leaf

Count] + sqrt[Longest Leaf Width]. Note that sqrt[Water Depth]was

retained in the initial selected recursive feature elimination model

but removed from this analysis. We determined that including

water level measurements may lead to unreliability for future

application of the presented model by increasing uncertainty

(see Discussion).
3.2 Diagnostic microsatellite markers:
molecular ID classification

Agreement among the six microsatellite markers resulted in

four molecular ID classes: T. latifolia, T. angustifolia, T. × glauca,

and AGH. Out of the 33 molecular samples, 66.3% had complete

diagnostic microsatellite agreement among all six molecular

markers [count]: T. angustifolia [3], T. × glauca [15], T. latifolia
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[3]. Additionally, 30.3% of the samples had consensus in 5 out of 6

markers resulting in molecular ID classification [count] of T.

angustifolia [5], T. × glauca [3], and T. latifolia [2]. Two samples

were classified as AGH because the six microsatellite markers were

split in the molecular ID: one of the samples had 3 markers

identifying it as T. × glauca and 3 markers as T. angustifolia,

while the other sample had 2 markers identifying it as T. × glauca

and 4 markers as T. angustifolia. These two latter samples likely

represent backcrosses to one of the parental species (in this case T.

angustifolia). Given our relatively low sample size for molecular

analyses (n = 33), we categorized all hybrids beyond the F1 hybrid

as advanced-generation hybrids. Overall, molecular ID analyses

prevalence revealed that 15.2% of our samples were classified as T.

latifolia, 24.2% as T. angustifolia, 54.6% as T. × glauca, and 6.1% as

AGH (Table 1).
3.3 Molecular ID class separation

The overall linear discriminant analysis model had high

statistical accuracy when predicting the four Typha molecular

classes. LDA training data confusion matrix statistics revealed

high confidence for internal prediction model accuracy [correct %

prediction (± 95% CI): 78.8% (61.1%, 91.0%), Kappa = 66.8%]. The

LDAmodel significantly outperformed the no information rate (i.e.,

null) model (p = 0.003) (Table 2). The two most descriptive linear

discriminant functions (LD1: explained variance 96.8%; LD2:

explained variance 3.2%) successfully separated the molecular ID

classes driven by the leaf count and longest leaf width variables

(Figure 3). The 95% T. angustifolia confidence intervals more

strongly overlapped with T. × glauca compared to the clear class

separation between T. × glauca and T. latifolia (Figure 3). T. latifolia

and T. angustifolia had no 95% confidence interval overlap
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indicating clear molecular ID class separation between the two

taxa (Figure 3). AGH had only two classification instances (6.1% of

data set) leading to instability in predicting the class (Table 1) and

unresolved 95% confidence intervals (Figure 3) due to low

replication. LDA models revealed 100% accurate classification of

T. latifolia, 85.6% for T. × glauca, and 83.8% for T. angustifolia

(Table 1). Molecular class gravity centered mean measurement

values were back-transformed and presented for leaf count and

longest leaf width in Table 1.

The permutation LDA model result confirmed high prediction

agreement for training data and test data of molecular ID classes.

For each permutation iteration (n = 1,000), 78.8% of the full data set

trained the LDA model to externally predict 21.2% of the test data.

The average % correct molecular ID prediction for each

permutation iteration confirmed model accuracy for internal

training data (mean ± 1 sd % correct: 87.9% ± 3.6%) and test

data (mean ± 1 sd % correct: 78.7% ± 15.3%) (Table 2).
3.4 Variable selection: Typha dry
mass prediction

We used 14 predictor variables (and associated polynomial

terms) for BIC model selection. Model selection resulted in 11

equivalent models that predicted Typha dry mass in the study

(Table 3). Following BIC model averaging, the final PLS prediction

model was reduced to 4 predictor variables: sqrt[Typha Dry Mass] ~

log[Ramet Area at 30 cm] + Inflorescence Presence + Total Ramet

Height + sqrt[Organic Matter Depth].

Six of 14 potential predictor variables (and associated

polynomial terms) in Figure 2 were not selected in any equivalent

DBIC ≤ 2 models: Typha standing-detritus cover, widest ramet

diameter at 30 cm, narrowest ramet diameter at 30 cm, maximum
TABLE 1 Linear discriminant analysis (LDA) model performance metrics by class for training data to separate the four Typha molecular ID classes:
Typha angustifolia [A], Advanced Generation Hybrid [AGH], Typha × glauca [G], and Typha latifolia [L].

LDA Typha Molecular ID by Class

A AGH G L

Sensitivity (True Positive Rate) 87.5% 0.0% 77.8% 100.0%

Specificity (True Negative Rate) 80.0% 96.8% 93.3% 100.0%

Prevalence 24.2% 6.1% 54.6% 15.2%

Balanced Accuracy 83.8% 48.4% 85.6% 100.0%

LDA Gravity Centered Means

Longest Leaf Width (mm) 7.06 8.02 10.56 15.05

Leaf Count 6.35 4.94 7.89 12.98

Raw Typha Measurements by Class

Class Replication 8 2 18 5

Longest Leaf Width (mm) (mean ± 1 sd) 7.09 ± 0.91 8.03 ± 0.04 10.69 ± 2.28 15.10 ± 1.85

Leaf Count (mean ± 1 sd) 6.38 ± 0.92 5.00 ± 1.41 7.94 ± 1.35 13.00 ± 1.00
For the training data statistics, class-based sensitivity, specificity, prevalence, and balanced accuracy are given. LDA derived molecular ID group mean centers of gravity are given on the original
measurement scale. In addition, raw data summary statistics for Typha morphological measurements and replication are given for comparison to LDA’s mean center of gravity predictions.
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leaf width on the longest leaf (i.e., longest leaf width), ramet green

leaf count, and water depth (Table 3). Prevalent variables selected

within DBIC ≤ 2 models (% occurrence across DBIC ≤ 2 models, n =

11) were: ramet area at 30 cm (100%), inflorescence presence

(100%), and organic matter depth (81.8%). Longest leaf length

(54.5%) and total ramet height (36.3%) were never selected for the

same DBIC ≤ 2 equivalent model. Although longest leaf length was

selected more frequently, total ramet height (36.3%) was chosen as a

preferred PLS predictive variable because of the relative ease of

collecting ramet height data in the field without compromised

predictive power. Curvilinear relationships (i.e., 2nd order

polynomial terms) were infrequently included to predict Typha
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dry mass for ramet area at 30 cm and living Typha cover (Table 3).

Polynomial terms were not influential after BIC model averaging.
3.5 PLS and SLR Typha dry mass prediction

Typha dry mass descriptive statistics (min: 4.78 g; max: 102.62 g;

mean ± 1 sd: 34.52 g ± 19.22 g) successfully characterized plant

population size class ranges encountered in the study’s wetlands. To

this end, the multi-variate partial least squares regression (PLS) Typha

dry mass prediction model vastly outperformed the simple linear

regression (SLR) prediction model developed for sqrt[Typha Dry

Mass] ~ Total Ramet Height. The trained PLS prediction model

[Root mean squared error of cross validation (RMSECV): 0.47 g,

explained variance: 85.01%, replication = 75] had higher accuracy and

precision when validating model performance compared to the trained

SLRmodel [RMSECV: 2.27 g, explained variance: 18.38%, replication =

75] (Table 4). Thus, utilizing the selected PLS model instead of the

simple SLR resulted in greater accuracy in predicting Typha dry mass

(Figure 4). For clarity in Figure 4, the slope = 1 reference line indicates a

perfect prediction between predicted and reference dry mass. In

Figure 4A, the linear regression of predicted PLS Typha dry mass ~

reference Typha dry mass (p < 0.001, R2 = 0.832) had high agreement

and low unexplained variation with slope = 1 and the regression fit.

Compared to slope = 1, the PLS model slightly underpredicted the

reference dry mass of Typha within the higher biomass ranges. In

contrast (Figure 4B), the linear regression of predicted SLR Typha dry

mass ~ reference Typha dry mass (p < 0.001, R2 = 0.180) displayed

strong skew, low agreement, and high unexplained variation when

compared to slope = 1 and the regression fit. The SLR vastly

underpredicted Typha dry mass as reference dry mass increased,

resulting in lower model confidence compared to the PLS model.

The permutation model results further confirmed superior PLS

model performance compared to SLR model performance. For each

permutation iteration (n = 1,000), 84.0% of the full data set trained the

respective PLS and SLR model to externally predict 16% of the test
TABLE 2 Overall linear discriminant analysis (LDA) model performance
metrics to separate the four Typha molecular ID classes.

LDA Typha Molecular ID Training Data

Response Variable: Typha Molecular ID

Predictor Variables: sqrt[Leaf Count] + sqrt[Longest
Leaf Width]

Correctly Predicted: 78.8%

Correctly Predicted 95% CI: (61.1%, 91.0%)

P-Value [Acc>NIR]: 0.003

Kappa: 66.8%

LDA Typha Molecular ID Permutation Model

Number of Permutations: 1,000

Training / Test Replication: n = 26 / n = 7

Training Data (% correct ± 1 sd): 87.9% ± 3.6%

Test Data (% correct ± 1 sd): 78.7% ± 15.3%
LDA training data statistics were extracted from a generated confusion matrix in R’s caret
package. Permutation model statistics were developed to estimate test data prediction
performance for Typha molecular ID classes from both training data and test data. An
agreement percentage for predicted data for each iteration was calculated as % correctly
predicted cases/total cases predicted and permutation results subsequently averaged.
FIGURE 3

Linear discriminant analysis (LDA) results displaying linear discriminant function 1 (LD1) vs. linear discriminant function 2 (LD2) to separate the four
Typha molecular ID classes: Typha angustifolia, advanced generation hybrid [AGH], Typha × glauca, and Typha latifolia. LD1 vs. LD2 maximized class
separation given with parenthetic values for Proportion of Trace describing discriminant function explained variation. Respective ellipses represent
95% confidence intervals for each predicted class. Arrows represent the contribution direction and magnitude of each predictor variable. Final LDA
model: sqrt[Typha Dry Mass] ~ sqrt[Leaf Count] + sqrt[Longest Leaf Width]. AGH had insufficient data to provide model confidence intervals.
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data. Calculated DIFF confirmed high PLS model accuracy for test

data (meanDIFF ± 1 sd: -0.53 g ± 8.70 g) compared to the more highly

variable SLR model test data (mean DIFF ± 1 sd: -2.37 g ± 18.00 g).
4 Discussion

Our study emphasized field applicability from simple

aboveground Typha morphological measurements to support

rapid ecological management decisions for wetland plant

conservation and restoration. Contextually, field data collected in

this study occurred during peak growing season in northern

Michigan (July-August). Thus, our predictive models will have

widest applicability to fully mature Typha ramets prior to

senescence. Overall, we are confident that both of our developed

techniques can be employed with high precision and accuracy to

generate reliable data for researchers and land managers combatting

invasive Typha populations and implementing conservation

strategies to protect T. latifolia in North America.
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Molecular marker results indicate that hybridization is common

across the study region and that introgression (e.g., hybridization

beyond the F1 hybrids) may not be as prevalent in this study area

compared with others (e.g., Geddes et al., 2021 and references

therein). Specifically, we only identified advanced-generation

hybrids twice across all samples. However, we contend that the

discrepancy in classified molecular cases was not necessarily a major

limitation of this study. This study’s design did not prioritize

quantification of occurrence frequency of Typha in the region as

we did not specifically target equal population sizes with the intent

for balanced replication or a comprehensive wetland selection

protocol of all regional extant Typha stands. Thus, direct

comparisons with prior studies that address prevalence or

occurrence frequency of Typha taxa in North America should

be avoided.

In our sampled wetlands, LDA model selection revealed that

simple field measurements exhibited good taxa separation.

Morphological measurements of T. × glauca fell in between T.

angustifolia and T. latifolia in both LDA mean center of gravity and

raw data summary statistics (Table 1). These results agree with

Snow et al. (2010) who found that microsatellite markers sorted
TABLE 3 Equivalent BIC selected models (DBIC ≤ 2) and associated
degrees of freedom (df) generated to predict Typha dry mass.

Equivalent Typha Dry Mass Prediction Models df D
BIC

Response Variable: sqrt [Typha Dry Mass]

Predictor Variables:

log[Ramet Area at 30 cm] + Inflorescence Presence + Leaf Count
+ Longest Leaf Length + sqrt[Organic Matter Depth]

7 0.00

log[Ramet Area at 30 cm + Inflorescence Presence + Longest
Leaf Length + sqrt[Organic Matter Depth]

6 0.18

log[Ramet Area at 30 cm + Inflorescence Presence + sqrt
[Organic Matter Depth] + Total Ramet Height

6 0.43

log[Ramet Area at 30 cm] + Inflorescence Presence + Leaf Count
+ sqrt[Organic Matter Depth] + Total Ramet Height

7 0.56

log[Ramet Area at 30 cm] + (log[Ramet Area at 30 cm])2 +
Inflores- cence Presence + Longest Leaf Length + sqrt[Living
Typha Cover] + (sqrt Living Typha Cover])2

8 0.88

log[Ramet Area at 30 cm] + (log[Ramet Area at 30 cm])2 +
Inflorescence Presence + Longest Leaf Length + sqrt[Organic
Matter Depth]

7 1.04

log[Ramet Area at 30 cm + (log[Ramet Area at 30 cm])2 +
Inflorescence Presence + sqrt[Organic Matter Depth] + Total
Ramet Height

7 1.49

log[Ramet Area at 30 cm] + (log[Ramet Area at 30 cm])2 +
Inflores- cence Presence + Total Ramet Height + sqrt Living
Typha Cover + (sqrt Living Typha Cover])2

8 1.55

log[Ramet Area at 30 cm + Inflorescence Presence + sqrt
[Organic Matter Depth]

5 1.81

log[Ramet Area at 30 cm] + (log[Ramet Area at 30 cm])2 +
Inflorescence Presence + Leaf Count + Longest Leaf Length +
sqrt Organic Matter Depth]

8 1.98

log[Ramet Area at 30 cm + Inflorescence Presence + Leaf Count
+ Longest Leaf Length + sqrt Organic Matter Depth + sqrt
[Living Typha Cover + (sqrt[Living Typha Cover])2

9 1.98
Variables were transformed (where indicated) and subsequently centered and scaled (variable
mean = 0, variance = 1) prior to BIC selection.
TABLE 4 Partial least squares regression (PLS) and simple linear
regression (SLR) model performance metrics for Typha dry
mass predictions.

PLS Typha Dry Mass Training Data Statistics

Response Variable: sqrt [Typha Dry Mass]

Predictor Variables: log[Ramet Area at 30 cm] + Inflorescence
Presence + sqrt[Organic Matter Depth] +
Total Ramet Height

PLS Components: 4

Cross-Validation Segments: 10

RMSECV Typha Dry Mass: 0.47 g

Explained Variance: 85.01%

SLR Typha Dry Mass Training Data Statistics

Response Variable: sqrt [Typha Dry Mass)

Predictor Variable: Total Ramet Height

Cross-Validation Segments: 10

RMSECV Typha Dry Mass: 2.27 g

Explained Variance: 18.38%

Typha Dry Mass Test Data Statistics

Number of Permutations: 1,000

Training/Test Replication: n = 63 / n = 12

PLS DIFF (mean ± 1 sd): -0.53 g ± 8.70 g

SLR DIFF (mean ± 1 sd): -2.37 g ± 18.0 g
Training data statistics for PLS and SLR models present predictor variable(s), components
selection (PLS only), k-fold cross-validation segments, root mean square error of cross-
validation (RMSECV), and explained model variance. Test data statistics are given for
permutation models results to estimate accuracy of external data predictions. Permutation
results are given by mean ± 1 standard deviation of: DIFF = [predicted Typha dry mass –
reference Typha dry mass]. All presented Typha dry mass results were back-transformed to
show original data collection scale.
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samples by measured traits into three distinct clusters represented

by T. latifolia, T. × glauca, and T. angustifolia. Similar to our study,

the results of Snow et al. (2010) located T. × glauca in the middle of

the parental species clusters. Furthermore, our results agree with

those of Kirk et al. (2011) and those of Kuehn and White (1999)

who found that principal component analysis (PCA) of

microsatellite markers and discriminant analyses of randomly

amplified polymorphic DNA (RAPD) markers, respectively,

categorized Typha samples into three distinct clusters (T. latifolia,

T. × glauca, and T. angustifolia) by measured plant traits.

We assert that our capacity to identify T. latifolia is timely and

crucial when detecting and distinguishing the increasingly rare T.

latifolia from invasive Typha. Our study successfully showed that

the molecular ID of T. latifolia was strongly separated from the

remaining Typha taxa with slight 95% confidence interval overlap

with T. × glauca and no overlap with T. angustifolia (Figure 3). Our

method to accurately identify T. latifolia with two measurements

will allow field biologists to differentiate populations of the native

species quickly and accurately from the invasive taxa to improve

conservation efforts.

In our study, LDA longest leaf width mean center of gravity for

T. latifolia (15.05 mm) was reliably distinguished from longest leaf

width for T. angustifolia (6.35 mm) and T. × glauca (10.56 mm)

(Figure 2; Table 1). In Snow et al. (2010), cluster classification

corresponded well with several plant field measurements that

included: log(leaf length/leaf width), length of gap between

inflorescences, inflorescence length, and stem diameter. In

confirmation with our results, a measurement metric including

leaf width [i.e., log(leaf length/leaf width)] was most useful in

distinguishing between parental species and the F1 hybrid (Snow

et al., 2010). In contrast, our LDA model did not select a diagnostic

stem measurement (e.g., ramet area at 30 cm) as a strong predictor

of class separation. In Kirk et al. (2011), Typha taxa clustering was
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also significantly driven by leaf width measurements from a random

subset of selected leaves. Given the high variability of leaf width

within a particular ramet based on position, size, or age, our

selection of a ramet ’s longest leaf width will increase

measurement consistency to yield a more robust metric. Lastly, in

Kuehn and White (1999), cluster classification of the three Typha

taxa corresponded with stigma width, length of inflorescence spike,

gap between inflorescences, leaf width, and inflorescence width.

However, they concluded that no single character or sets of

characters were diagnostic due to considerable overlap among

parental species and the hybrid. In addition, 4 of 5 characters

used by Kuehn and White (1999) relied on the presence of

inflorescences and included more complex, microscope-assisted

measurements of stigma widths.

Our second LDA selected character (leaf count), is, to our

knowledge, a novel measurement not previously identified as a

Typha taxa classification trait. In our study, LDA leaf count mean

center of gravity for T. latifolia (12.98 leaves) far surpassed leaf

count for T. angustifolia (6.35 leaves) and T. × glauca (7.89 leaves)

suggesting a simple measurement metric can be used in

combination with longest leaf width to improve classification

prediction (Figure 2; Table 1). Wasko et al. (2022) employed

mean leaf-apex angle measured for Typha ramet leaves (range: 2-

9 leaves; mean: 5.3 leaves per ramet) to successfully match Typha ID

to microsatellite markers. In contrast to leaf count, the mean leaf-

apex angle metric in Wasko et al. (2022) requires a labor investment

in the field. As our study did not include mean leaf-apex angle,

future models could include this trait to determine if its

contribution greatly improves predictive class separation.

We still argue that field-based characters related to Typha

inflorescence measurements are extremely helpful in taxa

differentiation, specifically the gap between the staminate and

pistillate inflorescences. Yet, we caution that relying on
A B

FIGURE 4

Partial least squares regression (PLS) (A) and simple linear regression (SLR) (B) model results for predicted Typha dry mass (training data) vs. reference
Typha dry mass. Panel (A) Training data predicted from final PLS model generated from BIC model selection: sqrt[Typha Dry Mass] ~ log[Ramet Area
at 30 cm] + Inflorescence Presence + Total Ramet Height + sqrt[Organic Sediment Depth]. Panel (B) Training data predicted from final SLR
prediction model: sqrt[Typha Dry Mass] ~ Total Ramet Height. In both panels, the dashed line (—) represents a slope = 1 indicating a perfect
prediction between reference Typha dry mass and predicted Typha dry mass. The solid black line (—) represents the actual best fit regression line
between predicted Typha dry mass and reference Typha dry mass.
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inflorescence trait measurements may be problematic. Typha clonal

vegetative growth, which allows spread via rhizomes, can be highly

plastic regarding inflorescence production (Grace and Wetzel,

1982). In our current study, this was evidenced by the fact that

73% (55 of 75) of the randomly collected centermost ramets lacked

an inflorescence. Wasko et al. (2022) also found that less than 50%

(22 of 45) of their sampled Typha ramets had inflorescences.

Furthermore, large-scale management focused on aboveground

biomass removal via harvesting has resulted in stark reduction in

inflorescence frequency in subsequent years post-harvest. For

instance, following two consecutive years of invasive Typha

harvest at Shiawassee National Wildlife Refuge (MI, USA), 0.22%

of Typha ramets produced an inflorescence, compared with 16.66%

of Typha ramets in unharvested control plots (Lishawa et al., 2020).

Our field-based Typha measurements investigated in this study

relied solely upon vegetative growth characteristics, thus providing

a wider applicability for land managers and researchers in the field.

As noted in the results, the water depth variable in the LDA

model improved Typha class separation accuracy by approximately

9.1%. We removed this variable as a potential predictor variable as 6

of the 7 sampled wetlands were classified as Great Lakes coastal

wetlands. As water levels fluctuate considerably in the Great Lakes

(Gronewold and Rood, 2019), small predictive gains for variable

retention were determined to not outweigh the potentially

erroneous predictive conclusions. In Great Lakes coastal wetland

systems, daily water level ranges exceeding 20 cm are common due

to seiche events (Trebitz, 2006). The static LDA predictive model

assumes stability in water levels to separate the molecular ID classes.

Future model improvement may consider including water level

measurement in less dynamic, inland wetlands and/or with greater

sampling breadth of T. latifolia populations. As T. latifolia

populations are increasingly rare in the region, population

sampling was limited to two small T. latifolia stands (< 10 m

diameter) in this study. Summary statistics suggest that water level

for T. latifolia (mean ± 1 sd: 7.90 cm ± 5.81 cm) may be a viable

indicator in future studies but remains unreliable in this study due

to high variation in T. × glauca and T. angustifolia (mean ± 1 sd:

31.03 cm ± 16.93 cm; 63.31 cm ± 40.05 cm, respectively).

Furthermore, evidence from Lake Ontario wetlands with co-

occurring Typha taxa suggests that the three dominant taxa do

not tend to sort along a water depth gradient, but instead occupy

similar habitats (McKenzie-Gopsill et al., 2012). Taken together,

this evidence provided additional justification for dropping water

depth from our model.

Variables selected for our PLS equations incorporated total

ramet height, organic matter depth, inflorescence presence, and

ramet area at 30 cm. The resulting PLS model was 85.01% accurate

at predicting Typha dry mass training data, thus improving upon

published allometric equations for Typha (Lishawa et al., 2015).

Furthermore, our PLS model was robust to test (i.e., external) data

predictions leading to high confidence in our model prediction

applicability (Table 4, PLS DIFF: 0.53 g ± 8.70 g). Comparatively,

SLR models solely using total ramet height performed poorly when

predicting test data Typha dry mass (Table 4, PLS DIFF: -2.37 g ±

18.0 g). Similar to Ohsowski et al. (2016), model predictive

performance with multi-variate traits vastly improved both
Frontiers in Plant Science 10
precision and accuracy for training and test data predictions.

Unsurprisingly, plant height has been used as a variable to create

plant biomass predictive standard curves or as a proxy for plant

biomass (Catchpole and Wheeler, 1992). Our PLS model highlights

that the sole use of plant height measurements contributes to a high

level of model uncertainty, especially at higher biomass values for

Typha specifically. Our study further affirms that plant height does

provide predictive power when used in conjunction with multi-

variate model predictors.

Interestingly, our proposed PLS model provides researchers with

additional novel morphological measurements to accurately predict

Typha biomass. In this context, ramet area at 30 cm was a consistently

selected variable to improve Typha dry mass prediction. Ramet area at

30 cm alludes to the thickness and shape of the culm calculated from

widest ramet diameter and narrowest ramet diameter. In their

molecular ID study, Snow et al. (2010) found that stem diameter

helped explain the separation of the parental species and the F1 hybrid.

Here, we provide evidence that ramet area is also useful in explaining

predicted Typha dry mass. At first glance, this trait may seem

challenging to measure in the field. In our experience, integrating

ramet area measurement can be accomplished with common fieldwork

tools such as calipers or a flexible measuring tape. We assert that

including this variable is essential despite minor increases in time and

labor since the multi-variate PLS model substantially increased

explained variance and test data prediction precision.

Another unexpected, but reasonable, predictor of Typha dry mass

was organic matter depth. Organic depth has been correlated with

measures of Typha dominance. For example, in 14 Great Lakes

coastal wetlands in our project region organic matter depth was

more than 3-times greater and sediment ammonium was over 10-

times greater where Typhawas present (Lishawa et al., 2010). Further,

Typha ramet density was positively correlated with organic matter

depth (Lishawa et al., 2010). Organic sediments in these freshwater

coastal systems are likely a strong proxy for sediment nutrient

availability. Typha has been shown to increase sediment retention

(Horppila and Nurminen, 2001), thereby creating a nutrient

retention positive feedback. Corroborating these results, reviewed

research indicates that roots of stoloniferous and rhizomatous species

clones proliferate rapidly under conditions of increased nutrient

resource availability (de Kroons and Hutchings, 1995). Thus,

organic matter depth should be expected to drive plant vigor.

In conclusion, our results will benefit the work of land managers

and conservation biologists by enabling the rapid identification of

Typha taxa with minimal effort in the field. Furthermore, our

biomass prediction models will lend greater confidence in non-

destructive field-based measurements to improve scaled-up plot

level data to the landscape level. As intended, we are confident that

this study will help North American land managers parse subtle

morphological trait variation in Typha, enhancing wetland

conservation and ecological restoration efforts.
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