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Genomic insights into the
clonal reproductive Opuntia
cochenillifera: mitochondrial
and chloroplast genomes
of the cochineal cactus for
enhanced understanding of
structural dynamics and
evolutionary implications
Jing Liu1,2, Yuqing Feng2, Cheng Chen3, Jing Yan1, Xinyu Bai2,
Huiru Li1, Chen Lin1, Yinan Xiang1,2, Wen Tian4, Zhechen Qi2*,
Jing Yu3* and Xiaoling Yan1*

1Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan
Botanical Garden, Shanghai, China, 2Zhejiang Province Key Laboratory of Plant Secondary Metabolism
and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University,
Hangzhou, China, 3College of Life Science, Shanghai Normal University, Shanghai, China, 4Animal
Plant and Food Inspection Center of Nanjing Customs District, Nanjing, China
Background: The cochineal cactus (Opuntia cochenillifera), notable for its

substantial agricultural and industrial applications, predominantly undergoes

clonal reproduction, which presents significant challenges in breeding and

germplasm innovation. Recent developments in mitochondrial genome

engineering offer promising avenues for introducing heritable mutations,

potentially facilitating selective sexual reproduction through the creation of

cytoplasmic male sterile genotypes. However, the lack of comprehensive

mitochondrial genome information for Opuntia species hinders these efforts.

Here, we intended to sequence and characterize its mitochondrial genome to

maximize the potential of its genomes for evolutionary studies, molecular

breeding, and molecular marker developments.

Results:We sequenced the total DNA of theO. cochenillifera using DNBSEQ and

Nanopore platforms. The mitochondrial genome was then assembled using a

hybrid assembly strategy using Unicycler software. We found that the

mitochondrial genome of O. cochenillifera has a length of 1,156,235 bp, a GC

content of 43.06%, and contains 54 unique protein-coding genes and 346 simple

repeats. Comparative genomic analysis revealed 48 homologous fragments

shared between mitochondrial and chloroplast genomes, with a total length of

47,935 bp. Additionally, the comparison of mitochondrial genomes from

four Cactaceae species highlighted their dynamic nature and frequent

mitogenomic reorganizations.
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Conclusion: Our study provides a new perspective on the evolution of the

organelle genome and its potential application in genetic breeding. These

findings offer valuable insights into the mitochondrial genetics of Cactaceae,

potentially facilitating future research and breeding programs aimed at

enhancing the genetic diversity and adaptability of O. cochenillifera by

leveraging its unique mitochondrial genome characteristics.
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1 Introduction

The cochineal cactus (Opuntia cochenillifera (L.) Mill.,

Cactaceae), a succulent tree or shrub indigenous to Mexico,

thrives primarily in desert or dry shrubland biomes. This species

has gained global cultivation due to its extensive use in food, fodder,

and medicinal applications for centuries (Russell and Felker, 1987;

Anaya-Pérez, 2001; Lans, 2006; Barba et al., 2017; Kondo et al.,

2023; Prisa, 2023). Notably, O. cochenillifera has been historically

important as a host plant for the cochineal insect (Dactylopius

coccus), a source of the red cochineal or carmine dye, extensively

utilized as a natural colorant in food and cosmetics (Barba et al.,

2017; Ramadan et al., 2021).

In O. cochenillifera, as in many Opuntia species, clonal

reproduction is the predominant reproductive mode (Majure and

Puente-Martinez, 2014). This strategy likely evolved in response to

the arid conditions typical of its habitat, where sexual reproduction

is energetically costly and often challenging (Mandujano et al., 2007;

Wang et al., 2018). There are two forms exits: vegetative

multiplication and apomixis. Apomixis is the production of seeds

without previous fertilization (Asker and Jerling, 1992). In Opuntia,

adventitious embryony is a common developmental pathway

leading to apomixis (Majure and Puente-Martinez, 2014).

Furthermore, the occurrence of apomixis is often associated with

polyploidy, a condition that can indirectly establish an apomictic

cytotype in new ecological niches by enhancing the plant’s adaptive

potential (Hojsgaard and Hörandl, 2019). The most prevalent form

of vegetative multiplication in O. cochenillifera is through cladode

detachment (Majure and Puente-Martinez, 2014). This mode of

reproduction offers significant advantages in population expansion,

as the high frequency of multiplication in Opuntia can maintain

specific genetic combinations, perpetuate hybrids, develop dense

populations, and facilitate colonization of new localities (Majure

and Puente-Martinez, 2014). It is noteworthy that both forms of

asexual reproduction in O. cochenillifera enhance plant recruitment

efficiency, exhibiting high success rates, particularly in vegetative

multiplication (Majure and Puente-Martinez, 2014).

Clonal reproduction in O. cochenillifera, while advantageous for

certain aspects of cultivation, may inadvertently impede selective
02
breeding processes. This reproductive strategy results in progeny

that are genetically identical to the maternal plant, thus limiting

gene segregation and, consequently, the potential for genetic

diversity (Almeida et al., 2022; Carra et al., 2023). As a species

extensively cultivated for various applications, O. cochenillifera,

along with other cacti, faces an urgent need for breeding

advancements. These improvements are essential for developing

high-yielding, quality varieties that can withstand the biotic and

abiotic stresses prevalent in their production environments (Gentile

and La Malfa, 2022; Carra et al., 2023). In the context of climate

change, there is increasing interest in Opuntia for its potential

strategic role in arid areas, leveraging its high water-use efficiency

(Gentile and La Malfa, 2022; Jorge et al., 2023; Prisa, 2023).

However, exploiting Opuntia germplasm for breeding is complex

due to the high rate of apomixis, reducing the efficiency of

generating novel variability via conventional breeding methods

(Gentile and La Malfa, 2022).

Recent studies indicate that mitochondrial genome engineering

could facilitate genetic breeding, especially in plants with high

clonal reproduction. Advanced gene editing systems, such as

mitoTALENs (Kazama et al., 2019; Arimura et al., 2020;

Takatsuka et al., 2022), Golden Gate cloning system (Kang et al.,

2021), and TALEN-GDM (Forner et al., 2022), offer potential for

inducing stable, heritable mitochondrial mutations (Maliga, 2022).

Given the high repair mechanisms and low mutation rate in plant

mitochondria (Christensen, 2013; Kazama et al., 2019), these

genetic variations can be effectively fixed and inherited. Moreover,

mitochondrial genome information can serve as a uniparental

marker, widely applied in species identification, phylogenetic

reconstruction, and population genetic analysis (Sperisen et al.,

2001; Galtier et al., 2009; Duminil and Besnard, 2021; Khachaturyan

et al., 2023). However, knowledge about the mitochondrial genome

within the Cactaceae, particularly Opuntia, remains limited, with no

complete mitochondrial genome information reported to date.

Plant mitochondrial genomes (mtDNA) exhibit a suite of

unique properties that distinguish them markedly from their

mammalian counterparts. Notably, plant mtDNA is substantially

larger, ranging from 10 to 600 times the size of mammalian

mtDNA, yet it harbors only about 50% more genes (Kubo and
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Newton, 2008). This discrepancy is intriguing, considering that

plant mtDNA retains the standard genetic code and exhibits a low

divergence rate in terms of point mutations (Ghulam et al., 2015;

Møller et al., 2021). However, it demonstrates high recombinational

activity, a characteristic that contributes significantly to its

complexity (Gualberto and Newton, 2017). While most reported

plant mitochondrial genomes are circular, some mitochondrial

genomes show the coexistence of linear, multi-branch and multi-

ring structures (Kubo et al., 2000; Notsu et al., 2002; Handa, 2003;

Ogihara et al., 2005). This diversity stems from the abundance of

repeat sequences within the plant mitochondrial genomes. These

repeats act as hotspots for both inter-molecular and intra-molecular

recombination, leading to genome rearrangements and the

formation of various isomeric forms (Cole et al., 2018). The

frequency of recombination, mediated by these repeat sequences,

is a key determinant of the predominant structural form of

mitochondrial genomes and a major factor in the expansion of

mitochondrial genomes in higher plants (Andre et al., 1992; Mower

et al., 2012). Furthermore, recombination in plant mtDNA can

create novel reading frames, leading to the production of

cytoplasmic male sterility, a trait widely exploited in crop

breeding (Gualberto and Newton, 2017; Tang et al., 2017;

Kazama et al., 2019); Additionally, mitochondrial mRNA

maturation in plants involves a uniquely complex set of activities,

including processing, splicing, and editing at hundreds of sites

(Small et al., 2020; Møller et al., 2021). The unique properties of

plant mitochondria not only underscore their complexity but also

highlight their flexibility and integral involvement in various critical

processes within the plant cell, including photosynthesis,

photorespiration, CAM and C4 metabolism, heat production,

temperature regulation, stress resistance mechanisms,

programmed cell death, and genomic evolution (Møller et al., 2021).

In this study, we aim to comprehensively analyze the

mitochondrial genome of O. cochenillifera (cochineal cactus),

focusing on its assembly, repetitive sequences, RNA editing events,

chloroplast genome comparison, and phylogenetic relationships with

related species. Our goal is to enhance understanding of its

evolutionary dynamics, adaptability, and genetic diversity, providing

valuable genomic insights for this clonally reproductive crop.
2 Materials and methods

2.1 O. cochenillifera DNA extraction and
mitochondrial genome assembly

TheO. cochenillifera plants were cultivated at Shanghai Chenshan

Botanical Garden. High quality genomic DNA were isolated from

stem epidermis using the modified CATB method (Arseneau et al.,

2017). A sample of 100 mg from the O. cochenillifera epidermis was

pulverized in liquid nitrogen, followed by the addition of 400 mL of

buffer FP1 and 6 mL of RNase A; the mixture was vigorously shaken

for 1 minute before being allowed to settle at room temperature for 10

minutes. Subsequently, 130 mL of buffer FP2 was incorporated, shaken
for 1 minute, and then centrifuged at 12,000 rpm for 5 minutes to

separate the supernatant. Isopropyl alcohol, amounting to 0.7 times
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the volume of the supernatant, was added, and after centrifugation at

12,000 rpm for 2 minutes, the supernatant was discarded, preserving

the precipitate. The precipitate was then washed with 600 mL of 70%

ethanol, shaken for 5 minutes, centrifuged at 12,000 rpm for 2

minutes, and the wash repeated once after discarding the

supernatant to retain the precipitate. The lid was opened and

inverted to allow the remaining ethanol to dry for 5 to 10 minutes.

Finally, an appropriate volume of TE buffer was added, and the

sample was heated in a 65°C water bath for 30 minutes, intermittently

inverted to ensure dissolution, resulting in the DNA solution.

DNBSEQ and Nanopore platforms were used for sequencing.

DNBSEQ sequencing and Oxford sequencing were performed by

Wuhan Benagen Tech Solutions Company (http://en.benagen.com/).

DNBSEQ sequencing data was sequenced using the DNBSEQ-T7,

Guangdong, CHN, and Nanopore sequencing was performed by

Oxford Nanopore GridION × 5 Oxford Nanopore Technologies,

Oxford, UK. Flye software was used to perform de novo assembly of

Oxford Nanopore long reads derived from O. cochenillifera. Results

were visualized using Bandage software (Wick et al., 2015). The

BLASTn program (Chen et al., 2015) was then utilized, with

conserved mitochondrial genes from Arabidopsis thaliana chosen

as query sequences, to identify contigs containing these conserved

mitochondrial genes. The draft mitochondrial genome of O.

cochenillifera was identified based on the assembled contigs.

Subsequently, short and long reads were mapped onto these

contigs using BWA (Burrows-Wheeler Aligner) software (Li, 2013)

and SAMTools software (Li and Durbin, 2009), and all mapped reads

were retained. Finally, a hybrid assembly was performed using

Unicycler (Wick et al., 2017) using a combination of Illumina short

reads and Nanopore long reads. GFA format files produced by

Unicycler are visualized using Bandage software (Wick et al., 2015).
2.2 Annotation of the mitogenome of
O. cochenillifera

As reference genomes for the protein-coding genes of the

mitochondrial genome, we selected Arabidopsis thaliana

(NC_037304) and Liriodendron tulipifera (NC_021152.1). The

mitochondrial genome was annotated using the Geseq v2.03

(Tillich et al. , 2017) and the tRNA and rRNA of the

mitochondrial genome were annotated using the tRNAscan-SE

v2.0.11 (Lowe and Eddy, 1997) and BLASTN v2.13.0 (Chen et al.,

2015), respectively. Finally, we manually corrected annotation

errors in each mitochondrial genome using the Apollo v1.11.8

(Lewis et al., 2002).
2.3 Relative synonymous codon usage

We utilized Phylosuite (Zhang et al., 2020) to extract the

protein-coding genes (PCGs) from the genome. Subsequently, we

employed MEGA v7.0.26 (Kumar et al., 2016) to conduct codon

preference analysis on the protein-coding genes of the

mitochondrial genome and calculate the Relative Synonymous
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Codon Usage (RSCU) values. An RSCU value>1 indicates that the

codon was preferentially used by amino acids, whereas an RSCU

value<1 indicates the opposite trend.
2.4 Analysis of repeat elements

We identified repeated sequence, including simple sequence

repeats (SSRs), tandem repeat, and dispersed repeat, using the

MISA v2.1 (Beier et al., 2017), TRF (Benson, 1999), and REPuter

online servers (Kurtz et al., 2001), respectively. Subsequently, we

visualized the results using Excel 2021 and the Circos v0.69-9 (Zhang

et al., 2013). The comparative analysis of the SSRs composition and

number of O. cochenillifera were conducted with other three related

species available in Cactaceae, Mammillaria huitzilopochtli

(OP081771), Selenicereus monacanthus (OQ835513), and Pereskia

aculeata (ON496936.1). Origin software (Origin Lab Corp. v 8) was

used to draw the chordal graph (May and Stevenson, 2009).
2.5 Identification of homologous
sequences among organelle genomes

We assembled the chloroplast genome of O. cochienllifora using

GetOrganelle and annotated the chloroplast genome using

CPGAVAS2 (Shi et al., 2019). We corrected the annotation

results of the chloroplast genome using CPGView (Liu et al.,

2023). Finally, we analyzed homologous sequences using the

BLASTN and visualized the results using Circos package.
2.6 Synteny and phylogenetic and analysis

Based on the BLAST program, we obtained BLASTN results for

pairwise comparisons of each mitochondrial genome, retaining

homologous sequences with lengths exceeding 500 bp as

conservative collinear blocks for drawing the Multiple Synteny

Plot. Utilizing sequence similarity, we employed MCscanX (Wang

et al., 2012) to generate the Multiple Synteny Plot for O.

cochienllifora in comparison with closely related species.

According to the genetic relationship, we selected 31 related

spec ies and download the ir mitochondr ia l genomes

(Supplementary Table S1), then used PhyloSuite (Zhang et al.,

2020) to extract common genes, used MAFFT v7.505 (Katoh and

Standley, 2013) to perform multiple sequence alignment analysis,

and then phylogenetic analysis was performed using IQ-TREE v2

(Minh et al., 2020), and the results of phylogenetic analysis were

visualized using iTOL v4 (Letunic and Bork, 2019).
2.7 RNA editing site prediction

We analyzed the sequences of all protein-coding genes (PCGs)

encoded by the mitochondrial genome of O. cochienllifora. For the

prediction of C-to-U RNA editing sites within these mitochondrial

PCGs, we employed Deepred-mt t (Edera et al., 2021), a tool based on a
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Convolutional Neural Network (CNN)model. This approach provided

enhanced accuracy over previous prediction methodologies. We

considered predictions with probability values exceeding 0.9 to

ensure high confidence in our results.
3 Results

3.1 Characteristics of the O.
cochienllifora mitogenome

We used the Bandage to visualize the sketch of the

mitochondrial genome assembled based on long-reads. The final

result was depicted in Figure 1A, which comprises six nodes, each

labeled with a specific name (refer to the graph1.gfa file for details).

Detailed information about nodes was shown in Table 1. Each node

represents a contig obtained through assembly. If two nodes are

mutually connected by a black line, it signifies an overlap between

the two sequences. All of these sequences collectively form a

complex multi-branched closed genome structure, representing

the complete mitochondrial genome sequences of O.

cochienllifora. For critical nodes with branching, we resolved

them using long-reads. We exported the relevant sequences at the

branching nodes and mapped them to the long-reads. When two

sequences connected by a black line appeared consecutively on the

same long-read, it indicated that the long-read supported the

connection between these two sequences. In cases where there

were multiple potential connections at branching nodes, we

prioritized connections that received greater support from long-

reads. Red nodes represent potential repetitive sequences that occur

multiple times in the genome. The sequence of a circular ‘master

circle’ obtained after solving the branch nodes caused by repeated

sequences (red nodes) based on long-reads data is shown in

Figure 1B. The specific resolution path representing its master

circle structure can be found in Table 2. Additionally, beneath the

connections of two pairs of repetitive sequences, potential

rearrangement configurations may exist, resulting in the genome

splitting into multiple smaller circles (Figures 1C, D).
3.2 Assembly and annotation of the
mitochondrial genome of O. cochienllifora

The main structure of the mitochondrial genome of O.

cochienllifora was a single circular molecule. After excluding

repetitive regions through ONT data, we obtained a mainly

circular contig with a total length of 1,156,235 bp and a GC

content of 43.06% (Figure 2, Table 3). The mitochondrial genome

of O. cochienllifora was annotated, and a total of 33 unique

mitochondrial protein-coding genes were annotated, including 24

core genes and nine non-core genes, 19 tRNA genes (of which 14

tRNAs were multi-copy), three rRNA genes (three of which had

multiple copies of rRNA) (Table 4). The core genes included five

ATP synthase genes (atp1, atp4, atp6, atp8 and atp9); nine NADH

dehydrogenase genes (nad1, nad2, nad3, nad4, nad4L, nad5, nad6,

nad7 and nad9); four cytochrome C biogenesis genes (ccmB, ccmC,
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ccmFC and ccmFN); three cytochrome C oxidase genes (cox1, cox2

and cox3); one membrane transport protein gene (mttB); one

mature enzyme gene (matR) and one ubiquinol-cytochrome C

reductase gene (cob). Non-core genes included two ribosomal

large subunit genes (rpl5, rpl16); six ribosomal small subunit

genes (rps1, rps3, rps4, rps7, rps12, rps13); one succinate

dehydrogenase gene (sdh4). Analysis of repeat elements.
3.3 Analysis of repeat elements

In the O. cochienllifora mitogenome, several repetitive

sequences were observed (Figure 3A). A total of 346 SSRs were

identified (Figure 3A, Supplementary Table S2). Monomeric and

dimeric forms of SSRs accounted for 45.95% of the total SSRs.

Adenine (A) monomer repeat accounted for 50.00% (45) of 90

monomer SSRs. We identified 44 tandem repeat sequences with a
Frontiers in Plant Science 05
similarity greater than 69% and lengths ranging from 10 to 57 bp

(Supplementary Table S3). The detection of dispersed repeat

revealed a total of 2,229 pairs of repeat sequences with a length

greater than or equal to 30 bp (Supplementary Table S4). Among

these, there were 1,104 pairs of palindromic repeats, 1,120 pairs of

forward repeats, 4 pairs of reverse repeats, and 1 pair of

complementary repeats (Figure 3B). The longest palindromic

repeat observed was 349 bp, while the longest forward repeat was

13,272 bp. The comparative analysis of the SSRs revealed that O.

cochienllifora exhibited the highest number of unique SSRs (85),

while M. huitzilopochtli only had 37 (Supplementary Figure S2,

Supplementary Table S5). Among the species, S. monacanthus, O.

cochenillifera and P. aculeata showed a high number of Tetra

repeats (Supplementary Figure S3, Supplementary Table S6).

Dispersed repeats were found to be prevalent in all four species

(Supplementary Figure S4, Supplementary Table S7).
3.4 Codon usage analysis of PCGs

Codon preference analysis was performed on 33 unique protein-

coding genes (PCGs) in the mitochondrial genome of the O.

cochienllifora. The usage of each codon for amino acids was shown
TABLE 1 Length and sequencing depth of each node.

Contig/Node Length(bp) Depth (×)

1 607,629 79.4

2 366,888 89.0

3 114,586 100.0

4 31,803 65.0

5 10,136 249.0

6 7,606 278.0
TABLE 2 Path selection for each node (repeating area) based on
Nanopore data.

Contig Type Path

1 circular ctg1-ctg6-ctg3-ctg5-ctg2-ctg5_copy-ctg4-ctg6_copy
B

C D E

A

FIGURE 1

Potential isomers of O. cochienllifora mitogenome inferred from shorts reads and long reads. The initial assembly is shown in the Panel 1A, with (B–
E) representing the four possible isomers formed after solving the paths of the two pairs of repeating regions (ctg 5 and ctg 6). These isomers
contain one “master ring” structure (B) that differ in sequence order, as well as one structure of two independent small rings (C, D) and one structure
of three independent small rings (E). The structure shown in panel (B) for the downstream analysis, which is supported by most long reads.
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in Supplementary Table S8. Codons with a relative synonymous

codon usage (RSCU) value greater than 1 were considered to be

preferentially utilized for corresponding amino acids. As shown in

Figure 4, aside from the start codon AUG and the Tryptophan codon

(UGG), both with an RSCU value of 1. There was a general codon

usage preference in mitochondrial PCGs. For example, Leucine had a

high preference for UUA, with the highest RSCU value among

mitochondrial PCGs at 1.61. Additionally, the stop codon UAA

also showed a preference, with an RSCU value of 1.6.
3.5 Identification of homologous
sequences among organelle genomes

Mitochondrial plastid DNAs (MTPTs) were plastid-derived

DNA fragments found in the mitochondrial genome. In the
FIGURE 2

The putative circular mitogenome maps of O. cochienllifora. The genomic features inside and outside the circle represent the clockwise and
counterclockwise chains on the transcription, respectively. Different color blocks represent different functional gene groups.
TABLE 3 Basic information of the mitochondrial genome of
O. cochienllifora.

Type Mitochondrial genome

Structure Circular

Circular molecular 1

Total length 1,156,235bp

GC content 43.06%
F
rontiers in Plant Science
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TABLE 4 Information on the mitochondrial genome of O. cochienllifora.

Group
of genes

Name of genes

ATP synthase atp1 (×2), atp4, atp6 (×2), atp8, atp9

NADH
dehydrogenase

nad1, nad2, nad3, nad4, nad4L, nad5, nad6, nad7, nad9

Cytochrome b cob

Cytochrome
c biogenesis

ccmB, ccmC, ccmFC, ccmFN

Cytochrome
c oxidase

cox1, cox2, cox3

Maturases matR

Protein
transport
subunit

mttB

Ribosomal
protein
large subunit

rpl5, rpl16

Ribosomal
protein
small subunit

rps1, rps3, rps4, rps7, rps12, rps13

Succinate
dehydrogenase

sdh4

(Continued)
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present study, sequencing data were used to assemble the O.

cochienllifora plastome, which was 138,084 bp in size

(Supplementary Figure S1). Based on the analysis of sequence

similarity, a total of 48 MTPTs were identified in the O.

cochienllifora plastome (Figure 5 and Supplementary Table S9),

with a total length of 47,935 bp, accounting for 4.15% of the

mitogenome length and 34.71% of the total plastome. There were

19 fragments with lengths greater than 1,000 bp (Supplementary

Table S9), of which MTPT5 was the longest at 5,450 bp. Through
Frontiers in Plant Science 07
annotation of these homologous sequences, 35 complete genes were

identified on the 48 homologous segments, including 21 PCGs

(atpH, matK, ndhF, ndhH, petA, petG, petL, petN, psaJ, psbD, psbE,

psbF, psbJ, psbL, psbM, psbZ, rpl20, rpl33, rpoC2, rps15, rps16) and

14 tRNA genes (trnC-GCA, trnD-GUC, trnE-UUC, trnfM-CAU,

trnG-GCC, trnI-CAU, trnK-UUU, trnM-CAU, trnN-GUU, trnP-

UGG, trnQ-UUG, trnT-GGU, trnW-CCA, trnY-GUA).
3.6 Phylogenetic analysis and synteny
analysis based on mitochondrial genomes
of higher plants

A phylogenetic analysis was performed with 32 species based on

the DNA sequence of 24 conserved mitochondrial PCGs (atp1,

atp4, atp6, atp8, atp9, ccmB, ccmC, ccmFC, ccmFN, cob, cox2, cox3,

matR, nad1, nad2, nad3, nad4L, nad5, nad6, nad7, nad9, rpl5, rps3,

and rps12). Two mitochondrial genomes Pulsatilla chinensis

(NC068017.1) and Aconitum kusnezoffii (NC053920.1) from the

Ranunculales order were set as outgroups. The results showed that

O. cochienllifora belonged to the Cactaceae family and was closely
TABLE 4 Continued

Group
of genes

Name of genes

Ribosome
RNA

rrn5 (×2), rrn18 (×2), rrn26 (×2)

Transfer RNA trnC-GCA (×2), trnD-GUC (×2), trnE-UUC (×2), trnF-GAA
(×3), trnfM-CAU, trnG-GCC (×3), trnH-GUG,trnI-CAU, trnK-
UUU (×3),
trnM-CAU (×7), trnN-GUU (×2), trnP-UGG (×4), trnQ-UUG
(×5), trnS-UGA (×2), trnT-GGU (×2), trnT-UGU, trnV-GAC,
trnW-CCA (×2), trnY-GUA (×2)
B

A

FIGURE 3

The SSRs and dispersed repeats identified in the mitogenomes of O. cochienllifora. (A) The SSRs identified in the O. cochienllifora mitogenomes.
Each column represents different nucleotide repeated units displayed in different colors. (B) Dispersed repeats (≥30 bp) identified in the O.
cochienllifora mitogenomes.
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related to S. monacanthus, M. huitzilopochtli, and P. aculeata

(Figure 6A). The topology of this mitochondrial DNA-based

phylogeny was consistent with the latest classification of APG

(Angiosperm Phylogeny Group).

Collinearity blocks with a length of less than 0.5 kb were

excluded from the results. Extensive homologous collinearity

blocks were identified between O. cochienllifora and closely

related species in the Caryophyllales (Figure 6B, Supplementary

Table S10). Additionally, some regions were found to be unique to

O. cochienllifora, lacking homology with the rest of the species. The

results indicated that the arrangement of collinearity blocks among
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the mitochondrial genomes of these nine species was inconsistent.

The mitochondrial genome of O. cochenillifera exhibited a notable

degree of genome rearrangements when compared with its closely

related species within the Caryophyllales order. This was

particularly evident in the mitochondrial genome sequences of

the four cacti species, demonstrating extremely non-conservative

arrangements and frequent genome recombination (Figure 6B).
3.7 The prediction of RNA editing events

RNA editing events of 33 unique PCGs from O. cochienllifora

mitochondrial genome were characterized. The cutoff value for

identification was set at 0.9. Under this criterion, a total of 358

potential RNA editing sites were identified across the 33

mitochondrial PCGs, all of which were base C to U editing

(Figure 7, Supplementary Table S11). Among the mitochondrial

genes, 29 RNA editing sites were identified in the ccmC gene, which

had the highest number of edits among all mitochondrial genes.

Following closely was the ccmB gene, with 28 RNA editing events.

We identified that the initiation codons of three genes (cox2, nad4L,

and nad7) and termination codons of three genes (atp6, atp9, and

ccmFC) were products of RNA editing events, and these were

confidently verified by Deepred-mt.

4 Discussion

4.1 Size and genetic composition
properties of the O.
cochienllifora mitogenome

This study utilized a hybrid assembly strategy, combining short

and long reads, to assemble the high-quality, full-length (1,156,235

bp) ring-like mitochondrial genome of O. cochienllifora. Compared

to other species in the Cactaceae family, it was significantly larger

than the mitochondrial genome of P. aculeata (515.2 kb) (Zhang
FIGURE 4

Codon usage bias of mitochondrial PCGs of O. cochienllifora. The RSCU refers to relative synonymous codon usage.
FIGURE 5

Schematic representation of homologous sequences between
chloroplast genome and mitogenomes in O. cochienllifora. The blue
arcs represent mitogenomes, the green arcs represent chloroplast
genomes, and the lines between arcs correspond to homologous
genome segments.
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et al., 2023), yet approximately half the size of M. huitzilopochtli

(2.052 Mb) and S. monacanthus (2.290 Mb) (Lu et al., 2023;

Plancarte and Solórzano, 2023). Previous research indicated that

total genome size did not correlate with structural complexity (such

as chromosome arrangement), gene count, gene identity, or GC

content in plant mitochondrial genomes (Plancarte and Solórzano,

2023). The GC content of the O. cochienllifora mitochondrial

genome was 43.06%. Although mitochondrial genome sizes vary
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greatly within the family, the GC content was remarkably consistent

(43%-44.05%). The consistency in GC content across Cactaceae

mitochondrial genomes might suggest a parallel evolutionary

history among these species (Landrum, 2002; Copetti et al., 2017),

as GC content diversity typically reflects adaptive consequences

(Lassalle et al., 2015; Trávnıč́ek et al., 2019). Beyond its primary

configuration, theO. cochienlliforamitochondrial genome exhibited

alternative chromosomal structures (Figure 1), a characteristic also
B

A

FIGURE 6

Phylogenetic and synteny analyses of O. cochienllifora. (A) The plants in the diagram belong to of Caryophyllales. Different families are represented
by different colors, with O. cochienllifora represented in red. (B) Synteny analysis of nine mitogenomes. Only collinear blocks over 0.1 kb in length
are retained. Red-curved regions indicate where inversions occur, gray regions indicate regions of good homology, and white regions indicate
species-unique sequences.
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observed in various terrestrial plants (Whelan and Murcha, 2015;

Gualberto and Newton, 2017; Møller et al., 2021).
4.2 Repeated sequences and extensive
homologous recombination in the
O. cochienllifora mitogenome

Repetitive sequences, which were found abundantly in

mitochondrial genomes, played a crucial role in shaping the

evolutionary landscape of plant adaptation, regulating gene

expression, and influencing the variability of epistatic traits

(Mehrotra and Goyal, 2014; Wynn and Christensen, 2019; Xiong

et al., 2022). Within the mitochondrial genome of O. cochienllifora,

our analysis identified a total of 346 simple sequence repeats (SSRs),

forming a substantial collection of reference loci. These SSRs not only

held potential for species identification but also served as valuable

genetic markers in the exploration of Opuntia germplasm. This

discovery implied that dispersed repeats may play a pivotal role in

genome expansion and gene regulation (Supplementary Figure S4)

(Gualberto and Newton, 2017). Furthermore, the presence of

repetitive sequences in plant mitochondrial genomes has been

associated with homologous repair mechanisms, which were

integral to genome evolution and variation (Knoop, 2012;

Christensen, 2013). Synteny analysis conducted in this study

revealed significant recombination events within the mitochondrial

genome, as evidenced by the remarkable shuffling of homologous

regions among the four Cactaceae genera (Figure 6B). This observed

phenomenon suggested a widespread evolutionary mechanism

contributing to plant adaptation under stressful environmental

conditions within the family (Hernández-Hernández et al., 2014;

Copetti et al., 2017). The dynamic nature of the mitochondrial

genome, shaped by repetitive elements and recombination,
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highlighted its pivotal role in the adaptation and evolution of plant

species, particularly within the Cactaceae family.
4.3 Integration and potential functional
implications of chloroplast-derived DNA in
the mitochondrial genome of
O. cochienllifora

Plant mitochondrial genomes, due to their unique structural and

evolutionary characteristics, were more receptive to foreign DNA

integration (Wynn and Christensen, 2019). It had been frequently

observed that plant mitochondrial genomes incorporate DNA

sequences of plastid origin (Wang et al., 2007; Alverson et al., 2011;

Gao et al., 2020). In the mitochondrial genome of O. cochienllifora,

homologous segments with the chloroplast genome spanned 47,935

bp, constituting 35% of its total chloroplast genome length. This

significant proportion of chloroplast-derived segments, also noted in

the S. monacanthus mitogenome (Lu et al., 2023), was a rare

occurrence in both angiosperms and gymnosperms. Typically, these

homologous fragments transferred several photosynthesis-related

protein-coding genes (PCGs) to the mitochondrial genome

(Alverson et al., 2011). Our data revealed that at least 21 intact

PCGs, one of the highest numbers recorded, had been transferred to

the mitochondria. These genes were crucial for the photosynthetic

process (Vrba and Curtis, 1990; Martıń and Sabater, 2010; Berry et al.,

2013), suggesting a possible correlation of unique environmental

adaptation in Opuntia (Szarek et al., 1973; Mallona et al., 2011).

Currently, there was no evidence of expression or functional

regulation of these chloroplast genes in the mitochondria.

However, following integration, these genes might become non-

functional pseudogenes due to genetic recombination.
FIGURE 7

Characteristics of the RNA editing sites identified in PCGs of O. cochienllifora mitogenome. Number of RNA editing sites predicted by individual
PCGs using Deepred-mt. The abscissa shows the name of the gene, and the ordinate shows the number of edited sites.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1347945
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Liu et al. 10.3389/fpls.2024.1347945
4.4 RNA editing events are prevalent in the
PCGs of the O. cochienllifora mitogenome

RNA editing, a crucial post-transcriptional regulatory

mechanism in higher plant organelles, produced transcripts that

differ from the DNA template, predominantly through C-to-U base

conversions (Edera et al., 2018; Hao et al., 2021). This process,

mediated by various mechanisms and pathways (Hao et al., 2021),

could modify organellar transcription products’ coding sequences,

often creating translatable mRNAs by forming AUG start codons or

removing premature termination codons (Edera et al., 2018; Small

et al., 2020). In our study, all 33 protein-coding genes of the O.

cochienllifora mitochondrial genome exhibited putative RNA

editing sites, primarily single-base (C to U) edits leading to amino

acid changes, potentially endowing these genes with novel

structures and functions (Møller et al., 2021). Previous research

had linked RNA editing to protein function initiation and

maintenance in various crops (Kadowaki et al., 1995; Quiñones

et al., 1995; Gray, 2003). Typically, the generation of new start and

stop codons results in proteins that were more conserved and

exhibit higher homology with counterparts from other species,

enhancing mitochondrial gene expression (Edera et al., 2018).

Our findings also indicated that RNA editing events in the

O. cochienllifora mitochondrial genome generated start or stop

codons in five genes: new start codons at nad4L-2, nad7-224, and

cox2-443, and new stop codons at atp9-copy3-223 and ccmFC-1306.

Notably, the atp9 gene undergoes varying degrees of RNA editing

across different crops, a process deemed essential for producing

functional polypeptides (Wintz and Hanson, 1991). A specific

editing site in the ccmFC gene was believed to be associated with

regulation under salinity stress (Ramadan et al., 2023). However,

the implications of these edits for mitochondrial function and

overall plant physiology warrant further investigation.
5 Conclusion

This is the first published assembly of mitochondrial genome in

the Opuntia genus, spanning 1,156,235 base pairs and encoding 54

unique genes. We identified the presence of dispersed repeats,

fragments of plastid DNA, and RNA editing events with this

genome, along with the potential for multiple structural

conformations. Synteny and evolutionary analysis suggest

frequent genomic recombination in the O. cochenillifera

mitogenome. These findings offer crucial insights for

comprehensive studies into the mitochondrial genetics of Opuntia

and molecular breeding in these clonally reproductive species.
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SUPPLEMENTARY FIGURE 1

The putative circular chloroplast genome maps of O. cochenillifera.

SUPPLEMENTARY FIGURE 2

The number of unique and common SSRs detected in mitochondrial genome
of four Cactaceae species. Different colors represent different SSRs types.

SUPPLEMENTARY FIGURE 3

Frequency of identified SSRs types (Mono-, Di-. Tri-, Tetra, Penta- and
Hexa- nucleotide repeats) detected in mitochondrial genome of four
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species of the Cactaceae family. Each column represents a different
repeat type.

SUPPLEMENTARY FIGURE 4

Comparative analysis of mitochondrial genome repeat sequences in four

species of Cactaceae.

SUPPLEMENTARY TABLE 8

Relative synonymous codon usage of each amino acid pair codon in the

mitochondrial genome of O. cochenillifera.
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Diversity in genome size and GC content shows adaptive potential in orchids and is
closely linked to partial endoreplication, plant life-history traits and climatic
conditions. New Phytol. 224, 1642–1656. doi: 10.1111/nph.15996

Vrba, J. M., and Curtis, S. E. (1990). Characterization of a four-member psb A gene
family from the cyanobacterium Anabaena PCC 7120. Plant Mol. Biol. 14, 81–92.
doi: 10.1007/BF00015657

Wang, Y., Tang, H., DeBarry, J. D., Tan, X., Li, J., Wang, X., et al. (2012). MCScanX: a
toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic
Acids Res. 40, e49–e49. doi: 10.1093/nar/gkr1293

Wang, D., Wu, Y.-W., Shih, A. C.-C., Wu, C.-S., Wang, Y.-N., and Chaw, S.-M.
(2007). Transfer of chloroplast genomic DNA to mitochondrial genome occurred at
least 300 MYA. Mol. Biol. Evol. 24, 2040–2048. doi: 10.1093/molbev/msm133

Wang, Z., Xie, L., Prather, C. M., Guo, H., Han, G., and Ma, C. (2018). What drives
the shift between sexual and clonal reproduction of Caragana stenophylla along a
climatic aridity gradient? BMC Plant Biol. 18, 1–10. doi: 10.1186/s12870-018-1313-6

Whelan, J., and Murcha, M. W. (2015). Plant mitochondria: methods and protocols
(Humana New York, NY: Springer Science). doi: 10.1007/978-1-4939-2639-8

Wick, R. R., Judd, L. M., Gorrie, C. L., and Holt, K. E. (2017). Unicycler: resolving
bacterial genome assemblies from short and long sequencing reads. PloS Comput. Biol.
13, e1005595. doi: 10.1371/journal.pcbi.1005595

Wick, R. R., Schultz, M. B., Zobel, J., and Holt, K. E. (2015). Bandage: interactive
visualization of de novo genome assemblies. Bioinformatics 31, 3350–3352.
doi: 10.1093/bioinformatics/btv383

Wintz, H., and Hanson, M. R. (1991). A termination codon is created by RNA editing
in the petunia mitochondrial atp 9 gene transcript. Curr. Genet. 19, 61–64. doi: 10.1007/
BF00362089

Wynn, E. L., and Christensen, A. C. (2019). Repeats of unusual size in plant
mitochondrial genomes: identification, incidence and evolution. G3 Genes, Genomes,
Genetics 9, 549–559. doi: 10.1534/g3.118.200948

Xiong, Y., Yu, Q., Xiong, Y., Zhao, J., Lei, X., Liu, L., et al. (2022). The complete
mitogenome of Elymus sibiricus and insights into its evolutionary pattern based on
simple repeat sequences of seed plant mitogenomes. Front. Plant Sci. 12. doi: 10.3389/
fpls.2021.802321
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