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Overexpression of the potato
VQ31 enhances salt tolerance
in Arabidopsis
Mingming Zhai, Zhengxiong Ao, Haoran Qu and Dongwei Guo*

College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
Plant-specific VQ proteins have crucial functions in the regulation of plant

growth and development, as well as in plant abiotic stress responses. Their

roles have been well established in the model plant Arabidopsis thaliana;

however, the functions of the potato VQ proteins have not been adequately

investigated. The VQ protein core region contains a short FxxhVQxhTG amino

acid motif sequence. In this study, the VQ31 protein from potato was cloned and

functionally characterized. The complete open reading frame (ORF) size of

StVQ31 is 672 bp, encoding 223 amino acids. Subcellular localization analysis

revealed that StVQ31 is located in the nucleus. Transgenic Arabidopsis plants

overexpressing StVQ31 exhibited enhanced salt tolerance compared to wild-

type (WT) plants, as evidenced by increased root length, germination rate, and

chlorophyll content under salinity stress. The increased tolerance of transgenic

plants was associated with increased osmotic potential (proline and soluble

sugars), decreased MDA accumulation, decreased total protein content, and

improved membrane integrity. These results implied that StVQ31 overexpression

enhanced the osmotic potential of the plants to maintain normal cell growth.

Compared to the WT, the transgenic plants exhibited a notable increase in

antioxidant enzyme activities, reducing cell membrane damage. Furthermore,

the real-time fluorescence quantitative PCR analysis demonstrated that StVQ31

regulated the expression of genes associated with the response to salt stress,

including ERD, LEA4-5, At2g38905, and AtNCED3. These findings suggest that

StVQ31 significantly impacts osmotic and antioxidant cellular homeostasis,

thereby enhancing salt tolerance.
KEYWORDS

StVQ31, high salt stress, functional characterization, gene expression, physiology
and biochemistry
1 Introduction

Salt stress significantly and adversely impacts plant growth and crop yields (Liu et al.,

2022; Colin et al., 2023). Plants have evolved numerous strategies to cope with adverse

environmental conditions, including but not limited to morphological, physiological, and

biochemical adaptations. These mechanisms involve the transcriptional activation of
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relevant genes, regulating gene expression, and achieving

adaptation to salt stress (Sui et al. , 2017). Therefore,

understanding the molecular mechanisms of plant salt tolerance

has scientific importance and practical significance (Liang et al.,

2023). To reveal these mechanisms, extensive studies have been

conducted to identify and characterize numerous genes and

proteins associated with salt tolerance, such as LRX3/4/5 proteins,

CCCH-type zinc finger proteins, LncRNA973, AtbZIP17, etc

(Zhang et al., 2019; Medina et al., 2020; Zhao et al., 2021; Gong

et al., 2022). Among them, transcription factors and their regulatory

functions have been demonstrated to have a crucial impact on plant

environmental adaptation (Li et al., 2022).

VQ proteins that function as transcriptional regulators were

first identified in Arabidopsis thaliana. In terms of protein structure,

they possess a core FxxxVQxLTG sequence containing 5 highly

conserved amino acids, where x is any amino acid (Shan et al.,

2021). Subsequently, VQ genes were discovered in other organisms,

such as Arabidopsis, rice, maize, grape, soybean, potato, bamboo,

poplar, and tea, with a total of 34, 40, 61, 18, 74, 37, 28, 51, and 25

VQ members identified, respectively (Kim et al., 2013; Wang et al.,

2014, 2015, 2015; Chu et al., 2016; Song et al., 2016; Wang et al.,

2017; Guo et al., 2018). The VQ family has been extensively studied

and, in detail and comprehensively, functionally characterized in

Arabidopsis. VQ can interact with different transcription factors,

such as WRKY and serine/threonine kinase, to regulate various

stress responses in plants (Cheng et al., 2012). Moreover, the plant

VQ proteins can regulate gene expression mediated by WRKY by

interacting with WRKY transcription factors (Dong et al. and

Petcher et al.). This interaction is achieved through the conserved

residues V and Q of the FxxhVQxhTG motif (Dong et al., 2003;

Pecher et al., 2014). AtCaMBP25 (AtVQ15) plays a role as a

suppressor in the regulatory mechanisms of plant seedlings

against osmotic stress (Perruc et al., 2004). The interaction

between AtVQ9 and WRKY8 reduces WRKY8’s capacity to bind

to DNA and mediate salt stress responses, thereby negatively

regulating salt tolerance (Hu Y. et al., 2013). PeVQ28 enhances

salt tolerance in bamboo via ABA-dependent signaling pathways

(Wang et al., 2017). Additionally, salicylic acid and methyl

jasmonate strongly upregulated the AtVQ10 gene transcriptional

levels in Arabidopsis thaliana (Chen et al., 2018). In maize,

ZmVQ19 and ZmVQ54 were highly expressed under drought

conditions. In rice, OsVQ2, OsVQ16, and OsVQ20 also exhibited

regulatory patterns similar to the maize VQ genes (Kim et al., 2013;

Song et al., 2016). Overall, VQ proteins have been shown to play

critical roles in many biological processes.

Plant performance under adverse growth conditions can be

directly indicated by alterations in total protein content,
Abbreviations: LEA 4–5, late embryogenesis abundant proteins; At2g38905, salt-

sensitive protein family gene; ERD, monosaccharides encodes ESL1; NCED, 9-cis-

epoxycarotenoid dioxygenase; Chl; chlorophyll; Chla, chlorophyll a; Chlb,

chlorophyll b; SS, soluble sugar; Pro, proline; Tp, total protein; H2O2, hydrogen

peroxide; O2
-, superoxide anion; SOD, superoxide dismutase; POD, peroxidase;

CAT, catalase; MDA, malondialdehyde; ROS, reactive oxygen species; PCR,

polymerase chain reaction; qRT-PCR, quantitative real-time polymerase

chain reaction.
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chlorophyll, soluble sugars, and various other physiological

parameters (Li et al., 2022; Hernández-Fernández et al., 2023).

For example, when plants are stressed, the content of Pro increases

rapidly and acts as a signal to regulate the expression of downstream

stress-protective proteins and reduce stress damage to plants (Gu

et al., 2019). MDA can seriously damage the protein and enzyme

structure and the cell membrane system in plant cells, and changes

in MDA content reflect, to a certain extent, the peroxidation degree

of plant cell membranes (Chen et al., 2022). The antioxidant

enzymes SOD, POD, and CAT can efficiently remove excess

peroxide ions within cells when plants are exposed to salt stress,

thereby reducing the negative impact of stress on cellular

homeostasis (Xu et al., 2018). The antioxidant system’s capacity

to scavenge reactive oxygen species and the extent of membrane

lipid peroxidation and metabolic disorders in plants can be assessed

by measuring H2O2 and O2
- (Huang et al., 2022).

In our previous study, we identified 37 VQ proteins in potato,

which were classified into 6 subfamilies based on phylogenetic

relationships. The qRT-PCR analysis revealed a significant

upregulation of StVQ31 in response to abiotic stress, particularly

under high salinity stress (Zhai et al., 2022). As a continuation of

our previous research, we focused in this paper on the functional

characterization of the StVQ31 gene. The differences in related

soluble sugar, chlorophyll indexes, total protein, antioxidant

enzyme activities (SOD, POD, CAT, MDA, Pro), and ROS (H2O2

and O2
-) in transgenic plants were analyzed. Their correlations were

also assessed, which will help us further identify the potential

underlying molecular mechanisms. Furthermore, the expression

of genes related to salt stress was quantitatively analyzed, which

revealed that StVQ31 regulated salt tolerance by promoting the

expression of specific genes, such as LEA, and AtNCED3.

Admittedly, salt stress in potato plants is complex (Wang et al.,

2023), but our study adds some insights into how individual genes

contribute to salt tolerance. In addition, it offers a foundation for

screening candidate genes that control potato salt tolerance.
2 Materials and methods

2.1 Plant materials

The plant material used in this study was the potato cultivar

Désirée provided by our laboratory. The tubers were planted in a

climate chamber, in a vermiculite substrate mixed with soil, in a 1:1

ratio, v/v, for 4 weeks at a temperature of 23°C ± 1°C, 16h/8h(day/

night). The seeds of WT Arabidopsis thaliana (Columbia (Col-0)

ecotype) and 3 T3 transgenic lines (L1-L3) were vernalized for 3

days in 1/2MS medium, transferred to an artificial climate chamber

at 24°C and a relative humidity of 80% for ten days, and then

transplanted to a vermiculite medium with small square pots

(7x7cm). Next, plants were grown for 3 weeks (Kim and Hwang,

2015). Samples were taken before and after salt stress treatment and

the collected fresh leaves were quickly placed in −80°C for storage

(Zhang et al., 2003). At the same time, chlorophyll content, soluble

sugar, SOD, MDA, and other physiological indexes and enzyme

activities were measured before and after salt stress treatment.
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2.2 Generation of overexpression vectors
and transgenic Arabidopsis plants

The StVQ31 gene was amplified through PCR using primers

specific to the gene (Table 1). The CDS of StVQ31 was ligated to the

pCAMBIA1302 overexpression vector within the KpnI and BstbI

restriction sites. The recombinant plasmid was verified by

sequencing and was then cloned in E. coli DH5a. Subsequently, it
was introduced into Agrobacterium GV3101, which was for the

genetic transformation of Arabidopsis plants by the floral-dip

method (Zhao et al., 2018). When Arabidopsis seeds matured, the

T0 generation seeds were harvested. The T0-generation seeds were

then sowed on 1/2 MS medium containing 50mg/ml kanamycin,

and 16 lines were identified through PCR verification (Figure 1A).

The above steps were repeated until T3 transgenic overexpression

lines were obtained.
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2.3 Prediction of StVQ31
physicochemical properties

We obtained the properties of StVQ31 from the ExPASy

website, including its physical and chemical characteristics (http://

web.expasy.org/protparam/) (Pedrini et al., 2015). Then, the

secondary structure of StVQ31 was predicted using the PHD

software (http://www.predictProtein.org/) (Sajid et al., 2018). In

addition, the conserved motifs of StVQ31 were determined by

MEME (version 4.12.0) (Bailey et al., 2009).
2.4 StVQ31 subcellular localization

The CDS region of StVQ31 (after removal of the stop codon)

was ligated to the pCAMBIA1302 vector carrying a green

fluorescent protein sequence to produce pCAMBIA1302-StVQ31:

GFP. The recombinant plasmid was transferred to Agrobacterium

and then infiltrated into tobacco leaves, with the nuclear maker

AtWRKY25-mCherry used as a control. All transformed tobacco

plants grew in the dark at 22°C for 16 hours and then returned to

normal conditions. The GFP and RFP fluorescence signals were

observed by IX83-FV1200 confocal laser-scanning microscopy two

days after tobacco inoculation.
2.5 Evaluation of seed germination and
root length in the presence of salt stress

Seeds from the WT and transgenic plants were cultivated in a

growth medium called 1/2 MS, supplemented with 150 mM NaCl.

The seeds were incubated at 4°C for 3 days, then transferred to 22°C,

with 16 hours of light/8 hours of darkness, and incubated for 10 days.

Radicle appearance from the seed coat was used as the criterion for

seed germination (Stacey et al., 2016). Meanwhile, seeds of WT and

transgenic plants (homozygous lines) were placed in 1/2MS medium

for the subsequent experiments. After 7 days, seedlings with uniform

appearance and growth were selected, transplanted into 1/2 MS

medium containing 150mM NaCl, and grown vertically for 7 days.

Subsequently, the changes in root length were recorded. In addition,

the salt tolerance of 4-week-old Arabidopsis thaliana transgenic

plants was evaluated by irrigation with 150 mM NaCl solution

every 2 days for 10 days. The phenotypes of the plants were

photographed after 7 days of salt treatment.
2.6 Determination of relevant
physiological indicators

Ten physiological indexes in WT and transgenic plants were

measured before and after the application of salt treatment (150

mMNaCl). Approximately 0.5 g of leaf tissue, avoiding the midvein

of the leaves, was sampled and quickly placed in liquid nitrogen.

The samples were fully ground and 9 folds volumes of pH 7.4 PBS
TABLE 1 Primers used in this research.

Primer Primer sequence (5′-3′) Description

StVQ31-F TACCTCTTCTCTCTTCACTTTT PCR

StVQ31-R GATTTTTCCCATTTTACCCCTC PCR

StVQ31-
1300F

AGAACACGGGGGA
CGAGCTCGGTACC T
ACCTCTTCTCTCTTCACTTTT

PCR

StVQ31-
1300R

CCATCATGGTCTTT
GTAGTCTTCGAA GATT
TTTCCCATTTTACCCCTC

PCR

HPT-F GGTCGCGGAGGCTATGGATGC PCR

HPT-R GCTTCTGCGGGCGATTTGTGT PCR

Actin-F TCCCTCAGCACATTCCAGCAGAT qPCR, RT-PCR

Actin-R AACGATTCCTGGACCTGCCTCATC qPCR, RT-PCR

LEA 4-5-F GGAAAAGGCGGAGAAGATGA qPCR

LEA 4-5-R TTGTGCTGACGCGTTTCTCT qPCR

ERD-F GGTTGTGCGGCAGGTTATTC qPCR

ERD-R ATCTGCAACTTTCCCGCTGA qPCR

At2g38905-
F

TTCCTTCGATATGGTTGTGG qPCR

At2g38905-
R

GTCATCATCCGACAAGAACG qPCR

AtNCED3-
F

ATGGCTTCTTCACGGCACGG qPCR

AtNCED3-
R

TTCCTTTGCCCTCGGACG qPCR

StVQ31-F TGGAGCAATGGGGTTTTCGT RT-PCR

StVQ31-R ACAACCTCATTCCCTTCGCC RT-PCR

StVQ31-F ATCTCGAGCTCAAGCTTCG
AAATGGCGTCTTCTGATAAT

Subcellular
localization primer

StVQ31-R CCGTCGACTGCAGAATTC
GAACATTCCTGATTCAAGGGT

Subcellular
localization primer
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buffer were added. After centrifugation at 12,000 ×g at 4°C for

30 min, the supernatant was taken, and the protein concentration

was determined using the BCA Protein Assay Kit, following the

manufacturer’s instructions (Stanley et al., 2020). Chlorophyll was

determined based on the protocol by Guo et al., with slight

modifications (Guo et al., 2022). The measurement of soluble

sugars was slightly modified based on the Dubois et al. (1951)

method, and the content of MDA was determined by the

thiobarbituric acid (TBA) method (Basit et al., 2022). The SOD

activity was determined using a total SOD assay kit (the wst-8

technique; Beyotime, China) (Chen et al., 2019). Furthermore, the

CAT, POD, and Pro antioxidant enzyme activities, as well as the

H2O2 and O2
- content, were determined using the Solarbio Kit

(Beijing, China) following the guidelines provided by the

manufacturer (Ren et al., 2021).
2.7 Analysis of the expression of genes
related to salt stress

To investigate the regulatory mechanisms of StVQ31, we further

examined the expression changes of genes associated with salt

stress. Four-week-old transgenic Arabidopsis were moved to MS

liquid medium with 150 mMNaCl for 8 hours, while the remainder

seedlings were kept in MS liquid medium as a control. Total RNA

from the transgenic Arabidopsis leaves was extracted using the

RNAprep Pure Plant Total RNA Extraction Kit (DP432), and

cDNA was synthesized using the FastKing cDNA First Strand

Synthesis Kit (Degenomics)(KR116) (Tiangen, Beijing, China).

The template cDNA was then diluted according to experimental

requirements. The NCBI primer design suite was used to design

gene-specific primers (Table 1) with Actin as the internal reference.

qPCR was performed using the ABI QuantStudio7Flex system
Frontiers in Plant Science 04
(Applied Biosystems, USA). The reaction mixture consisted of 2

ml of cDNA, 10 ml of 2× Super Real Color PreMix SYBR (Tiangen,

China), 0.6 ml of gene-specific primers, and ddH2O was added up to

20 ml. The reaction conditions were set to: 95 °C 15 min; 95 °C 10 s,

60 °C 32s, 72 °C 32 s, 95 °C 15 s, 60 °C 60 s, 95 °C 15 s for a total of

40 cycles. The expression levels of the evaluated genes were

calculated using the 2−DDCT method (Livak and Schmittgen,

2001). Three biological replicates were performed for each sample.
2.8 Data analysis

All data were expressed as the mean ± standard errors of three

replicates. Prism 7.0 was used for image rendering. The mean

differences between groups were statistically analyzed by

independent sample t-test, analysis of variance (ANOVA), and

post hoc LSD test. SPSS 27.0 was used for correlation analysis.
3 Results

3.1 Cloning and bioinformatic analysis
of StVQ31

A gene-specific amplification primer StVQ31-F/R was designed

based on the gene sequence (Table 1), and total RNA was extracted

from potato leaves for reverse transcription for the isolation of the

complete cDNA of StVQ31 (Supplementary File 1A). DNA

Sequencing revealed that the StVQ31 gene fragment amplified by

PCR had an open reading frame of 672bp, encoding a protein

consisting of 223 amino acids and contained a conserved VQ

domain (Supplementary File 1C; Figure 2A). StVQ31 contained

only one exon. Based on the ExPASy ProtParam prediction, the
B

A

FIGURE 1

(A) The DNA level of transgenic Arabidopsis was tested; (B) Detection of StVQ31 expression in the transgenic lines by RT-PCR. A:1-16:transgenic
Arabidopsis;17: Negative control; M:DL5000 Marker B: Lane WT: wild-type; lanes StVQ31, transgenic plants.
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theoretical MW of the encoded protein was 23.697 kDa, and the

theoretical PI was 8.58. Ser (13%), Gly (10.3%), Val (7.6%), and Thr

(7.6%) residues were the most abundant in the StVQ31 protein

amino acid sequence. The overall mean hydrophilicity of StVQ31

was -0.295, indicating that the protein was hydrophilic. The

secondary structure analysis showed that StVQ31 protein was

composed by a helixes covering 19.73%, b fold covering 1.79%,

and random coils covering 78.48% of the protein, respectively

(Figure 2B). The motif analysis revealed that motif1 depicted in

Figure 2C, served as the central conserved region of the protein and

encompassed the functional domain (Figure 2A). In addition, the

StVQ31 gene promoter contained TGA-element cis-elements,

which means it may be involved in the regulation of plant growth

and development.
3.2 Subcellular localization of StVQ31

In order to confirm the subcellular location of StVQ31, we

removed the termination codon and fused StVQ31 to a GFP vector

expressed by the 35s promoter of the tobacco mosaic virus (TMV).

Individual cells carrying the control GFP vector exhibited detectable

green fluorescence, while the cells expressing STVQ31-GFP emitted

a green fluorescence signal from within the nucleus. Thus, the green

fluorescence signal emitted by STVQ31-GFP could only be detected

in the nucleus, and it overlapped with the red fluorescent nuclear

marker AtWRKY25-mCherry (Figure 3), thus indicating that

StVQ31 is localized in the nucleus.
3.3 Generation and morphological
observation of transgenic plants

The transgenic plants were identified by PCR amplification after

DNA extraction. Distinct bands were amplified in the 16 transgenic
Frontiers in Plant Science 05
lines identified. In contrast, no corresponding fragment was

amplified in the WT plants (Figure 1A). These results were

subsequently validated by RT-PCR analysis (Figure 1B),

confirming the successful overexpression of StVQ31 in transgenic

Arabidopsis lines. In the early growth stages of Arabidopsis plants,

we observed that the StVQ31 and wild-type plants exhibited certain

differences, with StVQ31 overexpressing plants being bigger than

wild-type Arabidopsis (Figure 4B). This discrepancy may be

attributed to the elevated expression of StVQ31 protein in the

stem, suggesting that it is involved in the regulation of plant

development. This result is consistent with the phenotypes

exhibited in AtVQ29 expressing plants (Cheng et al., 2012).

Furthermore, we conducted a statistical analysis of the

phenological stages and flowering dates of transgenic and wild-

type Arabidopsis thaliana lines. We found that the flowering in

transgenic plants occurred at about 30 days after germination,

showing a significant increase in flowering time compared with

wild-type Arabidopsis (Figure 4A). The StVQ31 gene not only

affected the flowering time of Arabidopsis but also affected its

growth and development. This implies that it potentially has

pivotal regulatory functions that control Arabidopsis growth.

Based on this, we observed the phenotypes of transgenic and wild

plants under salt stress. We found that in contrast to the wild type,

the leaves of the transgenic plants exhibited a vibrant green color,

while the wild type plants had yellow leaves, short plants, and were

in a wilted state (Supplementary File 2). These results indicated that

the transgenic plants exhibited an increased tolerance to salt stress.
3.4 Germination rate and root length

Seed germination serves as the foundation for plant growth and

overall plant vigor. Hence, examining the impact of salt stress on seed

germination is critical to assess the resistance of the plants. Under 0mM

NaCl treatment, the germination rates of transgenic lines were
B

C

A

FIGURE 2

Protein structure of StVQ31 (A) Conservative domain of StVQ31; (B) Secondary structure prediction of StVQ31 Number of amino acids: 223;
(C) Conserved motif of StVQ31.
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consistent with that of WT (Figure 5A; Supplementary File 3). After

salt treatment, the germination rates of the three transgenic lines

evaluated were 89.29%, 78.57%, and 82.14%, respectively (Figure 5D;

Supplementary File 3), increased by 66.67%, 46.67%, and 53.33%,

respectively, compared to the WT (germination rate of 53.57%). At the

same time, the transgenic plants had an increased root length.

Specifically, compared to WT plant (3.53cm), the root length of the

three transgenic lines was 4.27cm, 4.37cm, and 4.76cm, respectively

(Figure 5C; Supplementary File 3), increased by20.96%, 23.80%, and

34.84%, respectively. While under 0mM NaCl treatment, the root

length of transgenic lines were consistent with that of WT (Figure 5B;

Supp lementary F i l e 3 ) .These findings sugge s t tha t

StVQ31overexpression reduced salinity-mediated inhibition of seed

germination, conferring a stronger capacity to the seedlings to reduce

salt stress damage and maintain longer root length.
3.5 Effects of StVQ31 overexpression on
the antioxidant metabolism under
salt stress

Under abiotic stress conditions, considerable amounts of

excessive ROS, such as H2O2 and O2
− are generated within plant

cells. This leads to a rise in lipid peroxidation and subsequent

cellular oxidative stress (Figures 6A, B). The contents of H2O2 and

O2
− in Arabidopsis leaves were determined before and after salt

treatment. The H2O2 and O2
− contents in WT under salt stress were

1.26 and 1.53 times higher than in the control conditions. The H2O2

and O2
−contents increased by 3.45%~5.76% and 17.89%~24.33%,

respectively, while the WT increased even more. The increase of

transgenic plants was significantly lower than that of WT

(Figures 6A, B). The WT plants, overall, did not exhibit any

notable variation. Next, we measured the activities of CAT, POD,

and SOD. CAT catalyzes H2O2 breakdown, while SOD and POD
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are responsible for the reduction of stress-induced H2O2 and O2
−,

respectively. Under salinity stress treatment, the enzyme activities

increased in both transgenic plants and WT in different amplitudes.

Compared with WT, CAT, SOD, and POD in transgenic plants

were 1.66-1.68-fold, 1.37-1.38-fold, and 1.69-1.76-fold higher than

WT, respectively (Figures 7A–C). These results are consistent with

the H2O2 and O2
− contents, suggesting that transgenic plants could

reduce cell oxidative damage under stress conditions by increasing

ROS clearance capacity.
3.6 Determination of physiological indexes
under salt stress

We examined the alterations in proline levels, a significant stress

indicator, before and after subjecting plants to salt stress. The results

found that The Pro content inWT increased 1.31-fold after salt stress,

while the Pro content in transgenic plants was 1.5-1.54-fold increased

(Figure 8D). Thus, the increase of Pro content in transgenic plants

was considerably higher than that in WT, by 1.19-1.21-fold

(Figure 8D). MDA content analysis was conducted to evaluate the

oxidative damage caused by salt stress in both WT and transgenic

plants. The results showed that all StVQ31 overexpression lines

produced significantly less MDA (0.216 to 0.277µmol g−1 FW)

than WT plants (0.36µmol g−1 FW) (Figure 8B). These results

suggest that overexpression of StVQ31 may contribute to

maintaining membrane permeability under salt stress by enhancing

their antioxidant metabolism. The accumulation of soluble sugars

was similar to that of proline. After being subjected to salinity stress

(Figure 8A), the soluble sugar content in WT exhibited a substantial

increase of 39.17%. In transgenic plants, soluble sugar content

showed an increase ranging from 56.22% to 62.07%. The total

protein content decreased in WT decreased under salt stress by

25.82% and in transgenic plants by 3.66%-5.58%. The trend was
FIGURE 3

(A) A schematic diagram of the subcellular localization vector. (B) The GFP empty vector. (E) The recombinant 35S:StVQ31-GFP vector. (F) The
nucleus marker AtWRKY25-mCherry. (C, G) Bright field. (D, H) Merged images. Scale bars: 50 mm.
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similar to that of MDA, albeit with a different amplitude of decrease

(Figure 8C). Thus, compared with WT, the reduction was lower in

transgenic plants. The chlorophyll content is directly related to the

light-harvesting process in plants. It can be used as an indicator of

plant photosynthesis to determine the plant’s physiological status and

salt tolerance. Under salt stress, chlorophyll content decreased,

affecting plant growth and development. The contents of

chlorophyll a and b and the a/b ratio decreased notably under 150

mMNaCl treatment, but the total content of chlorophyll, chlorophyll

a, and chlorophyll b in the transgenic plants was significantly higher

than that in the WT plants (Figures 9A–D). These results indicate

that the photosynthetic capacity of transgenic plants after salt

treatment is even higher than that of WT plants.
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3.7 Expression of salt-stress related genes

The involvement of the StVQ31 gene in the adaptive response of

plants to salt stress was determined by analyzing the expression of

four genes that function as stress markers. Under high salinity

conditions, the expression of the genes encoding LEA 4-5, NCED-3,

ERD, and At2g38905 was notably upregulated in transgenic plants,

as shown in Figures 10A–D. While under non-stress conditions,

their expression in transgenic plants and wild-type plants remained

unaltered. Taken together, these findings suggest that the enhanced

salt tolerance in plants that overexpress StVQ31 genes is also

associated with increased expression levels of LEA 4-5, NCED-3,

ERD, and At2g38905genes.
FIGURE 4

Effect of overexpression of StVQ31 gene on flowering of Arabidopsis thaliana (A); Effects of overexpression of StVQ31 gene on growth and
development of Arabidopsis Thaliana (B).
frontiersin.org

https://doi.org/10.3389/fpls.2024.1347861
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhai et al. 10.3389/fpls.2024.1347861
3.8 Correlation analysis

Based on the results, 61.99% of the measured indicators were

correlated, of which 47.95% were strongly correlated and 39.77%

were weakly correlated (Figure 11). Root length was found to have a

positive correlation with SOD and POD activities (P<0.01), while

the levels of superoxide anion and MDA were significantly

negatively correlated. This suggests that reactive oxygen species

play a role in regulating root growth. Similarly, the germination rate
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showed a positive correlation with SOD and CAT, and a negative

correlation with superoxide anion and MDA levels. These findings

indicate that superoxide anion and MDA have varying degrees of

negative regulatory effects on both germination rate and root length.

Moreover, total protein, SOD, POD, CAT, and Pro showed positive

correlations with other indexes, whereas MDA and H2O2 were

predominantly negatively correlated with other indexes.

Specifically, CAT was highly correlated with SOD and POD. Root

length was highly correlated with the expression of At2g38905
B

C

D

A

FIGURE 5

(A) Root length of wild Arabidopsis and transgenic Arabidopsis under 0mM NaCl; (B) Germination experiment of wild Arabidopsis and transgenic
Arabidopsis under 0mM NaCl; (C) Root length of wild Arabidopsis and transgenic Arabidopsis after salt stress; (D) Germination experiment of wild
Arabidopsis and transgenic Arabidopsis after salt stress. Values are means±SD (n=3), different lowercase letters indicate significant difference from
the control (t-test) (P<0.05).
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genes and NCED-3. Moreover, certain indexes, such as H2O2 and

Chlorohyll b, were not correlated. The findings suggest a possible

correlation between the indexes, which could collectively impact the

salt tolerance of the StVQ31 overexpressing plants.
4 Discussion

VQ protein is a plant-specific protein (Wang et al., 2010).

Growing evidence indicates that VQ regulates plant response to

various abiotic stresses, including salinity, drought, cold and high

temperature (Kim et al., 2013; Song et al., 2016; Wang et al., 2017;

Chen et al., 2018). In Arabidopsis thaliana, AtVQ9 and AtVQ15

genes significantly affect its salt stress tolerance (Perruc et al., 2004;

Hu et al., 2013). In our previous study, we identified 37 VQ genes in

potato, which were classified into 6 subfamilies based on

evolutionary tree relationships. Based on the phylogenetic tree,
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StVQ31 is the closest to AtVQ24 in phylogeny and is also

phylogenetically close to AtVQ15 (Zhai et al., 2022). Based on

similar evolutionary functions of the same subfamily (Wang et al.,

2015), StVQ31may have similar functions to AtVQ15. However, the

function of the StVQ gene has not been previously investigated.

Combined with previous studies and the literature, we selected

StVQ31, a gene potentially involved in abiotic stress adaptation, for

further functional analysis. StVQ31 has a typical VQ conserved

domain, and based on its gene structure, it contains only one exon.

In addition, the StVQ31 protein is also hydrophilic, with an average

hydrophilic coefficient of -0.295. Subcellular localization revealed

that StVQ31 is a nuclear-localized protein (Figure 3).

In this study, we cloned the StVQ31 gene and transformed it in

Arabidopsis. Based on the morphological analysis results, transgenic

plants exhibited a relatively improved growth compared to WT

under high salt conditions (Supplementary File 2). These

observations indicated that StVQ31 may be involved in plant salt
B

A

FIGURE 6

Physiological comparisons of control and StVQ31 overexpressing Arabidopsis plants. (A) O2
-; (B) H2O2. All values are presented as mean ± standard

error of three replicates. Different letters indicate significant differences in comparisons (P < 0.05).
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stress adaptation and tolerance. Our findings are similar to the

results of Kim et al (Kim et al., 2013). Seed germination is

considered to be greatly affected by stress and is regarded as a

crucial phase in the growth cycle of crops (Chen et al., 2020). A

higher germination rate reflects a better growth capacity of the

seedlings, which is essential for achieving a high yield during

maturity (Wilson et al., 2014). Based on the germination rate

experiment results, the survival rate of transgenic plants was

higher, indicating that transgenic plants had greater salt tolerance.

In addition, plant roots are important organs that absorb water and
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nutrients, and vigorous root growth directly affects the capacity of

plants to adapt to environmental stress (Zhou et al., 2013). The

taproot length of all transgenic strains was significantly longer than

that of WT. Thus, overexpression of the VQ31 gene could promote

the root growth of Arabidopsis thaliana under salt stress, increase

the root absorption area, and improve the salt tolerance of the

plants. Therefore, we speculate that the StVQ31 gene is involved in

morphogenesis, growth, and development in Arabidopsis thaliana.

Plants have evolved various mechanisms to adapt to

environmental changes (Yang et al., 2020). When plants are
B

C

A

FIGURE 7

Physiological comparisons of control and StVQ31 overexpressing Arabidopsis plants. (A) CAT activity; (B) SOD activity; (C) POD activity. All values are
presented as mean ± standard error of three replicates. Different letters indicate significant differences in comparisons (P < 0.05).
B

C D

A

FIGURE 8

Physiological comparisons of control and StVQ31 overexpressing Arabidopsis plants. (A) Soluble sugar; (B) MDA content; (C) Total protein; (D) Proline All
values are presented as mean ± standard error of three replicates. Different letters indicate significant differences in comparisons (P < 0.05).
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subjected to abiotic stress, large amounts of reactive oxygen species

are produced. The plant antioxidant mechanisms can eliminate the

damage caused by excessive ROS accumulation by regulating CAT,

SOD, POD, and other antioxidant enzyme activities (Yang et al.,

2017). The accumulation of osmoregulatory substances is an

important indicator of plant stress tolerance. The accumulation of

proline, soluble sugars, and total proteins can protect against

oxidative stress by scavenging free radicals (Qiu et al., 2020).

After salt stress, the increase of Pro content in transgenic plants
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was significantly higher (by 1.19-1.21-fold) than that in WT.

Increased Pro content can account for elevated osmotic pressure,

reducing the intracellular water potential and enhancing plant

water conservation (Li et al., 2013). The change in soluble sugar

content was similar to that of Pro, while the total protein content

decreased to different degrees. It is speculated that these

osmoregulatory compounds also help maintain the integrity of

the cellular membranes (Kok et al., 2021; He et al., 2022).

Malondialdehyde production and accumulation is also a common
B

C D

A

FIGURE 9

Physiological comparisons of control and StVQ31 overexpressing Arabidopsis plants. (A) Chlorophyll; (B) Chlorophyll a; (C) Chlorophyll b;
(D) Chlorophyll a/b. All values are presented as mean ± standard error of three replicates. Different letters indicate significant differences in
comparisons (P < 0.05).
B

C D

A

FIGURE 10

Expression analysis of abiotic stress marker genes in StVQ31 transgenic Arabidopsis lines by real-time RT-PCR. The transcript levels of (A) ERD;
(B) salt responsive gene (At2g38905); (C) LEA 4-5, and (D) NCED-3 in WT and transgenic Arabidopsis plants were analyzed under both control and
salt treatment conditions. Actin was used as housekeeping genes for normalization. Values are means ± SD (n=3), different lowercase letters indicate
significant difference from the control (t-test) (P<0.05).
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indicator of reactive oxygen species accumulation and oxidative

stress in plant cells. Under salt stress, the MDA content of WT

plants was higher than that of StVQ31 transgenic plants, indicating

that overexpression of StVQ31 may lead to increased resistance to

salt stress-induced oxidative stress (Figure 8B). In addition, the

maintenance of chlorophyll and its reduced breakdown significantly

affects the photosynthetic efficiency under stress (Ahammed et al.,

2013). Based on our results, the chlorophyll content of transgenic

lines was significantly higher than that of WT under high salt

conditions. Therefore, overexpression of StVQ31 in Arabidopsis

may enhance its photosynthetic capacity by the maintenance of

chlorophyll content, thus ensuring normal plant growth and

development under stress. This is consistent with the phenotypic

observations of the transgenic plants, which exhibited robust

growth under salt stress. Enhanced antioxidant enzyme activities

increased the capacity of transgenic plants to eliminate peroxy ions,

reduced the peroxidation of cells’ plasma membrane, and improved

the survival ability of plants under high salinity conditions.

Furthermore, the H2O2 and O2
− levels in transgenic plants were

remarkably lower than those of WT, this is consistent with the

results of enzyme activity determination (Song et al., 2016).
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Expression analysis of salt stress response genes could, in part,

explain the molecular mechanism of salt tolerance derived from the

StVQ31 gene overexpression (Shkolnik et al., 2019). AtNCED3, a

crucial gene for ABA production in Arabidopsis thaliana, plays a

definite role in regulating stomatal closure and enhancing the

plant ’s salt stress tolerance through the synthesis and

accumulation of ABA in the leaves (Lv et al., 2011). Based on our

results, the expression ofNCED3 in transgenic plants was 2.65-4.48-

fold higher than in WT. These results indicated that StVQ31 could

promote the expression of salt-stress-related genes and positively

regulate ABA biosynthesis and signal transduction pathways,

thereby improving plant salt tolerance. In addition, the high

expression level of AT2g38905 (salt-responsive protein family) in

transgenic plants is consistent with the increase in the

concentration of osmoprotectants under salinity conditions

(Mishra et al., 2021), which leads to improved plant salt

tolerance. The upregulation of LEA 4-5 indicates that protein and

membrane integrity preservation and the sequestration of ions are

crucial in salt stress adaptation and tolerance (Huang et al., 2018).

Erd-encoding proteins can protect macromolecules and

membranes under stress (Kasuga et al., 2004), consistent with our
FIGURE 11

Heat map of correlation between physiological indexes after salt stress.
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findings of higher expression levels of ERD in transgenic plants

under salt stress compared to WT plants.

A high salinity environment can lead to increased oxidative

stress in plants, affecting normal growth and metabolism

(Hasanuzzaman et al., 2021). The overexpression of the StVQ31

gene may promote and enhance the activity of the antioxidant

system by reducing the content of MDA, reducing the damage by

oxidative stress, and reducing the osmotic stress damage caused by

high salinity by increasing the content of osmoprotectant and

osmoregulatory compounds. In addition, the Arabidopsis’s

tolerance to salt stress can be improved by regulating the

expression of stress-responsive genes. However, more work is

needed to elucidate the StVQ31 gene’s precise mechanism of

action. Based on the findings of our study, StVQ31 can be

exploited to enhance salt tolerance in other plants via

genetic engineering.
5 Conclusion

In this study, a VQ gene, StVQ31, was cloned from potato, and it

was functionally characterized by overexpression in transgenic

Arabidopsis thaliana plants. StVQ31 overexpression significantly

enhanced Arabidopsis tolerance to salt stress in terms of growth and

its overall physiological status. Salt stress significantly enhanced the

activity of the antioxidant enzyme system and maintained the

stability of membrane lipids and reactive oxygen species

homeostasis. At the same time, it also resulted in changes in the

germination capacity and flowering of Arabidopsis thaliana

seedlings under salt stress. In addition, overexpression of StVQ31

induced the expression of genes involved in salt stress adaptation.

The results showed that the StVQ31 gene plays a critical role in

plant responses to salt stress. However, due to the complexity of

StVQ31’s function, its precise mechanism of action still needs to be

further explored.
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SUPPLEMENTARY FILE 1

Determination of total RNA in potato leaves by agarose gel electrophoresis:
Agarose gel electrophoresis of StVQ31 cDNA amplification and PLB-

StVQ31positive identification A:M: DL2000 DNA Marker, 1-5: RNA; B: 1-2:
blank control, 3-4: the PCR detection result of StVQ31-1300 bacterial

solution, M: DL 2000 DNA Marker C: cDNA amplification of StVQ31 gene;

D: positive identification of two single colonies of PLB- StVQ31; M: DL2000
DNA Marker, 1-2: StVQ31.

SUPPLEMENTARY FILE 2

Morphology of wild Arabidopsis and transgenic Arabidopsis before and after
salt stress (150mM NaCl).

SUPPLEMENTARY FILE 3

Root length and germination rate of wild Arabidopsis and transgenic

Arabidopsis before(0 mM NaCl) and after salt stress (150mM NaCl).
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