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Modeling bacterial
microcompartment architectures
for enhanced cyanobacterial
carbon fixation
Daniel S. Trettel*, Sara L. Pacheco, Asa K. Laskie
and C. Raul Gonzalez-Esquer

Los Alamos National Laboratory, Bioscience Division, Microbial and Biome Sciences Group, Los
Alamos, NM, United States
The carboxysome is a bacterial microcompartment (BMC) which plays a central

role in the cyanobacterial CO2-concentrating mechanism. These proteinaceous

structures consist of an outer protein shell that partitions Rubisco and carbonic

anhydrase from the rest of the cytosol, thereby providing a favorable

microenvironment that enhances carbon fixation. The modular nature of

carboxysomal architectures makes them attractive for a variety of

biotechnological applications such as carbon capture and utilization. In silico

approaches, such as molecular dynamics (MD) simulations, can support future

carboxysome redesign efforts by providing new spatio-temporal insights on their

structure and function beyond in vivo experimental limitations. However, specific

computational studies on carboxysomes are limited. Fortunately, all BMC

(including the carboxysome) are highly structurally conserved which allows for

practical inferences to be made between classes. Here, we review simulations on

BMC architectures which shed light on (1) permeation events through the shell

and (2) assembly pathways. These models predict the biophysical properties

surrounding the central pore in BMC-H shell subunits, which in turn dictate the

efficiency of substrate diffusion. Meanwhile, simulations on BMC assembly

demonstrate that assembly pathway is largely dictated kinetically by cargo

interactions while final morphology is dependent on shell factors. Overall,

these findings are contextualized within the wider experimental BMC literature

and framed within the opportunities for carboxysome redesign for

biomanufacturing and enhanced carbon fixation.
KEYWORDS

carbon fixation, bacterial microcompartments, carboxysome, molecular dynamics,
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1 Introduction

Photoautotrophic microbes, such as algae and cyanobacteria, have

shown promise as biomanufacturing platforms which can use CO2 as

their sole carbon source. At the core of this process lies the enzyme

ribulose bisphosphate carboxylase/oxygenase (Rubisco), recognized as

the most influential and abundant enzyme in our planet’s carbon cycle

(Phillips and Milo, 2009; Raven, 2013; Bar-On and Milo, 2019).

Rubisco is used by plants, algae, cyanobacteria, and even some non-

photosynthetic chemoautotrophs (Andersson and Backlund, 2008) to

assimilate nearly 250 billion tons of carbon from the atmosphere every

year (Field et al., 1998). Despite its widespread importance, Rubisco is a

catalytically inefficient enzyme in today’s oxygen-rich environment,

achieving CO2 fixation rates on the order of 1-10 s-1 (Flamholz et al.,

2019; Davidi et al., 2020) while also capable of photorespiration

[Rubisco-catalyzed oxygenation of ribulose bisphosphate (Busch,

2020; Savir et al., 2010)]. Carbon assimilation in aquatic organisms is

further complicated by the often low availability of dissolved CO2

under ambient conditions (Maberly and Gontero, 2017).

To overcome these challenges, certain aquatic microorganisms

evolved ornate CO2-concentrating mechanisms (CCMs) (Iñiguez et al.,

2020; Badger et al., 1998), which consist of inorganic carbon pumps and

Rubisco-filled compartments (pyrenoids and carboxysomes) (Badger and

Price, 1992) that work by selectively increasing the CO2 concentration

around Rubisco (Price et al., 1998). Carboxysomes are a part of a larger

class of structurally related protein organelles called bacterial
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microcompartments (BMC). As a class, BMCs are associated with an

array of programmable, modular characteristics that can be leveraged to

support biomanufacturing and carbon sequestration applications.

The deployment of CCMs as “modules” for CO2 fixation has been

suggested as a promising target to bolster the productivity of

biomanufacturing platforms that utilize CO2 as their primary precursor

to produce biomass and biofuels/bioproducts. However, heterologous

expression and redesign of CCMs requires mechanistic insights elusive to

current high resolution experimentalmethods. To alleviate this limitation,

molecular dynamics (MD) simulations are quickly gaining attention for

revealing atomic-detailed processes underpinning CCM assembly and

function. MD provides spatio-temporal information which can

potentially facilitate rational modifications and in silico prototyping.

This review will present the current state of MD and other

computational applications towards studying and redesigning the core

of the cyanobacterial CCM, the carboxysome. Since carboxysome-specific

simulations are limited, this review draws on and contextualizes the wider

experimental BMC literature with implications for their synthetic

adaptation for enhanced carbon fixation.
2 The cyanobacterial CO2-
concentrating mechanism

The cyanobacterial CCM has been a focus of multiple studies for

the elucidation of structure, function, and its integration into cellular
B

C

A

FIGURE 1

The cyanobacterial carbon concentrating mechanism (CCM) is centered around the carboxysome. (A) Cyanobacterial inorganic carbon (Ci)
sequestration begins with CO2 and HCO3

- transporters. Bicarbonate enters the carboxysome and is converted into CO2 and combined with ribulose
bisphosphate (RuBP) to form central metabolite 3-phosphoglycerate (3-PGA). (B) The two classes of carboxysome, ɑ- and b-, differ in their genetic
organization. ɑ-carboxysomes tend to organize into distinct operons while b-carboxysomes tend to be more disjointed among numerous satellite
loci. (C) ɑ- and b-carboxysomes share many components but differ in their use of scaffold proteins. ɑ-types use two forms of CsoS2, which is
composed of a multivalent, Rubisco-binding N-terminal domain (NTD; orange dots specify repeats), a multivalent middle region (MR; white dots
specify repeats), and a multivalent, shell-binding C-terminal domain (CTD; blue dots specify repeats). CsoS2 is expressed in two forms which differ in
their C-termini. b-types use two forms of CcmM to aggregate Rubisco through 3-repeats of small subunit-like domains (SSLDs). The M58 form
includes an N-terminal gCAL domain that also binds carbonic anhydrase and CcmN. CcmN contains a C-terminal encapsulation peptide which
enables interactions with the shell. Components are colored according to which other components they interact with.
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metabolism (Kupriyanova et al., 2023). Carbon assimilation in

cyanobacteria begins with the uptake and accumulation of inorganic

carbon sources within the cytoplasm (Figure 1A). CO2 can simply

diffuse through the outer cellular membrane while charged bicarbonate

must be actively pumped into the cell coupled with Na+ or in an ATP-

dependent fashion with BicA/SbtA and BCT1, respectively (Shibata

et al., 2002a; Shibata et al., 2001; Shibata et al., 2002b). Internalized CO2

can be converted to bicarbonate by an NADPH-dependent reduction

by the complexes NDH-13 and NDH-14, which are coupled to CO2-

uptake proteins (Cup) (Artier et al., 2018). CO2 and the resulting

bicarbonate pool feed into the carboxysome – a bacterial protein-

derived organelle that houses Rubisco and carbonic anhydrase within a

semi-permeable protein shell (Kerfeld and Melnicki, 2016; Rae et al.,

2013) –where CO2 and ribulose-bisphosphate react to form the central

metabolite 3-phospoglycerate (3-PGA).

Carboxysomes are comprised of an outer protein shell and an

inner enzymatic cargo, and their primary function is to (i) decrease

photorespiration by avoiding high [O2] from reaching Rubisco

(Li et al., 2020; Ferlez et al., 2019), (ii) concentrate CO2 around

Rubisco >1000x (Badger and Price, 2003), and (iii) physically

compartmentalize the cytosolic bicarbonate pool from the wide

majority of carbonic anhydrase activity to prevent carbon loss

(Cai et al., 2009; Dou et al., 2008; Price and Badger, 1989)

(Figure 1A). Functional carboxysomes are essential for cyanobacterial

growth at low (ambient) CO2 environments (Abernathy et al., 2019),

therefore, we must fully understand their underpinning mechanisms

for their ultimate manipulation as modules for carbon fixation.

Structural features of cyanobacterial carboxysomes.

Carboxysomes are part of a larger class of protein-bounded

organelles in bacteria called bacterial microcompartments (BMCs).

All BMC shells, including those of carboxysomes, are built from an

array of structurally conserved hexameric (BMC-H), pseudo-

hexameric/trimeric (BMC-T), and pentameric (BMC-P) proteins

(Kerfeld et al., 2018; Melnicki et al., 2021). These proteins natively

self-assemble into icosahedral shells which form a barrier between the

bacterial cytosol and the interior of the BMC. BMC-H proteins consist

of a single Pfam00936 domain and, together with BMC-T and their

various permutations (Sutter et al., 2021), make up the bulk of the

facets by tessellating tightly into a honeycomb-like lattice (Sutter et al.,

2016). BMC-P, on the other hand, consists of a Pfam03319 domain

and exists more fleetingly within the shell (Yang et al., 2020; Sun et al.,

2022; Sutter et al., 2017), serving to only cap the vertex positions (Cai

et al., 2009; Sutter et al., 2017; Tanaka et al., 2008). All BMC shell

proteins have characteristic concave (cytosol facing) and convex

(luminally facing) surfaces (Sutter et al., 2017; Trettel et al., 2022).

Together, these proteins assemble into a barrier that enables selective

influx/efflux of metabolites (Dou et al., 2008) thanks to central pores

located at their central axis of symmetry (Kerfeld et al., 2005).

Carboxysomes are categorized into 2-classes; a- and b-
carboxysomes housed in a- and b-cyanobacterial lineages (using cso

or ccm gene nomenclature), respectively. While structurally conserved,

experimental evidence suggests that ɑ- and b-carboxysomes differ in

their evolution, operon structure, components (Rubisco type, scaffolds,

carbonic anhydrases), and modes of assembly (Kerfeld and Melnicki,

2016; Rae et al., 2013) (Figures 1B, C). Current models propose that ɑ-
carboxysomes assemble concomitantly (Kerfeld and Melnicki, 2016;
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Iancu et al., 2010) with the disordered scaffold protein CsoS2 acting as

an essential hub (Cai et al., 2015a) that supports the co-condensation of

the Rubisco holoenzyme and carbonic anhydrase (Oltrogge et al., 2020;

Blikstad et al., 2023) with mosaicked shell subunits (Ni et al., 2023),

eventually maturing into a concentration-dependent paracrystalline/

fibril array of Rubisco packaged within the shell (Ni et al., 2023;Metskas

et al., 2022; Evans et al., 2023). In contrast, b-carboxysome assemble

core-first (Cameron et al., 2013) with the essential scaffold protein

CcmM initiating the condensation of Rubisco (Ludwig et al., 2000;

Wang et al., 2019; Zang et al., 2021;Wang andHayer-Hartl, 2023; Ryan

et al., 2019), carbonic anhydrase (Long et al., 2007; Long et al., 2011),

and CcmN into a ‘pro-carboxysome’. The encapsulation peptide (EP)

of CcmN (Kinney et al., 2012) promotes shell envelopment of the pro-

carboxysome resulting in a mature particle (Cameron et al., 2013; Chen

et al., 2013) where Rubisco also exists in a paracrystalline lattice

(Faulkner et al., 2017). Despite their functional differences, BMC

particles [carboxysomes and metabolosomes (Yang et al., 2022)] rely

on the liquid-liquid phase separation (LLPS) (Azaldegui et al., 2021) of

their internal components to trigger their assembly. Despite recent

experimental insights, engineering aspects such as size, morphology,

and multiplexed cargo packaging remain a challenge.
3 Atomic-level description of
shell permeability

Carboxysome shells enhance carbon assimilation by concentrating

CO2 and limiting O2 diffusion within the luminal space while enabling

the influx of bicarbonate and blocking CO2 leakage outwards (Rae

et al., 2013; Cai et al., 2009; Dou et al., 2008). Permeation is understood

to primarily occur at the central pores in the cyclic axis of symmetry in

BMC-H shell proteins (Kerfeld et al., 2005) (Figure 2A). These pores,

being typically ~4-7 Å in diameter (Tanaka et al., 2008; Kerfeld et al.,

2005; Tanaka et al., 2009), have been experimentally attributed as gates

for substrate passage. For example, mutagenized pore-adjacent residues

on BMC-H proteins alter the biochemical activity for the entire BMC

particle in vitro as well as cell growth when tested in vivo (Chowdhury

et al., 2015); it is hypothesized that these mutations at the pore

constriction change the rate at which the interior enzymes access

substrates that diffuse through those pores.
3.1 The biophysical properties of the
central pore present an energetic barrier
to diffusion

MD approaches have affirmed and expanded upon the evidential

importance of the central pore for substrate gating. Pioneering work

came from modeling the major BMC-H protein (Yang et al., 2020) of

the propanediol metabolosome in Salmonella enterica, PduA, using

biased potentials (e.g. umbrella sampling, metadynamics) (Park et al.,

2017). Calculations indicated a more favorable passage of 1,2-

propanediol compared to the higher free-energy barrier for

propionaldehyde (Park et al., 2017), confirming earlier assumptions

that some intermediates, like the reactive propionaldehyde, are
frontiersin.org
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selectively sequestered within the BMC lumen to prevent toxicity

(Sampson and Bobik, 2008) or carbon loss due to volatility (Penrod

and Roth, 2006). The higher free-energy barrier does not wholly block

substrates, like propionaldehyde, from diffusing but does impede the

process kinetically. The mechanism was attributed simply to the higher

hydrogen-bonding capacity of the central pore constriction, lined with a

serine residue (S40) (Crowley et al., 2010), for 1,2-propanediol over

propionaldehyde due to the extra hydroxyl group which acts as an

additional hydrogen bond donor. Effectively, the serine-lined pore is a

better binding site for 1,2-propanediol than propionaldehyde which

promotes the formers passage so long as the binding is not overly strong

(Bauer and Nadler, 2006). Such features from the Pdu BMC can

reasonably be applied to carboxysomes, due to the high sequence and

structural conservation between all BMC shell proteins (Melnicki et al.,

2021). Indeed, experimental work in the propanediol metabolosome has

further attributed the pore-lining S40 of PduA as critical to influencing

permeation (Chowdhury et al., 2015) This result was later confirmed via

simulation and experimentation on CcmK2 of the Synechocystis sp. PCC

6803 b-carboxysome with its S39 pore (Faulkner et al., 2020).
3.2 BMC-H surface electrostatics aid in
substrate discrimination

The residues lining the central constriction alone are not sufficient

to explain substrate permeation across ɑ- and b-carboxysome shells as

many BMC-H proteins common encode residues like serine and

glycine at the pore constriction. Surface electrostatic density around

the central pore has also been observed to be an effective mechanism of
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attracting/repelling substrates in several studies focusing on BMC-H

proteins (Faulkner et al., 2020; Mahinthichaichan et al., 2018). In all

cases, the pore-adjacent concave surface exhibits a high extent of

positive charge effectively turning the outward facing surface into an

electrostatic funnel (Figure 2B). This may explain the lower free-energy

profile for bicarbonate just outside of the pore within the concavity,

essentially attracting the negatively charged bicarbonate anions while

conversely impeding the passage of neutral CO2 and O2 from reaching

the interior [or, in the case of CO2, escaping once bicarbonate is

converted luminally by carbonic anhydrase (Cai et al., 2009)]

(Figure 2B). These works importantly provided the groundwork to

understand not just CO2 concentration within the shell, but also the

inhibition of O2 diffusion too. MD observations that O2 diffusion is

biophysically impeded is substantiated by the presence of

bioinformatically identified glycl-radical enzyme associated

microcompartments (GRMs) (Zarzycki et al., 2015). GRMs have

been speculated to help extend the range of environments that

glycyl-radical enzymes can reasonably act in, as oxygen exposure

inactivates these enzymes (Zarzycki et al., 2017; Zhang et al., 2001).

This notion is further supported by engineered carboxysome shells that

package oxygen-sensitive hydrogenases can impart enhanced activity

in an aerobic environment (Li et al., 2020).

The specific residues (corresponding to R11, K36, and the pore S39

in CcmK2) responsible for forming a substrate barrier are largely

conserved among CcmK2 proteins (Faulkner et al., 2020) and

emphasize the importance of both the pore and concave surface

overall in substrate gating (Figure 2B). The alignment of b-strands
proximal to the pore on the concave surface (L31 to K36 in CcmK2)

also expose their backbone amines and contribute to this effect. We
BA

FIGURE 2

The pores in the protein shell are responsible for gating substrate permeation. (A) The outer protein shell is composed of hexagonally arranged shell
proteins that tesselate into a tight-knit honeycomb-like lattice that forms a barrier against the cytosol. Currently, the only understood path for
substrate diffusion is through pores that form at the central axis of symmetry in the hexameric quaternary structure. The PDB structure for CsoS1A
(2G13) was used to generate this panel in PyMOL. (B) The biophysical properties that differentiate substrates, and their permeation through the
central pore, are sequence encoded. Several substrates are visualized traversing the pore with their anticipated trajectories colored by their
approximate relative free energy at that location as informed by Faulkner et al. The PDB structure for CcmK2 (2A1B) was used to generate this panel
in PyMOL. The C-termini were clipped at residue 90 for clarity. The right-most monomer has its surface colored according to its excluded surface
potential as calculated by the ABPS plugin in PyMOL.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1346759
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Trettel et al. 10.3389/fpls.2024.1346759
note, however, that these specifics will differ between shell proteins. For

example, BMC-H even among the same class will differ in surface

electrostatics (Schmidt-Dannert et al., 2018) and therefore should not

be taken as a one-size-fits-all rule (i.e. concave surface always being

positive to the same degree) but instead as another layer of

consideration when assessing permeation. While Rubisco and the

carboxysome shell may not be able to sufficiently differentiate

between CO2 and O2 (Poudel et al., 2020), the outer shell can

enhance the passage bicarbonate and, in combination with the

encapsulated carbonic anhydrase, locally increase the CO2

concentration around Rubisco. MD simulations have helped explain

the molecular basis for carbon concentration in the carboxysomal

CCM and will be an essential methodology to predictively modify the

shell for augmented substrate specificities moving forward.
3.3 Competition for pore occupancy may
regulate permeation events

The proclivity of BMC shell pores to bind anionic species is not

limited to solely bicarbonate. Other anions, like sulfate, have been

found in crystal structures of a broad range of BMC-H proteins

including CcmK1, CsoS1A, and EutM to list a few (Tanaka et al.,

2008; Tsai et al., 2007; Takenoya et al., 2010). MD have also revealed

structural aspects of ion coordination. For instance, chloride ions have

been observed to occupy pore-adjacent positions (Faulkner et al., 2020;

Mahinthichaichan et al., 2018) and coordinate with either backbone

amides or basic residues, such as arginine. Similar results were recently

found for the metabolosome BMC-H PduA, where chloride ions were

found to coordinate with the backbone amide of the pore-lining S40

(Trettel et al., 2023). This study also found that chloride itself also acts

competitively with 1,2-propanediol, the intended substrate, for pore

access thereby hindering permeation rates. Altogether, simulation data

from both carboxysome and metabolosome models both agree on the

ability of anions to coordinate with and occupy shell protein pores via

non-specific backbone interactions (Faulkner et al., 2020; Trettel et al.,

2023). While only currently reported for metabolosome shells, this

suggests that ion coordination may be a widespread phenomenon

which can also regulate permeation events in carboxysomes. The role

of other physiologically relevant anions, such as inorganic phosphate

which can regulate Rubisco activity (Marcus and Gurevitz, 2000), has

yet to be explored in this context.
4 Modeling the physical principles
underlying carboxysome assembly

Bacterial microcompartments, including carboxysomes, can vary

in size and regularly do not demonstrate a singular defined structure.

This differs greatly from similarly icosahedral, although evolutionarily

unrelated (Krupovic and Koonin, 2017), viral capsids and complicates

the direct structural assessment of native BMC complexes.

Understanding the dynamics of carboxysome self-assembly can shed

light on the polydispersity and factors that control it and thereby tune
Frontiers in Plant Science 05
factors which directly contribute to carbon fixation like surface-to-

volume ratios, Rubisco organization, and Rubisco packaging efficiency.

While inspired by simulations that explain viral capsid assembly that

typically form around nucleic acids (Perlmutter et al., 2013; Lynch

et al., 2023), new models pertaining to BMC assembly specifically

needed to be developed to explain the subtle differences that trigger

biogenesis and heterogeneous assemblies.
4.1 Cargo interactions are the
differentiating factor between
assembly pathways

Initial attempts at modeling BMC assembly were inspired by

carboxysomes where evidence has been found for both concomitant

and core-first assembly pathways (Perlmutter et al., 2016) as observed

in both ɑ- and b- lineages (Kerfeld and Melnicki, 2016) (Figure 3). The

principle differentiating factor was the relative strength of attraction

cargo had for other cargo, where weaker interactions led to ‘one-step’

or concomitant assembly (observed in ɑ-carboxysomes) (Figures 3A,

B) while stronger interactions led to ‘two-step’ or core-first (observed in

b-carboxysomes) (Figures 3A, C). Specifically, for ɑ-carboxysomes,

modeling (Mahalik et al., 2016) and atomic-force microscopy (Sutter

et al., 2016; Garcia-Alles et al., 2017) have both suggested that shell

facets form by nucleation, which can further provide an area to locally

concentrate cargo (Oltrogge et al., 2020) and nucleate ɑ-carboxysome

formation, since cargo-cargo interactions are predicted to not be strong

enough drivers on their own (Perlmutter et al., 2016) (Figure 3B). b-
carboxysome cargo (Rubisco and CcmM M35) in two-step assembly

modes coalesce strongly enough on their own without the need of a

shell-templated trigger (Figure 3C). Interestingly, these simulations

predicted that cargo would become organized into concentric layers,

observed prior in both ɑ- (Iancu et al., 2007; Shively et al., 1973; Schmid

et al., 2006) and b-carboxysomes (Kaneko et al., 2006; Iancu et al.,

2005). Paracrystalline order was not a prerequisite for forming

complete particles in these simulations and in fact would inhibit

budding (Figure 3A). These observations have held up to additional

recent higher-resolution experimental scrutiny, where Rubisco in both

ɑ- and b-carboxysomes is now understood to assemble into concentric

layers (Evans et al., 2023; Faulkner et al., 2017; Ni et al., 2022) when the

internal concentration is sufficiently high (Metskas et al., 2022). While

just the first of many follow-up studies, Perlmutter et al.’s above work

demonstrated the utility of computational modeling to understand

carboxysome assembly. However, the system employed at the time,

albeit elegant, only investigated one shell geometry (T = 3), one BMC-

H and BMC-P, and one cargo. This initial model has been greatly

expanded to include considerations like the impact of cargo packaging

on BMC size (Mohajerani and Hagan, 2018), the role of scaffolds

(Mohajerani et al., 2021), and even multiple cargos (Tsidilkovski et al.,

2022) on microcompartment size, assembly pathway, and packaging

efficiency (Figure 4A).

In the context of microcompartment size, dynamical simulations

reveal that shells packaged with cargo, generally, tend to be larger than

non-packaged shells (Mohajerani and Hagan, 2018). Further, these
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simulations showed that BMC size also correlates with assembly

pathways where core-first assembly modes, dominated kinetically by

relatively stronger cargo-cargo interactions, led to larger particles and

up to 5-fold more packaged cargo than concomitant modes

(Mohajerani and Hagan, 2018). These results similarly apply to

multi-component systems, where assembly pathway is primarily

delineated by the sum of the cargo interaction strengths and the

strength of self-cargo interactions (Figure 4B) can dictate packaging

stoichiometry (Tsidilkovski et al., 2022). This has been likewise

observed in real BMC systems where b-carboxysomes, which follow

a core-first assembly pathway, tend to be larger than their ɑ-
counterparts (Whitehead et al., 2014). Empty, synthetic structural

models reported thus far are also always far smaller than native

BMCs (<40 nm diameter) (Sutter et al., 2017; Ni et al., 2023; Tan

et al., 2021; Sutter et al., 2019a; Kalnins et al., 2020; Greber et al., 2019;

Sutter et al., 2019b).
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4.2 The role of shell components in BMC
assembly and morphology

Dynamical simulations have also revealed that shell components,

while not the predominant factor, can also influence final morphology.

For instance, simply increasing the ratio of shell proteins to cargo can

lead to overnucleation (Mohajerani and Hagan, 2018) and thus smaller

particles (Figure 4B). This has also been found in simulations which

assume shell proteins demonstrate no spontaneous curvature of their

own [motivated by atomic force microscopy studies on shell subunits

(Sutter et al., 2016; Garcia-Alles et al., 2017)] and can essentially trap a

growing cargo droplet out of equilibrium (Rotskoff and Geissler, 2018).

This, however, may depend on the system of study as shell proteins

have been observed to form sheets, nanotubes, and empty icosahedra

among other morphologies, sometimes within the same sample (Ferlez

et al., 2023), without the need of cargo templating to induce curvature
B

C

A

FIGURE 3

Carboxysome assembly pathways depend on the relative propensity of cargo to aggregate. (A) Simulations predict that carboxysome assembly
pathway exists on a continuum dependent on cargo-cargo binding strengths. Very weak or no binding propensity inhibits assembly of filled shells.
Weak/moderate binding strengths results in one-step assembly pathways, as either high concentrations of cargo or shell components that locally
increase cargo concentration are needed. Moderate/strong binding strengths lead to a two-step pathway, where cargo can coalesce independent of
a shell. Overly strong binding strengths inhibits budding of the cargo droplet by shell components. (B) In the one-step pathway (also called
concamitant), cargo proteins Rubisco, CsoS2A, and CsoS2B do not interact strongly enough to inititate phase separation from the bulk. CsoS2B
must first bind shell facets/vertices. This creates a local environment with a high concentration of CsoS2B N-terminal repeats that attract Rubisco
and CsoS2A. The droplet growth cascades until a critical mass of shell proteins envelope it, resulting in a mature alpha carboxysome. Molecular
simulations reveal that this pathway is promoted by relatively weaker cargo-cargo interactions/valency. (C) In the two-step pathway (also called
core-first), cargo proteins Rubisco and both forms of CcmM together coalesce a pro-carboxysome droplet. CcmN allows for shell components to
begin templating around the growing droplet, eventually budding a complete particle. Molecular simulations reveal that this pathway is promoted by
relatively strong cargo-cargo interactions/valencies. The carbonic anhydrase component in both examples is omitted for clarity.
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(Ferlez et al., 2023; Trettel andWinkler, 2023; Uddin et al., 2018; Hagen

AR. et al., 2018; Noël et al., 2015). The presence of excess pentamers or

stronger pentamer-hexamer interactions can likewise lead to more

pentamer insertion and thus overnucleation into smaller particles

(Mohajerani and Hagan, 2018) (Figure 4B). This latter point is

interesting since many BMC operons encode for more than one

BMC-P (Sutter et al., 2021). BMC-P proteins appear to play different

roles in different contexts, where in some metabolosomes they can

directly influence BMC morphology (Mills et al., 2022) and in others

they are completely dispensable and can be added exogenously to “cap”

the icosahedron (Sutter et al., 2019b; Hagen A. et al., 2018; Kirst et al.,

2022). Observations from simulations further emphasize the

importance of studying the effects of BMC-P and how they can

influence morphology, packaging efficiency and permeability.
4.3 The role of carboxysome-inspired
scaffolds in BMC assembly

The above studies ascribed the connection of homogenous cargo to

end morphology. However, the models used may be more applicable to

metabolosomes, where cargo directly interacts with the shell (Fan et al.,

2010; Aussignargues et al., 2015), than carboxysomes, where scaffolds

act as an intermediary connecting the shell and cargo domains

(Oltrogge et al., 2020; Wang et al., 2019). Accordingly, Mohajerani

et al. have also conducted a study, motivated by ɑ-carboxysomes
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specifically, on the role of a CsoS2-inspired scaffold proteins in BMC

assembly (Mohajerani et al., 2021) (Figure 4A). Scaffolds proteins, as a

type of cargo themselves, can potentially affect shell size and assembly

pathway in amuchmore programmable manner than typical cargo due

to their modular nature (Chaijarasphong et al., 2016) (Figure 1C).

Simulations parametrized these physical aspects by defining the length

of the CsoS2-inspired scaffold (L), the length of the cargo binding

domain [Lc, with longer Lc meaning more cargo binding sites, akin to

more CsoS2 N-terminal domains (NTDs)] and the fractional length of

the cargo binding domain (fsc = Lc/L) as shown in Figure 4A.

Importantly, simulations reveal that there is a critical interplay

between the total length of the scaffold and its valency with cargo. By

fixing the overall scaffold length (L) and increasing Lc (and therefore fsc),

simulations showed that cargo packaging likewise increases. Moreover,

increasing fsc, analogous to the number of cargo binding sites,

transitioned systems from a one-step to a two-step assembly pathway

(Figure 4B) where two-step pathways are again associated with more

cargo packaging (Mohajerani et al., 2021). Similarly to cargo packaging

alone (Mohajerani and Hagan, 2018), as the scaffold is itself a type of

cargo, physically longer scaffolds also generally result in larger shells to a

point as they increase volume requirements (Mohajerani et al., 2021).

These simulations are supported by work in the model H. neapolitanus

a-carboxysome that demonstrates a requirement for a minimal

threshold of NTDs in CsoS2 to be met to achieve carboxysome

formation (Oltrogge et al., 2020). Further, more recent work by

Oltrogge and colleagues likewise agree that increasing CsoS2 length
B

A

FIGURE 4

Carboxysome morphology is determined by a combination of shell and cargo related parameters. (A) The interactions strengths between different
components of a BMC can be parameterized (ϵ). In simulations, hexamers can interact edge-to-edge while having matching surfaces oriented in parallel with
interactions strength ϵhh. Hexamers and pentamers can likewise interact with strength ϵph. Cargo components, defined as both scaffolds like CsoS2 (shown)
or general cargo (orange circle) can interact with the convex surface of shell hexamers with strength ϵhc. Lastly, cargo, in the form of general cargo or
scaffolds, can form self interactions of strength ϵcc. In the case of scaffolds, the fraction of the protein that bind cargo (fsc) is defined as the length of the
cargo binding domain (Lc, akin to valency or number of binding sites) divided by the total scaffold length (L). (B) Molecular simulations reveal parameters that
alter morphology during assembly. Generally, increasing parameters (stoichiometry, interaction strengths) related to the shell lead to smaller particles.
Conversely, increasing parameters related to cargo aggregation, or including cargo at all, leads to larger particles. One except is that increasing ϵhc for
general cargo will result in smaller particles but for scaffolds will not (*, see Mohajerani et al., 2021). Note, assembly pathways in simulations shift from one-
step to two-step with increasing fsc and ecc (**). Accordingly, the two-step pathways are generally associated with larger particles.
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by increasing the number of middle region (MR) repeats leads to larger

a-carboxysomes (Oltrogge et al., 2023). However, they ascribe this

phenomenon to the MR repeats of CsoS2 stabilizing the low-curvature

regions (i.e. the facets) of the carboxysome shell, enabling their

extension, while Mohajerani et al. argue for the need to meet

increased volume requirements. We note that these arguments are

not mutually exclusive.
5 Discussion

5.1 Areas for growth in
understanding permeation

MD simulations of shell permeation to date have focused on a

small subset of model BMC-H. While impactful, future permeation

studies may wish to sample a greater diversity of BMC-H to develop a

deeper understanding of the natural biophysical diversity shell proteins

can accommodate. For instance, sampling a wider array of

carboxysomal BMC-H may highlight subtle differences that influence

bicarbonate, O2, and 3-PGA diffusion. Similar methodologies can and

should be applied towards describing permeation in mixed

heterohexamer systems, like those reported for CcmK3/K4 (Sommer

et al., 2019; Garcia-Alles et al., 2019) or purely synthetic systems with

the potential for asymmetric pore designs (Česle et al., 2023) that may

further regulate substrate diffusion in ways that homo-hexameric

BMC-H cannot. The various classes of BMC-T should also be

considered to better grasp their hypothesized connection to substrate

gating (Klein et al., 2009; Tanaka et al., 2010). Simulation scale also

needs to be accounted for, and future studies may wish to engage with

physiologically relevant systems with multiple components like the

small synthetically-derived BMC shells (Sutter et al., 2017; Ni et al.,

2023; Tan et al., 2021; Sutter et al., 2019a; Kalnins et al., 2020; Greber

et al., 2019; Sutter et al., 2019b), as a proxy for larger native-like

systems. Investigating more complex shells will progress our

understanding of how chemical gradients, a physiologically critical

component, behave and evolve within a BMC context. For instance,

differences in density and packing of Rubisco within carboxysomes

(Kaneko et al., 2006; Ni et al., 2022) may result in CO2/O2 gradients

proportional to the enzymes’ proximity to the shell. Detailed

permeation studies could discern the packaging attributes within

BMCs that would result in more efficient catalytic properties in

engineered architectures. Simulating whole-BMC shell models can

also limit pore-centric bias and explore if flux exists in non-porous

areas such as the hexamer-hexamer interfaces or corner junctions

where three hexamers meet. Similarly, permeability studies can be

expanded to study the diffusion of a wider swath of metabolites and

cofactors through BMC shell structures. Current research suggests that

these cofactors, like NAD(P)H, are maintained as private pools that are

internally recycled and do not appreciably diffuse through the shell

barrier (Huseby and Roth, 2013; Cheng et al., 2012). Regardless, novel

BMCs may be sought to transform metabolites far larger than those

found in current model systems. MD simulations of permeation,

therefore, will continue to facilitate rapid in silico prototyping of

permeation through protein shells for altered substrate specificities or

enhanced carbon concentration within the carboxysome lumen.
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Specific structural components of the shell, such as the extended

C-termini on many BMC-H, should also be addressed. While

typically ignored due to missing crystallographic data, these

termini can now be predicted and integrated into computational

models thanks to emerging computational tools. These outward-

facing, flexible/disordered (Faulkner et al., 2020) termini have been

implicated in functions such as assembly (Trettel et al., 2022; Klein

et al., 2009) like in viruses (Xue et al., 2014), but some data suggests

they also reach into the concavity of adjacent subunits (Trettel et al.,

2022) which may impact permeation or fine-tune assembly in

environmentally responsive ways.
5.2 Future directions for studying
carboxysome assembly

The collective knowledge on carboxysome systems continually

expands and reinvents our understandings of these complex systems.

Incorporating simulations to complement emerging experimental

insights will lead to more meaningful outputs to inform design

choices. For instance, future modeling may wish to explore evidence-

informed shell-cargo interaction sites that form from predominantly (i)

the edge-edge interaction surface of two adjoining shell proteins (Ni

et al., 2023) and, in some cases, (ii) interactions with specific interior-

oriented domains such as the N-terminus of the PduB BMC-T (Trettel

et al., 2022; Lehman et al., 2017; Kennedy et al., 2022). This is further

underpinned by the multitude of different shell proteins BMCs can

encode and their synthetic interchangeability (Cai et al., 2015b;

Slininger Lee et al., 2017) which certainly influence shell-shell

(including curvature) and shell-cargo/scaffold interactions. For

example, many BMCs encode for BMC-T proteins where every

other edge may be better attuned for specific shell interactions on

adjacent subunits (Trettel et al., 2022; Waltmann et al., 2023) and

influence factors like shell curvature and/or shell-cargo interactions.

Many others bioinformatically identified BMC loci entirely lack these

factors for unknown reasons (Sutter et al., 2021).

The luminal organization of Rubisco is also now known to differ

between related carboxysomes and may be tied to overall carboxysome

activity, For instance, Halothiobacillus a-carboxysomes exhibit ~2-fold

higher activity than Cyanobium a-carboxysomes and have different

modes of Rubisco organization (Ni et al., 2022). Future simulationsmay

have an opportunity to explain how these subtle structural differences

arise (i.e. Rubisco surface charge difference, CsoS2 binding affinity,

internal Rubisco concentration), ascribe functional consequences, and

reveal how to program desired internal conformations.

Shell-focused assembly simulations can also help better define and

explain the mechanisms behind the varied supramolecular structures

BMC shell proteins can form in vivo and in vitro, such as nanotubes,

for designer protein scaffolds (Young et al., 2017). Recent work suggests

that BMC-H curvature trends can be inferred by their crystal structural

arrangements (Garcia-Alles et al., 2023) and that these trends can be

modulated rationally with computationally-informed amino acid

substitutions (Li et al., 2021). However, factors like buffer/

environmental composition (Faulkner et al., 2019), shell protein class

and stoichiometry, and protein disorder undoubtedly also factor into

supramolecular, and native-like, structures in unknown ways. In
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particular, the disordered termini many BMC-H proteins carry,

predominantly on their outward facing C-terminus (Sutter et al.,

2017; Trettel et al., 2022) have been speculated to fine-tune both

shell-shell and shell-cargo interactions (Fan et al., 2012). Further,

currently described simulation systems may already be attuned to

ascribe the role of the multiple pentamers BMCs can encode for by

tuning their relative stoichiometry and interaction strengths.

Computational studies will undoubtedly continue to address these

considerations and many more for custom carbon-fixing scaffolds.
5.3 Lessons for experimental
carboxysome modifications

Assembly-focused simulations teach us that assembly pathway is

chiefly governed by cargo interaction strengths (Figure 3A) while final

morphology is determined by both cargo and shell contributions

(Figure 4B). In terms of assembly pathway, stronger cargo-cargo

(including scaffold) interactions or higher cargo stoichiometries are

typically associated with two-step assembly pathways that lead to larger

shells with more cargo (Mohajerani and Hagan, 2018; Mohajerani

et al., 2021; Tsidilkovski et al., 2022) (Figure 4B). Conversely, weaker

cargo-cargo interactions or higher shell stoichiometries are associated

with one-step assembly pathways and smaller shells (Mohajerani and

Hagan, 2018; Mohajerani et al., 2021; Tsidilkovski et al., 2022)

(Figure 4B). These findings carry direct carboxysome design

implications related to assembly kinetics that manifest physically in

the forms of (i) expression system design and (ii) scaffold design.

Cargo and shell constructs can be designed in both a continuous

synthetic operon or discontinuously into different plasmids with

different modes of induction for testing (Lee and Tullman-Ercek,

2017). Single-vector/operon designs have been successful using a

variety of induction approaches (Bonacci et al., 2012; Graf et al.,

2018; Flamholz et al., 2020; Jiang et al., 2023). Notably, similar

strategies also result in morphologically and functionally sound

carboxysomes when genomically integrated and expressed in plants

(Chen et al., 2023; Long et al., 2018). Double-vector systems, which

independently express shell and cargo components, have also been

described (Jiang et al., 2023; Jakobson et al., 2016; Wagner et al., 2017)

although they do need to be tuned and timed appropriately (Lee and

Tullman-Ercek, 2017; Jakobson et al., 2016; Nichols et al., 2019) likely

due to kinetic effects of aggregation described by simulations. In one

case, researchers redesigned a carboxysome for hydrogen production

by serially inducing hydrogenase cargo followed by a b-carboxysome

shell (Li et al., 2020). BMCs with concomitant assembly pathways, like

those commonly employed for heterologous a-carboxysomes

formation, may benefit from single vector designs which promote

co-expression of both shell and cargo components under native-like

controls (i.e. ribosomal binding sites). Similarly, two-step pathways

may be promoted by a well-tuned cargo-preaggregation step proceeded

by shell expression. Researchers should consider the kinetics of

interactions and expression to prevent off-target assemblies.

Scaffold choice and design is also an emerging route for

modification. In ɑ-carboxysomes, modifying CsoS2 and the ratios of

CsoS2A and CsoS2B (analogous to fsc in simulations) or the number of

NTD/MR repeats (Oltrogge et al., 2023) are approachable routes to
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alter morphology and Rubisco packaging for CCM augmentation.

Similarly, in b-carboxysomes, modifications of CcmM and CcmNmay

also be sufficient routes for modification. However, both classes of

scaffolds act as specific adaptors between the Rubisco cargo and the

shell domains and therefore cannot coalesce a more diverse range of

cargo by themselves without extensive modification. Heterologous

encapsulation and assembly methods may wish to rely on

carboxysome-inspired fusions (Gonzalez-Esquer et al., 2015) or

metabolosome EPs which trigger both shell-cargo (Fan et al., 2010)

and cargo-cargo (Lawrence et al., 2014). Cargo fused with

metabolosome EPs may act more akin to the assembly models

produced in several assembly simulation works to date (Perlmutter

et al., 2016; Mohajerani and Hagan, 2018; Tsidilkovski et al., 2022).

One bottleneck with biomass productivity lies in the connection

between photosynthetic efficiency and carbon fixation. To alleviate

these bottlenecks, some groups have installed various CCM

components into plant chloroplasts including Nicotiana

benthamiana (Lin et al., 2014), Rhodosprillum rubrum (Long et al.,

2018), and Nicotiana tabacum (Chen et al., 2023). These studies have

been able to generate carboxysomes nearly structurally and

catalytically equivalent to native carboxysomes and support

photosynthesis (Chen et al., 2023). Further additional factors like

the incorporation of bicarbonate transporters, removal of the stromal

carbonic anhydrase, and including Rubisco activates (Chen et al.,

2022) may be needed to significantly enhance growth under ambient

CO2 conditions. A deeper fundamental understanding of

carboxysome assembly offered by computational simulations may

assist in full implementation of cyanobacterial CCMs into C3 plants.
5.4 The future of computational models
and methods

Simulations have played a critical role in exploring the physical

phenomena that underpin carboxysome assembly. However, many

conclusions remain explored at low resolution, partially due to the

technics used. More investment in multi-resolution calculations is

required for incorporating high accuracy detailed mechanisms at

commensurate computational investment. Such methodologies may

only be possible after exercising high fidelity energy landscape

reconstruction based on accelerated MD or AI assisted

methodologies for the fast interconversion between low resolution

models (e.g. supra coarse-grained) and fully atomic detailed structures.

Only this approach would be able to lead to a more fine-tuned and

robust rational carboxysome manipulation.
6 Conclusion

The integration of in silico predictive and analytical methods with in

vivo structure/function studies of BMCs is essential to advance BMC-

based biotechnologies. MD simulations have been critical in describing

the fundamental principles underlying permeation events through

protein shells and fundamental principles that underpin carboxysome

assembly. MD simulations reveal that substrate permeation is controlled

by a series of biophysical properties, encoded by residues mainly along
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the outer concave surface, and substrate competition. Simulations

studying BMC assembly demonstrate that assembly pathway is

controlled kinetically by cargo accumulation and morphology is

dictated by a combination of shell and cargo parameters. The ever-

increasing access to computational power, and methodologies (i.e.,

machine-learning algorithms), will undoubtably expand these findings

and allow for a higher-throughput exploration of the BMC diversity and

the redesign of these architectures for specific non-native biochemical

traits. Such advancements will continue to impact how we think and

tinker with these architectures and help implement programmable

BMCs for biomanufacturing and enhanced CO2 sequestration roles.
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GRM2-type bacterial microcompartment shells through BMC-H shell protein fusion
and incorporation of non-native BMC-T shell proteins. ACS Synth. Biol. 12, 3275–
3286. doi: 10.1021/acssynbio.3c00281

Chaijarasphong, T., Nichols, R. J., Kortright, K. E., Nixon, C. F., Teng, P. K., Oltrogge,
L. M., et al. (2016). Programmed ribosomal frameshifting mediates expression of the a-
carboxysome. J. Mol. Biol. 428, 153–164. doi: 10.1016/j.jmb.2015.11.017

Chen, T., Fang, Y., Jiang, Q., Dykes, G. F., Lin, Y., Price, G. D., et al. (2022).
Incorporation of functional Rubisco activases into engineered carboxysomes to
enhance carbon fixation. ACS Synth. Biol. 11, 154–161. doi: 10.1021/acssynbio.1c00311

Chen, T., Hojka, M., Davey, P., Sun, Y., Dykes, G. F., Zhou, F., et al. (2023).
Engineering a-carboxysomes into plant chloroplasts to support autotrophic
photosynthesis. Nat. Commun. 14, 2118. doi: 10.1038/s41467-023-37490-0
frontiersin.org

https://doi.org/10.1016/j.ymben.2019.04.010
https://doi.org/10.1016/j.plaphy.2008.01.001
https://doi.org/10.1016/j.bbabio.2018.06.015
https://doi.org/10.1080/19420889.2015.1039755
https://doi.org/10.1016/j.bpj.2020.09.023
https://doi.org/10.1139/cjb-76-6-1052
https://doi.org/10.1139/cjb-76-6-1052
https://doi.org/10.1111/j.1399-3054.1992.tb04711.x
https://doi.org/10.1093/jxb/erg076
https://doi.org/10.1073/pnas.1816654116
https://doi.org/10.1073/pnas.0601769103
https://doi.org/10.1073/pnas.2308600120
https://doi.org/10.1073/pnas.1108557109
https://doi.org/10.1111/tpj.14674
https://doi.org/10.3390/life5021141
https://doi.org/10.1371/journal.pone.0007521
https://doi.org/10.1371/journal.pone.0007521
https://doi.org/10.1021/sb500226j
https://doi.org/10.1016/j.cell.2013.10.044
https://doi.org/10.1021/acssynbio.3c00281
https://doi.org/10.1016/j.jmb.2015.11.017
https://doi.org/10.1021/acssynbio.1c00311
https://doi.org/10.1038/s41467-023-37490-0
https://doi.org/10.3389/fpls.2024.1346759
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Trettel et al. 10.3389/fpls.2024.1346759
Chen, A. H., Robinson-Mosher, A., Savage, D. F., Silver, P. A., and Polka, J. K. (2013).
The bacterial carbon-fixing organelle is formed by shell envelopment of preassembled
cargo. PloS One 8, e76127. doi: 10.1371/journal.pone.0076127

Cheng, S., Fan, C., Sinha, S., and Bobik, T. A. (2012). The PduQ enzyme is an alcohol
dehydrogenase used to recycle NAD+ internally within the Pdu microcompartment of
Salmonella enterica. PloS One 7, e47144. doi: 10.1371/journal.pone.0047144

Chowdhury, C., Chun, S., Pang, A., Sawaya, M. R., Sinha, S., Yeates, T. O., et al. (2015).
Selective molecular transport through the protein shell of a bacterial microcompartment
organelle. Proc. Natl. Acad. Sci. U. S. A. 112, 2990–2995. doi: 10.1073/pnas.1423672112

Crowley, C. S., Cascio, D., Sawaya, M. R., Kopstein, J. S., Bobik, T. A., and Yeates, T.
O. (2010). Structural insight into the mechanisms of transport across the Salmonella
enterica Pdu microcompartment shell. J. Biol. Chem. 285, 37838–37846. doi: 10.1074/
jbc.M110.160580

Davidi, D., Shamshoum, M., Guo, Z., Bar-On, Y. M., Prywes, N., Oz, A., et al. (2020).
Highly active rubiscos discovered by systematic interrogation of natural sequence
diversity. EMBO J. 39, e104081. doi: 10.15252/embj.2019104081

Dou, Z., Heinhorst, S., Williams, E. B., Murin, C. D., Shively, J. M., and Cannon, G. C.
(2008). CO2 fixation kinetics of Halothiobacillus neapolitanus mutant carboxysomes
lacking carbonic anhydrase suggest the shell acts as a diffusional barrier for CO2. J. Biol.
Chem. 283, 10377–10384. doi: 10.1074/jbc.M709285200

Evans, S. L., Al-Hazeem, M. M. J., Mann, D., Smetacek, N., Beavil, A. J., Sun, Y., et al.
(2023). Single-particle cryo-EM analysis of the shell architecture and internal organization
of an intact a-carboxysome. Structure 31, 677–88.e4. doi: 10.1016/j.str.2023.03.008

Fan, C., Cheng, S., Liu, Y., Escobar, C. M., Crowley, C. S., Jefferson, R. E., et al. (2010).
Short N-terminal sequences package proteins into bacterial microcompartments. Proc.
Natl. Acad. Sci. U. S. A. 107, 7509–7514. doi: 10.1073/pnas.0913199107

Fan, C., Cheng, S., Sinha, S., and Bobik, T. A. (2012). Interactions between the
termini of lumen enzymes and shell proteins mediate enzyme encapsulation into
bacterial microcompartments. Proc. Natl. Acad. Sci. U. S. A. 109, 14995–15000. doi:
10.1073/pnas.1207516109

Faulkner, M., Rodriguez-Ramos, J., Dykes, G. F., Owen, S. V., Casella, S., Simpson, D.
M., et al. (2017). Direct characterization of the native structure and mechanics of
cyanobacterial carboxysomes. Nanoscale 9, 10662–10673. doi: 10.1039/C7NR02524F
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