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Characterization of arbuscular
mycorrhizal fungal species
associating with Zea mays
Sı́lvia Maússe-Sitoe and Joanna Dames*

Mycorrhizal Research Laboratory, Department of Biochemistry and Microbiology, Rhodes University,
Makhanda, South Africa
Taxonomic identification of arbuscular mycorrhizal (AM) fungal spores extracted

directly from the field is sometimes difficult because spores are often degraded

or parasitized by other organisms. Single-spore inoculation of a suitable host

plant allows for establishing monosporic cultures of AM fungi. This study aimed

to propagate AM fungal spores isolated from maize soil using single spores for

morphological characterization. First, trap cultures were established to trigger

the sporulation of AM fungal species. Second, trap cultures were established with

individual morphotypes by picking up only one spore under a dissecting

microscope and transferring it to a small triangle of sterilized filter paper,

which was then carefully inoculated below a root from germinated sorghum

seeds in each pot and covered with a sterile substrate. All pots were placed in

sunbags and maintained in a plant growth room for 120 days. Spores obtained

from single spore trap cultures from each treatment, maize after oats (MO),

maize after maize (MM), maize after peas (MP), and maize after soybean (MS),

were extracted using the sieving method. Healthy spores were selected for

morphological analysis. Direct PCR was conducted by crushing spores in

RNAlater and applying three sets of primer pairs: ITS1 × ITS4, NS31 × AML2,

and SSUmcf and LSUmBr. Nucleotide sequences obtained from Sanger

sequencing were aligned on MEGA X. The phylogenetic tree showed that the

closest neighbors of the propagated AM fungal species belonged to the genera

Claroideoglomus, Funneliformis, Gigaspora, Paraglomus, and Rhizophagus. The

morphological characteristics were compared to the descriptive features of

described species posted on the INVAM website, and they included

Acaulospora cavernata, Diversispora spurca, Funneliformis geosporus,

Funneliformis mosseae, Gigaspora clarus, Gigaspora margarita, Glomus

macrosporum, Paraglomus occultum, and Rhizophagus intraradices. These

findings can provide a great contribution to crop productivity and sustainable

management of the agricultural ecosystem. Also, the isolate analyzed could be

grouped into efficient promoters of growth and mycorrhization of maize

independent of their geographical location.
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1 Introduction

Mycorrhizal fungi are soil microorganisms distributed

worldwide. They form symbiotic and mutualistic associations

with more than 80% of vascular land plants (Smith and Read,

2008; Brundrett, 2009). Different types of mycorrhizal associations

involving other groups of fungi and host plants have been identified.

Among them, arbuscular mycorrhizal (AM) fungi form symbiotic

associations with plants (Hata et al., 2010) in almost all habitats and

climates (Azcón-Aguilar and Barea, 1997; Chen et al., 2018),

including disturbed agricultural soils (Enkhtuya et al., 2000) and

those derived from mining activities (Bi et al., 2003). These are

considered Earth’s most essential and ubiquitous symbionts (Dodd

et al., 1996; Bever et al., 2001). AM fungi are obligate biotrophs that

require the roots of a living host to grow and complete their life

stages (Kehri et al., 2018). They colonize plant roots in exchange for

carbohydrates, up to 20% of photosynthetically fixed, organic

carbon (C)-based compounds (C) (Jakobsen and Rosendahl,

1990; Smith and Read, 2008), and provide their plant hosts with

mineral nutrients required for plant growth (Jakobsen et al., 1992;

Luginbuehl et al., 2017).

The importance of AM fungi is being increasingly considered in

agriculture, horticulture, forestry, and environmental reclamation

(IJdo et al., 2011; Sheteiwy et al., 2023). The global use of

agriculturally beneficial microorganisms tends to contribute

directly or indirectly to crop improvement and increases nutrient

uptake efficiency (Bargaz et al., 2018; Plett, 2018; El-Sawah et al.,

2023). Potentially, AM fungi could replace inorganic fertilizers or at

least reduce the use of inorganic fertilizers (Begum et al., 2019;

Sheteiwy et al., 2022).

AM fungi form symbiotic relationships with most vascular

plants, and identifying AM fungal species is essential. Maize (Zea

mays L.) is one of the most important crops grown globally for

livestock feed, food, and industrial materials (Lv et al., 2016). Maize

plants produce high dry matter yields and therefore have a high

requirement for nutrients, especially three macro-nutrients:

nitrogen (N), phosphorous (P), and potassium (K) (Pettigrew,

2008; Zörb et al., 2014). The use of artificial chemical fertilizers

has been an effective way to improve maize production worldwide

(Gao et al., 2017; Dai et al., 2018). Although many nutrients

required to grow maize are abundant in soil, some may occur at

low levels (Mtambanengwe and Mapfumo, 2009; Gao et al., 2020).

The majority of plant species form symbiotic relationships with AM

fungi to augment N and P uptake from soil (Begum et al., 2019;

Yang et al., 2022). AM fungi transfer N (~20%) and P (~90%) to

plants in exchange for C from photosynthates (Smith and Read,

2002; Whiteside et al., 2009). It can also boost plant growth by an

average of 80% under unfertilized conditions (Hoeksema et al.,

2010). In many parts of the world, maize production occurs in semi-

arid environments and thus often faces high temperatures and

water scarcity (Cairns et al., 2012; Zhao et al., 2016; He et al., 2017).

These climate change-induced stresses have significantly threatened

maize yields and decreased world maize production by 15%–20%

annually (Lobell et al., 2011; Chen et al., 2012; Abdoulaye

et al., 2019).
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Traditionally, microscopic examination of extracted spores was

used to identify AM fungal species before molecular techniques were

established (Sanders, 2004; Young, 2012). Conventional

morphological observation is still essential and should be addressed

for identification, although there is a trend that the sequence data of

AM fungi are over-emphasized for identification. The

recommendation is that molecular and morphological

characterization should be combined where practical because of the

production of unique and crucial information, such as the impact of

land management on AM fungal spore abundance and richness from

each of the methods (Overby et al., 2015; Säle et al., 2015).

Taxonomic identification of AM fungal spores extracted directly

from the field is sometimes difficult because spores are often degraded

or parasitized by other organisms (Clapp et al., 1995), and it is

recommended that morphological spore characteristics are best

observed in trap cultures. The Glomeromycota classification based

on morphological and molecular data was revised in 2013 by

systematists with expertise in the biology and taxonomy of AM

fungi (Redecker et al., 2013). The taxonomic classification of AM

fungi was constructed by grouping the fungal strains based on

similarities and differences in their morphological characteristics

(spore morphology, spore formation, and spore wall structure)

(Gerdemann and Trappe, 1974; Walker and Sanders, 1986; Morton

and Benny, 1990; Schenck and Perez, 1990). Most of the 214

currently described species (https://www.amf-phylogeny.com) are

characterized only by spore morphology, and the majority of older

species have not been cultured in vitro (trap cultures) (Tisserant et al.,

1998; Clapp et al., 2001). There are approximately 160 species of AM

fungi described by spore morphology according to the International

Collection of Vesicular Arbuscular Mycorrhizal Fungi (INVAM;

http://invam.caf.wvu.edu/). The variation in morphological

characteristics in the spores of AM fungi is limited, thus creating

difficulties in identification and morphotyping (Tisserant et al., 1998;

Clapp et al., 2001). Walker and Vestberg (1998) reported that in

nature there can be significant variation in spore morphology even

within an AM fungal species. Still, many AM fungi may reproduce

only vegetatively without producing spores (Helgason et al., 2002).

Also, fungal spore diversity differs seasonally, with some fungi

sporulating in late spring and others at the end of summer (Douds

and Millner, 1999; Oehl et al., 2003). Using successive trap cultures

and subsequent extraction and study of spores is time-consuming but

may reveal significantly greater diversity (Oehl et al., 2004).

Single-spore inoculation of a suitable host plant allows for

establishing monosporic cultures of AM fungi. It can also assist in

understanding the individual effects of AM fungi on plant growth

and the combined effects of other stresses on different crops. Few

studies have been conducted on the propagation of AM fungi from

single spores as starter inocula using substrate-based methods

(Jansa et al., 2002; Panwar et al., 2007; Selvakumar et al., 2018).

We hypothesize that inoculation with AM fungal single spores

may help to elucidate the efficiency in preventing the contamination

of spores (degraded or parasitized by other organisms) extracted

directly from the field. The present study aimed to morphologically

characterize AM fungal species associating with maize using single-

spore propagation.
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Maússe-Sitoe and Dames 10.3389/fpls.2024.1345229
2 Materials and methods

2.1 Soil sampling and treatments

The soils in this study originated from fields (in the Free State

and KwaZulu-Natal provinces, South Africa) of different farming

practices, including conventional and conservational production of

maize and four different treatments: maize after oats (MO), maize

after soybean (MS), maize after maize (MM), and maize after peas

(MP). Soils were sampled three times, first pre-planting (PP), 2

weeks before planting (October 14, 2019); second germination

(GN), 2 weeks after germination (January 9, 2020); and third

germination, at harvest (AH) (July 2020). Samples were collected

from the bulk (0–10-cm depth) and rhizosphere (0–30-cm depth)

soil profiles. From each of the sites [Free State (C, conventional; V,

Zunckel farms) and KwaZulu-Natal (Z, Van Rooyenswoning

farm)], the upper layer of soil organic matter (SOM) and debris

was removed, and the bulk soil was then taken for pre-planting. At

the same time, for germination and at harvest, the plant was first

removed, and roots with rhizosphere soil were then placed in a

sampling bag before the above-ground plant material was removed.

Then, an additional bulk soil sample was taken from the vicinity

where the plant was removed. Five samples were taken per

treatment using an auger, with the aim to spread the intra-field

samples as far apart as possible while still being accessible. The

samples were then thoroughly mixed to make one composite (a

single representative sample, created to reduce some of the massive

variability) as described by Okalebo et al. (2002). In the Free State

farms (large commercial fields), one soil sample was collected in a

center sample, and then four soil samples were collected in a

clockwise direction, starting at 9 o’clock, around the center

sample when facing away from the farm road. In the KwaZulu-

Natal (KZN) fields (under pivot irrigation), soil samples were

collected trying to obtain a sample from every side and within

every ring left by the irrigation system. Approximately 1 kg of the

composite (soil adhering to the roots and next to plants) soil

samples were placed in plastic bags (Ziploc freezer bags), labeled,

and transported to the Mycorrhizal Laboratory at Rhodes

University, Makhanda, Eastern Cape, South Africa, for

further processing.
2.2 Trap culture

AM fungi are obligate biotrophs and cannot be grown in an

artificial medium. They must be associated with a host plant. Trap

cultures were established to trigger the sporulation of AM fungal

species. These cultures aim to maintain a living collection of

organisms to study and obtain fresh spores to set up monosporic

cultures for identification. Sorghum bicolor was chosen as the

symbiotic partner because of its high mycorrhizal dependency,

wide adaptability, and high resistance to abiotic stresses, including

drought, salinity, waterlogging, and heavy metals (Dar et al., 2018).

A non-soil clay substrate was sterilized at 121°C for 15 min
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(Getenga et al., 2004; Kariman et al., 2022) and, when cooled, was

placed in 9.5 × 6.5 × 9.5 cm plastic pots (until they were two-thirds

filled). A soil sample from the field (5 g each; from four different

treatments, MO, MS, MM, MP, and under two different agriculture

management practices) was used as inoculum and placed (2 cm

deep) in the pots below the seeds (approximately three disinfected

seeds of sorghum per pot). More non-soil clay substrate was added

until the pot was full. The seeds started to germinate after 3 days.

The pots were placed in sunbags (Sigma-Aldrich, St. Louis, MO,

USA; B7026) and watered with distilled water (Figure 1). Sunbags

were sealed and monitored regularly, and water was supplied once a

week, if needed, to ensure the soil moisture level was maintained,

promote normal growth, and allow for AM fungal infection. Pots

were placed in a growth room with external lighting on a 12-h day/

night cycle, and the temperature was maintained at 25°C–28°C

(Katta, 2016). Pot cultures were grown for 4 months (Oehl et al.,

2003), after which the host plant was allowed to dry. After

harvesting, the trap contents were thoroughly mixed, substrate

and root samples were collected, and spores were extracted as

described by Schenck (1982) and Smith and Dickson (1997) and

grouped into different morphotypes according to their

morphological characteristics observed under a dissecting

microscope (Goswami et al., 2018).
2.2.1 Single spore trap culture
Sorghum seeds were surface-disinfected by soaking them in

10% sodium hypochlorite for 30 min and rinsing them three times

with sterile distilled water. Using plastic pots (9.5 × 6.5 × 9.5 cm)

filled with sterile non-soil clay substrate (autoclaved at 121°C for 15

min), some disinfected sorghum seeds (3 seeds/pot) were sown and

grown with regular watering with distilled water in a plant growth

room with 12 h of light (25°C) and 12 h of darkness (18°C)

(Sreedasyam et al., 2023). The seeds started germinating after 3

days. Following seed germination, a trap culture was established

with individual morphotypes by picking up only one spore (that

appeared healthy based on shape, color, and surface condition)

under a dissecting microscope and transferring it to a small

triangular sterilized filter paper (Figure 1). Additionally, intact

spores of each type were mounted in polyvinyl alcohol/lactic acid/

glycerol (PVLG) with (to obtain the most intense staining reaction)

and without Melzer’s reagent (to observe diagnostic features with a

compound microscope for identification using the keys of Schenck

and Perez (1990) and INVAM (http://www.invam.caf.wvu.edu)

based on the wall structure and, if possible, to classify the genus

and species rank using the current taxonomy (Schüßler andWalker,

2010; Redecker et al., 2013). The tools used here are important in

morphology-based diagnoses; they are effective in detecting amyloid

A substance present in the spores of some species of fungi that

appear as a blue-black stain under the microscope (Josserand 1983;

Vizzini et al., 2020). The small filter paper (carrying a single spore)

was then carefully inoculated below a root from germinated

sorghum seeds (Figure 1) in each pot (Brundrett and Juniper

1995; Selvakumar et al., 2018). The spores were then covered with

sterile substrate. Cultures with one spore from an existing culture
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ensure that only one species of fungus is present and can

significantly reduce the possibility of transferring parasitic

organisms to healthy spores. All pots were placed in sunbags,

maintained in a plant growth room (120 days) with regular

watering with distilled water, and periodically assessed for AM

fungal development. After 4 months, plants were harvested along

with complete roots, and spores were extracted for molecular

identification of the AM fungal species.

2.2.2 Direct PCR amplification of single spore
Spores obtained from single spore trap cultures from each

treatment (MO, MM, MP, and MS) were extracted following the

sieving method described by Schenck (1982) and Smith and

Dickson (1997). Under a dissecting microscope (Leica L2), a

single spore (from each treatment) was picked and transferred to

a 1.5-mL centrifuge tube (a different tube for each treatment), and

10 µL of RNAlater™ (Sigma, Lot# MKCP0642) was added to the

tube. The tube was left overnight in a refrigerator (4°C), followed by

overnight incubation in a freezer (−20°C). The spores were gently

crushed in a centrifuge tube using a pipette tip under a stereoscope

to ensure the spore wall ruptured. Three pairs of primers were used

for PCR amplification: ITS1 × ITS4 (White et al., 1990), SSmAf ×

LSUmAr/SSUmcf × LSUmBr (Krüger et al., 2009), and NS31 ×

AML2 (Lee et al., 2008). These primers are known to be suitable for

specifically amplifying AM fungi rDNA, characterizing the diversity

of AM fungal species, and allowing phylogenetic analysis with

species-level resolution. The internal transcribed spacer (ITS)

region is the common barcoding region used to identify and

distinguish different fungal species (Rajaratnam and Thiagarajan,

2012; Raja et al., 2017). This region includes the ITS1 and ITS2

regions separated by the 5.8S gene, situated between the 18S SSU
Frontiers in Plant Science 04
and 28S LSU genes in the rDNA repeat unit (Wipf et al., 1999). The

ITS region is the most used for fungal analysis because it has a

higher degree of variation between species that are closely related;

this is evident by the sequences on the barcoding gap that show a

higher difference in sequences among species than those within

species (Toledo et al., 2013; Aslam et al., 2017). The SSU, ITS, and

LSU regions have different rates of evolution, which resulted

in different levels of genetic variation; e.g., SSU evolves the

slowest, resulting in it having the lowest amount of variation

among taxa, is highly conserved, and has a high specificity of the

primer combination (Lee et al., 2008; Lekberg et al., 2018; Perez-

Lamarque et al., 2022). ITS evolves the fastest and shows the

highest variation. LSU is generally considered less variable than

the ITS region (White et al., 1990; Bruns et al., 1991; Begerow

et al., 2010). The greater sequence variation in the ITS (ITS1/ITS2)

makes them more suited for species and strain identification

than the 18S region, the 5.8S region, and the 28S region (Iwen

et al., 2002). PCR was conducted in a total volume of 20 µL

consisting of 10 µL of 2x Phire Plant direct PCR Master Mix

(Thermo Scientific™, Waltham, MA, USA; Lot# 01098165), 1 µL

Primer A, 1 µL Primer B, 6 µL nuclease-free H2O, and 2 µL crushed

spores in RNAlater. The thermal cycling parameters are presented

in Table 1.

Repeated PCR was performed using the same set of primers for

ITS1 × ITS4 and NS31 × AML2; however, for SSU and LSU, a new

set of primers was used: SSUmcf and LSUmBr (Krüger et al., 2009).

PCR amplicons were electrophoresed on a 1% agarose gel and

visualized using UV light in a Bio-Rad Molecular Imager®

ChemiDoc™ XRS+ with Image Lab™ Software (USA). PCR

amplicons were cleaned using a kit from WizardR SV Gel and

PCR Clean-Up System (Promega, Madison, WI, USA; ZR-96 DNA
A B C

D E F

FIGURE 1

Single spore inoculation method in the pot. (A) Triangle filter paper with single spore prepared for inoculation. (B) Pre-germinated sorghum
inoculated with single spore. (C) Inoculated seed covered with the non-clay substrate. (D) Single spore inoculated in pre-germinated seedlings. (E)
pregerminated seedlings. (F) Four-month-old seedlings.
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Clean-up Kit™). Samples were then sent for Sanger sequencing to

Inqaba Biotechnical Industries (Pty) Ltd. in Pretoria.
2.3 Microscopy survey

Healthy spores (showing numerous lipid globules inside and

neither a turbid content nor an air bubble) obtained from single

spore trap cultures and collected by the wet sieving method

described by Schenck (1982) and Smith and Dickson (1997) were

selected for identification using the morphological approach. The

morphological characteristics of the spores and details of the wall

structure were determined by examining several slides of intact

spores mounted in PVLG (Omar et al., 1979) and a mixture of

PVLG and Melzer’s reagent (1:1, v/v). On each labeled microscope

slide, two drops of PVLG were added to one set of spores, and one

drop of PVLG and one drop of Melzer’s reagent were added to the

second set of spores (Koske and Tessier, 1983). A cover slip was

placed on each group, and localized light pressure was applied to

break the cell walls of some spores. The slides were incubated at

room temperature for at least 3–5 days (to clear their contents from

the oil droplets) before being examined under a light microscope.

After that, they were examined under an Olympus BX50 DIC

compound microscope. Microphotographs were recorded using a

Sony 3CDD color video camera coupled to a microscope. The

terminology for spore structure has been suggested by Stürmer and

Morton (1997) and Walker (1983). The spore size and color of fresh

specimens immersed in distilled water were examined under a

dissecting microscope. Color names were obtained from

Kornerup and Wanscher (1983). The number of cell wall layers,

the reaction of individual layers with the stain, and the flexibility of

the coatings were observed and recorded. The subtending hyphae,

continuity of the spore cell walls with those of subtending hyphae,

and the existence of a septum or occlusion were also considered.

These characteristics were compared to the descriptive features of

described species posted on the INVAM website (http://

fungi.invam.wvu.edu/the-fungi/species-descriptions.html), and

morphotype determination of the genus was made based on the

classifications described by Morton and Benny (1990). Each

morphotype was assigned the name of the species with the closest
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match. The nomenclature for fungi is that of Schüßler and Walker

(2010) and Redecker et al. (2013)
2.4 Data analysis

Nucleotide sequences obtained from Sanger sequencing were

aligned on MEGA X version 10.2.4 (Kumar et al., 2018; Stecher

et al., 2020) using MUSCLE (Edgar, 2004a, 2004b). MEGA X and

MUSCLE settings were by default for gap penalties and memory/

iterations, while advanced options were by the neighbor-joining

method. The fasta file containing the nucleotide sequences was

subjected to a Basic Local Alignment Search Tool (BLAST+)

program available at the National Center for Biotechnology

Information (NCBI) website (http://www.ncbi.nlm.nih.gov) for

comparison against the GenBank database (Altschul et al., 1997)

to determine the closest sequence matches that enabled taxonomic

identification. The most comparable sequence matches with at least

97% similarity (this threshold is considered given rather than being

a tunable parameter, following the conventional wisdom that 97%

corresponds approximately to species; Schloss and Handelsman,

2005; Westcott and Schloss, 2017) with the reference sequence, and

meant taxonomic identification to the genus level could be selected.

The nomenclature of AM fungal genera was assigned according to

the Index Fungorum website (https://www.indexfungorum.org) to

determine the currently accepted name. Additional taxonomic

assignment was based on phylogenetic relationships. A

phylogenetic tree was constructed based on multiple sequence

alignments from sequences of AM fungal isolates (in the four

treatments: MM, MO, MP, and MS) and GenBank (NCBI) data

sequences and was estimated by the neighbor-joining method

(Saitou and Nei, 1987) using unbiased estimates of evolutionary

distances. The bootstrap tests assessed the reliability for the

maximum parsimony (Kumar et al., 2018). The branches

corresponding to partitions reproduced in less than 50% of

bootstrap replicates collapsed (Felsenstein, 1985). Chrysoporthe

austroafricana (JN942337 and JN942338) sequences were taken

from the NCBI database and used as an outgroup.
3 Results

3.1 Single spore identification

After 4 months of observation of 32 inoculants (trap culture

pots inoculated with single spores from each treatment) in the plant

growth room, only 29 inoculants showed propagations with more

than 100 spores (Figure 1). Out of the 29 propagations, only 13

samples had good sequence (Sanger) quality, and one sample (good

chromatogram with high-quality peaks) from each treatment was

chosen for further analysis. BLAST+ on NCBI was performed for ID

identification. The analysis involved 39 nucleotide sequences. All

ambiguous positions were removed for each sequence pair (pairwise

deletion option). There were a total of 1,259 positions (ITS1 × ITS4)

in the final dataset (Kumar et al., 2018; Stecher et al., 2020). The

percentage of replicate trees in which the associated taxa clustered
TABLE 1 Thermal cycle parameters used in the direct PCR amplification.

Parameters Temperature
(°C)

Time (s) Cycles

Initial denaturation 98 300 1

Denaturation 98 5 35

Annealing (ITS1/ITS4) 49 30 35

Annealing (SSU/LSU) 58 30 35

Annealing (NS31/AML2) 58 30 35

Elongation 72 20 35

Final elongation 72 60 1
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together in the bootstrap test (1,000 replicates) is shown next to the

branches (Figure 2) (Felsenstein, 1985). The constructed

phylogenetic tree separated the four AM fungal isolates from

their outgroup, C. austroafricana. This phylogenetic tree

(Figure 2) showed that the PPCMM isolates formed the same

cluster as Claroideoglomus claroideum and were in a different

clade from the Ambispora genus. The AHVMSr isolates formed

the same cluster with the Paraglomus genus and on a distinct clade

with Gigaspora margarita. The phylogenetic tree also showed that

the GNZMPr isolate was in the same clade as G. margarita and

Paraglomus occultum. The PPZMO isolate was in the same clade as

Funneliformis geosporus. In the phylogenetic tree, the closest

neighbors of the propagated AM fungal species revealed that the

AM fungal spores had characteristics belonging to the genera

Claroideoglomus (PPCMM), Gigaspora (GNZMPr), Paraglomus

(AHVMSr), and Funneliformis (PPZMO) (Figure 2) and were

present under both agriculture practices. Also, described species
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such as OTU024 and OTU021 could be seen in the tree close to the

genera Funneliformis and Rhizophagus.
3.2 Morphological characterization of
AM fungi

Spores (some) obtained from the single spore trap cultures were

used for morphological characterization. The macro-characteristics

considered for description included the spore color, size, and shape;

shape, width, pore occlusion of the subtending hypha; and the size

of the auxiliary cells. The micro-characteristics for characterizing

the spore wall structure included color, dimension, number, type,

and ornamentation (Table 2). Yellowish, reddish brown, dark red-

brown, yellow-brown, and hyaline to pale yellow spores were

observed in this study, with sizes ranging from 128- to 220-µm

diameters. Overall, eight species of AM fungi belonging to five
FIGURE 2

Bootstrap consensus tree. A neighbor-joining phylogram of selected sequences of AM fungi based on distance analysis of the 18S rDNA. For
comparison, identified sequence types from GenBank were included in the analysis. Bootstrap supports values greater than 50%, given on the
branches (1,000 resembling branches). Samples from this study do not show an accession number. The tree was rooted in Chrysoporthe
austroafricana. PP, pre-planting; GN, germination; AH, at harvest; r, rhizosphere; MO, maize after oats; MM, maize after maize; MP, maize after peas;
MS, maize after soybean; Z, Zunckel farm; C, conventional farm; V, Van Rooyenswoning farm; AM, arbuscular mycorrhiza.
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TABLE 2 Morphological characteristics of some AM fungal species.

AM fungal species Description

Acaulospora cavernata Blaszk (1989) spores in PVLG Spore pale yellowish in color to light brown with two spore wall layers (L1 and
L2), namely, outer (L1) membranous light yellow colored layer. Sub-globose, 130–
150 µm in diameter, sessile on the neck of a sporiferous saccule. Mature spore
showing one terminal germinal wall (GW) layer and pitted ornamentation on
the wall

Funneliformis geosporus C. Walker & A. Schüßler (2010) spores in PVLG + Melzer’s
reagent

Reddish brown walled spore, with lengthy tube-like subtending hyphae. Spore
shows three wall layers (L1, L2, and L3), which are tightly adherent, laminated,
and membranous. L1, a hyaline sloughing granular layer; L2, a rigid layer
consisting of adherent sublayers appeared orange-brown in color; L3, a semi-rigid
resolved by slightly darker color (yellow to orange-brown). A germ tube emerged
from the lumen of the subtending hypha and originated from the recurved
septum. Globose, 128–135 µm in diameter with loosely sleeve-like hyphal
attachment at right angle to spore wall. Cross channel (CC) in wall layers,
common hyphal attachment (HA)

Gigaspora margarita W.N. Becker & I.R. Hall (1976) spores in PVLG + Melzer’s
reagent

Crushed spore of Gigaspora margarita, globose in shape, dark red-brown in color,
and consisted of three layers: L1, an outer permanent rigid layer, smooth, adherent
to inner laminae, pale brownish; L2, hyaline sublayer, rigid, dark red-brown; and
L3, germinal layer that is concolorous and adherent with the laminate layer, 215–
220 µm in diameter

Diversispora spurca C. Walker & A. Schüßler (2004) spores in PVLG Crushed spore of Diversispora spurca, subhyaline, globose in shape, and consisted
of two layers: L1, hyaline to pale yellow-brown, separating from the L2; and L2,
thin hyaline to subhyaline sublayer. L2 of the spore wall stops abruptly in the
region of attachment and thus is not part of the more distant hyphal wall
structure; 155–182 µm in diameter

(Continued)
F
rontiers in Plant Science 07
 frontiersin.org

https://doi.org/10.3389/fpls.2024.1345229
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
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families in the Glomeromycota phylum were found in this study:

Acaulosporaceae (one species), Diversisporaceae (one species),

Gigasporaceae (one species), Glomeraceae (four species), and

Paraglomeraceae (one species) (Figure 3; Table 2). Furthermore,

from a total of 10 morphotypes of AM fungal generated and

classified on Mothur using the UNITE database, the results were

then blasted on NCBI for comparison. Sequences were deposited

into GenBank under accession numbers OR822200–OR822205.

Species such as Acaulospora lacunosa, Archaeospora leptoticha, G.

margarita, Gigaspora rosea, Funneliformis mosseae, F. geosporus,

Glomus monosporum, Rhizophagus aggregatus, Rhizophagus
Frontiers in Plant Science 08
intraradices, and P. occultum showed more than 97% similarity

with NCBI comparison (Supplementary Table 1).
4 Discussion

Trap culture and monosporic culture techniques of spore

multiplication are the most commonly employed cultivation

strategies in the substrate-based method (Douds et al., 2006; Panwar

et al., 2007). These two AM fungal propagation techniques provide an

environment that closely mimics the field conditions. Since AM fungi
TABLE 2 Continued

AM fungal species Description

Rhizophagus aggregatus in PVLG + Melzer’s reagent Globose spores of R. aggregatus, 143–145 µm in diameter, hyaline to pale yellow
in color, with two yellow layers (L1 and L2). Single subtending hyphae, which stop
abruptly in the region of attachment and thus are not part of the more distant
hyphal wall structure. The hypha is closed by a thin septum, thickening of the
spore wall. Germ tube (GT), subtending hyphae (SH)

Paraglomus occultum (C. Walker) J.B. Morton & D. Redecker (2001) spores in
PVLG

Globose spore of Paraglomus occultum, 152–159 µm in diameter, hyaline to pale
yellow in color, with three layers (L1, L2, and L3). L1, a sloughing layer; L2, a
permanent layer, continuing into the wall of subtending hypha; and L3, a
permanent layer, SH subtending hyphae

Funneliformis mosseae C. Walker & A. Schüßler (2010) spores in PVLG + Melzer’s
reagent

Globose spore of Funneliformis mosseae, 152–154 µm in diameter, hyaline to straw
to yellow in color, with three layers (L1, L2, and L3). L1 hyaline, mucilaginous; L2
hyaline, rigid, attached firmly to the underlying laminae; and L3 pale sublayer
10.3389/fpls.2024.1345229
AM, arbuscular mycorrhiza; PVLG, polyvinyl alcohol/lactic acid/glycerol.
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have been reported to be able to provide their hosts with access to

numerous soil resources such as P, N, and water, the present study was

involved in the propagation of AM fungal single spores isolated from

maize soil samples from four different treatments (PPZMO, AHVMSr,

PPCMM, and GNZMPr) under two different agriculture

management practices. The initial inoculum should start with a

single spore to obtain a pure culture. Only 29 samples out of the

initial 32 pots showed some colonization in this study. These could be

because of the source of the initial AM fungal spores or the quality of

the spores, as the spores were isolated from soil samples under

different crop rotations, which could have influenced the quality of

the spores. Maize is an obligatory mycorrhizal species readily colonized

by many non-host-specific AM fungi (Daisog et al., 2012). Maize

growth phases strongly affect the abundance, diversity, and community

composition of AM fungi (Lü et al., 2020). In the current study, the

selected single spores were picked from soil samples collected in

different farms and different maize growth phases (PP, AH, and

GN), which could explain the occurrence of different AM fungal

species at a particular stage of maize development, underlying the

fact that AM fungi have contrasting seasonal sporulation dynamics and

their different phenologies can cause disparate community

composition across plant growing seasons (Pringle and Bever, 2002;

Bainard et al., 2012; Varela-Cervero et al., 2016). Also, Mathimaran

et al. (2007) and Nord and Lynch (2009) demonstrated that plant

phenologies and the dynamics of soil processes could likely differ in

different cropped soils.

Identification of AM fungi both morphologically and molecularly

is essential to determine with some certainty the identity of an

organism (Schenck and Perez, 1990; Lee et al., 2006; Schüßler and

Walker, 2010). Brundrett (1991) suggested a variation of AM fungal

species in a habitat, which is related to their capability of growing
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under certain conditions and the ability of fungi to form a symbiosis

with various types of plants in the vicinity. Identification of the four

AM fungal isolates based on morphology complemented the

identification based on molecular (species level) analysis. Therefore,

there are more detailed and valid data, high confidence, and strong

evidence that the morphological characterization technique is also

important for AM fungal identification. Nonomura et al. (2011)

stated that combining the results from morphological

characterization and molecular methods is the best approach to

identifying AM fungal taxonomy. Also, spores are viewed as

among the most important and convenient characteristic features,

and they can help researchers rapidly identify mycorrhizae faster than

sequence techniques (Fall et al., 2022). In this study, AM fungal

species belonging to the genera Glomus, Funneliformis, Gigaspora,

Acaulospora, Diversispora, Rhizophagus, and Paraglomus were

associated with maize and described morphologically. Similar

results were expected in the work of Tobolbai et al. (2018);

Baltruschat et al. (2019), and Fall et al. (2022) where they studied

the morphological diversity of native AM fungal species associated

with the rhizosphere of maize in different agroecosystems and found

similar AM fungal species. Also, studies by Sanders (2003); Hijri et al.

(2006); Alguacil et al. (2008), and Sasvári et al. (2011) described the

seven genera (similar to the ones encountered in the current study) as

the most dominant genera associated with maize crops under

different management practices.

The applications of the findings of this research, particularly for

the maize crop, show that all AM fungal spores obtained are good

candidates for mass-producing inocula or material for identification

in other studies and, also, can guide the management of these

important symbioses as part of integrated conservation of land

management plans.
A B C

D E F

G H I J

FIGURE 3

Spore identification using morphological characteristics: (A, B) Funneliformis mosseae, (C) Gigaspora margarita, (D) Acaulospora cavernata,
(E) Rhizophagus intraradices, (F) Diversispora spurca, (G, H) Glomus macrosporum, (I) Funneliformis geosporus, and (J) Paraglomus occultum.
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5 Conclusion

The results of the current studydemonstrated that the productionof

pure cultures of AM fungal species could be achieved using single-spore

inoculum through the trap culture method. Selected AM fungal isolates

(fromthemostpredominant sporemorphotypes) exhibitedmore spores

produced, and all belonged to the phylum Glomeromycota. Future

studies are needed to further identify more different genera in the

Glomeromycota to explore the diversity of AM fungal species

associated with maize and, if possible, authenticate the method applied

in this study. This applied method can also be used to initiate starter

cultures forbioinoculants in large-scale agricultural applicationswith the

advantage of being more readily adopted by farmers due to the lack of

requirement of a skilled technique in spore propagation.
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