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Prediction of biomass
accumulation and tolerance of
wheat seedlings to drought and
elevated temperatures using
hyperspectral imaging
Oksana Sherstneva*, Firuz Abdullaev, Dmitry Kior,
Lyubov Yudina, Ekaterina Gromova and Vladimir Vodeneev

Department of Biophysics, N.I. Lobachevsky State University of Nizhny Novgorod, Nizhny
Novgorod, Russia
Early prediction of important agricultural traits in wheat opens up broad

prospects for the development of approaches to accelerate the selection of

genotypes for further breeding trials. This study is devoted to the search for

predictors of biomass accumulation and tolerance of wheat to abiotic stressors.

Hyperspectral (HS) and chlorophyll fluorescence (ChlF) parameters were

analyzed as predictors under laboratory conditions. The predictive ability of

reflectance and normalized difference indices (NDIs), as well as their

relationship with parameters of photosynthetic activity, which is a key process

influencing organic matter production and crop yields, were analyzed. HS

parameters calculated using the wavelengths in Red (R) band and the spectral

range next to the red edge (FR-NIR) were found to be correlated with biomass

accumulation. The same ranges showed potential for predicting wheat tolerance

to elevated temperatures. The relationship of HS predictors with biomass

accumulation and heat tolerance were of opposite sign. A number of ChlF

parameters also showed statistically significant correlation with biomass

accumulation and heat tolerance. A correlation between HS and ChlF

parameters, that demonstrated potential for predicting biomass accumulation

and tolerance, has been shown. No predictors of drought tolerance were found

among the HS and ChlF parameters analyzed.
KEYWORDS

hyperspectral imaging, PAM imaging, chlorophyll fluorescence, tolerance, abiotic
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1 Introduction

Ensuring food security in the context of an ever-growing global

population requires an increase in production of agricultural crops,

among which wheat occupies a special place, providing up to 20% of

the total calories and protein consumed in the world (Shiferaw et al.,

2013). To achieve this goal, it is necessary to develop new cultivars

that are highly productive and tolerant to external stress (Hossain

et al., 2021). To optimize a long and expensive breeding process,

classical methods for assessing and selecting promising plant lines

are complemented by genotypic and phenotypic studies, which

make it possible to identify genotypes that potentially have the

necessary economically significant traits.

Integration of advanced genetic technologies such as

quantitative trait loci (QTL) mapping, marker-assisted selection

and genomic selection into the breeding process has significantly

accelerated the development of new cultivars (Alotaibi et al., 2021;

Hossain et al., 2021). However, a significant factor limiting the

development of breeding is the current gap between the capabilities

of genotyping and phenotyping (Grzybowski et al., 2021; Dos

Santos et al., 2022; Trono and Pecchioni, 2022). This problem is

driving the rapid development of phenotyping methods, among

which optical methods occupy a special place, allowing non-

invasive acquisition of large amounts of data on various spatial

and temporal scales. Among the sensors used in optical

phenotyping methods, multi- and hyperspectral, fluorescence and

thermal imaging sensors are widely used. Spectral research

methods, which allow remotely obtaining highly informative data

on the state of plants in both laboratory and field studies at high

speed (Perez-Sanz et al., 2017; Sarić et al., 2022), are of particular

interest. They are based on the specific nature of the interaction of

light of certain ranges in the visible and infrared regions of the

spectrum with the plant (Ollinger, 2011). Moreover, changes in

tissue structure, content of pigments and other substances, and the

activity of physiological processes can cause changes in the spectral

properties of the plant (Kim et al., 2021), which provides the

potential of multi- and hyperspectral methods in quickly

assessing plant responses to changing environmental conditions.

Optical phenotyping is actively used in the early detection of

abiotic and biotic stress (Sarić et al., 2022), including drought

(Katsoulas et al., 2016) and exposure to elevated temperatures

(Venkatesh et al., 2022). Real-time quantitative assessment of

plant responses to stressors makes it possible to predict the

productivity and stress tolerance of plants long before the harvest

stage, which is of great importance for accelerating the selection of

promising genotypes in breeding (Gosa et al., 2019). In particular, a

fairly large number of works show reliable correlations of canopy

reflectance parameters at different stages of wheat development

with grain yield under limited water availability (Aparicio et al.,

2000; Tattaris et al., 2016; Becker and Schmidhalter, 2017; El-

Hendawy et al., 2017; Thapa et al., 2019; Bhandari et al., 2021).

The works (S. Pradhan et al., 2012; Bandyopadhyay et al., 2014; Liu

et al., 2022) showed high correlation coefficients of yield with wheat

reflectance indices at different stages of growth under

different irrigation.
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Along with drought, elevated temperature is often a negative

factor affecting wheat plants. Both problems are intensifying,

including due to ongoing climate change (Lippmann et al., 2019;

Shahzad et al., 2021; Zahra et al., 2021; Lesk et al., 2022; Sánchez-

Bermúdez et al., 2022; Mao et al., 2023; Zahra et al., 2023). A

number of works have demonstrated the efficiency of spectral

predictors of economically significant traits, which are recorded at

the stages of wheat plants development preceding full maturity,

under different regimes of water availability and elevated ambient

temperatures (Crain et al., 2018; Juliana et al., 2019; Krause

et al., 2019).

In addition to the magnitude of changes in spectral indices

caused by the action of a stressor, their absolute values determined

for plants under optimal growing conditions are also used in

predicting crop yields. Thus, a number of works have shown a

fairly high ability for a number of vegetation (Tattaris et al., 2016;

El-Hendawy et al., 2017; Thapa et al., 2019) and water (El-Hendawy

et al., 2017) reflectance indices, as well as their combinations

(Hassan et al., 2022) in predicting economically significant traits

of wheat grown under optimal water conditions (in irrigated fields).

In addition to the use of reflectance parameters as independent

predictors of economically important traits, a number of works

have shown the promise of integrating spectral data into

multivariate analysis based on genotyping to improve the

accuracy of wheat yield prediction (Rutkoski et al., 2016; Sun

et al., 2017; Juliana et al., 2019; Lozada and Carter, 2020).

Another important direction in the research development is the

study of the relationship between phenotypic traits determined

using spectral imaging and the activity of physiological processes,

primarily photosynthesis, which determines plant productivity. A

widely used method for assessing photosynthetic activity is

chlorophyll fluorescence (ChlF) recording using Pulse-Amplitude-

Modulation (PAM) fluorometry (Maxwell and Johnson, 2000;

Baker, 2008; Kalaji et al., 2017; Ni et al., 2019). It is important to

note that ChlF parameters determined by the PAM method are

effective predictors of economically important traits in wheat under

optimal conditions and under the influence of abiotic stress factors

(Sharma et al., 2015; Sherstneva et al., 2021; Terletskaya et al., 2021).

Our previous work demonstrated the high efficiency of ChlF

parameters characterizing transient light-induced processes in the

photosynthetic apparatus (PSA) as predictors of biomass

accumulation and tolerance to water deficiency and high-

temperature stress (Sherstneva et al., 2021).

PAM fluorometry has a number of significant advantages, such

as high information content and non-invasiveness, but it has

limitations in speed (long time) and throughput. In this regard, a

direction of research devoted to the search for the connection

between spectral characteristics (which can be quickly determined

on a large scale) and chlorophyll fluorescence parameters (which

provide information about the activity of photosynthesis) is

currently actively developing (Peng et al., 2017; El-Hendawy

et al., 2019; Sukhova and Sukhov, 2020). However, knowledge in

this area remains incomplete and requires further research.

Another important unsolved problem today is to elucidate the

factors that determine the prognostic potential of the studied
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predictors. To study this issue, assessing the relationship of

predictors with both economically important traits and

physiological processes seems to be the most effective.

The aim of this work was to analyze the relationship between

the spectral characteristics of plants and chlorophyll fluorescence

parameters reflecting the activity of photosynthesis, as well as to

analyze their predictive potential in relation to such important

economic traits as biomass accumulation and tolerance to drought

and heat. We conducted laboratory phenotyping under controlled

environmental conditions and analyzed the relationship of spectral

and chlorophyll fluorescence parameters of 2-week-old wheat

seedlings with the rate of biomass accumulation and tolerance to

water deficiency and elevated temperatures.
2 Materials and methods

2.1 Plant material

The experiments were carried out on wheat seedlings (Triticum

aestivum L.). Eleven cultivars of wheat were used in the study:

Lutescens 62, Strubes Schlesischer Grannen, Alen ’kaya
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Uimonskaya, Khludovka, Paradis, Saratovskaya 29, Wachtel, Solo,

Kantegirskaya 89, Sibirskaya 12, Naxos (hereinafter, cultivars C1–

C11, respectively). Wheat seeds were provided by Federal Research

Center N.I. Vavilov All-Russian Institute of Plant Genetic

Resources (VIR).
2.2 Experiment design

Plants were grown in 1.2 L pots (9 plants per pot, peat soil Peter

Peat Agro Black, Peter Peat, Moscow, Russia) under controlled

conditions (air temperature 24 °С, relative humidity 50% and a 16 h

photoperiod) in a vegetation room. The plants were illuminated

using cool white fluorescent lamps L36W/640 (Osram, Munich,

Germany); the light intensity was 200 mmol m−2 s−1.

Reflectance and ChlF parameters for all experimental groups

were assessed at the age of 2 weeks (Figure 1). In the first set of

experiments, soil drought stress conditions were applied; for this

purpose, irrigation of plants in the experimental group (drought-

stressed group) was stopped at the age of 2 weeks. In the control

group, irrigation (every 2 days) continued; soil moisture (calculated

as RWC   = FW  −  DW
FW *100%) was at least 70%. The dynamics of
FIGURE 1

Experiment design for studying wheat biomass accumulation, tolerance to drought, and tolerance to heat stress.
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water content in the soil and for the control and drought-stressed

groups is shown in Supplementary Figure 1 in Supplementary Files.

Morphometric (length, fresh and dry weight of shoots

and roots) and ChlF parameters of plants were measured at

the age of 4 weeks to assess tolerance to drought. Drought

tolerance index (DTI   =
DWdrought

DWcontrol *100%) and residual levels of

photosynthetic activity parameters, expressed in % of control

(Parameterresid   =
Parameterdrought
Parametercontrol *100%) were used as tolerance

indicators. In the second set of experiments, 4-week-old plants

grown under conditions of sufficient water availability were

subjected to gradual heating of leaves (heat-stressed group)

fixed on a hot plate (Microstat-30/80, KB Technom,

Yekaterinburg, Russia).

The hot plate temperature increased every 5 minutes from 25 to

55°C in increments of 5°C; the duration of treatment at 55°C was 10

minutes. Infrared images of wheat leaves were acquired using a testo

885 thermal imager (Testo, Lenzkirch, Germany) every 60 s to

assess the temperature of wheat leaves and the hot plate. Image

analysis was performed using IRSoft software (Testo, Lenzkirch,

Germany); regions of interest (ROIs) were placed on wheat leaves

and on the hot plate around the leaves.

The tolerance of the photosynthetic apparatus was used as

an indicator of wheat tolerance to high-temperature stress. For

this purpose, ChlF parameters were recorded using the PAM

imaging method simultaneously with heating. The tolerance was

expressed quantitatively in two parameters: the residual level

of the quantum yield of photochemical reactions of photosystem

II (FPSII), calculated as the ratio of the final level of FPSII at

55°C to the initial level at 25°C, expressed as a percentage

(ФPSII resid   =
ФPSII(55 °С)
ФPSII(25 °С) *100%), as well as the hot plate temperature

at which FPSII decreased below the initial control value of

25°C (tdec).
2.3 Morphological traits determination

The length, fresh and dry weight of the roots, shoots and whole

4-week-old plants were used as morphometric parameters of wheat
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seedlings. Shoots and roots of wheat seedlings were weighed

separately using the analytical balance (Explorer EX125D, Ohaus,

Parsippany, NJ, USA), then placed in the drying oven for 3 hours at

90°С; after that they were weighed again. Weight was assessed

integrally for a pot (9 plants) and calculated for an individual plant.

The length of shoots and roots was measured individually for

each plant.
2.4 PAM imaging

Recording of photosynthetic activity parameters was carried out

using a system based on the PAM fluorometry method (Open

FluorCam FC 800-O/1010-S, Photon Systems Instruments, Drásov,

Czech Republic). Wheat plants were subjected to dark adaptation

for 15 minutes, after which the dark (F0) and maximum (Fm)

fluorescence yields were determined. Actinic light (AL, cool white

light, 200 μmol m−2 s−1) was then turned on, and the current (F)

and maximum (Fm’) fluorescence yields were determined every 30 s

for 15 minutes.

The parameters Fm and Fm′ were measured using a saturation

pulse (cold white light, 4000 μmol m−2 s−1, 800 ms duration, 6500

K). Based on the recorded values, parameters of photosynthetic

activity such as the quantum yield of photochemical reactions of

photosystem II (FPSII) and non-photochemical quenching of

chlorophyll fluorescence (NPQ) were calculated by a program

integrated into the recording system, and their dynamics, induced

by a change in the illumination mode, were analyzed. FPSII and

NPQ values were calculated using the equations: FPSII = (Fm′ − F)/

Fm′ and NPQ = (Fm − Fm′)/Fm′ (Maxwell and Johnson, 2000),

where Fm is the maximum fluorescence yield of chlorophyll after

dark adaptation, Fm′ is the maximum fluorescence yield under

lighting, F is the current fluorescence level under lighting.

The following quantitative characteristics of the light-induced

dynamics of FPSII and NPQ were analyzed (Figure 2): maximum

quantum yield of photochemical reactions of photosystem II,

determined after dark adaptation (Fv/Fm), steady-state level of

photosystem II quantum yield under AL (FPSIIef), time for the
FIGURE 2

Scheme illustrating standard light-induced FPSII and NPQ curves and characteristic values used to quantify photosynthetic activity. The red arrows
mark the moment when the actinic light was switched on (AL on). Fv/Fm - maximum quantum yield of photochemical reactions of photosystem II,
FPSIIef - steady-state level of photosystem II quantum yield under AL, t1/2(FPSIIef) - time for the FPSII value to reach ½ FPSIIef after switching on AL,
NPQmax - maximum value of non-photochemical fluorescence quenching after switching on AL, t(NPQmax) - time for the NPQ value to reach
NPQmax after switching on AL, NPQs - steady-state NPQ level under AL.
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FPSII value to reach ½ FPSIIef after switching on AL (t1/2(FPSIIef)),

maximum value of non-photochemical fluorescence quenching

after switching on AL (NPQmax), time for the NPQ value to reach

NPQmax after switching on AL (t(NPQmax)), and steady-state NPQ

level under AL (NPQs) (Sherstneva et al., 2021).

In experiments with gradual heating of leaves, plants were also

adapted to darkness within 15 minutes. Then the initial parameters

(F0 and Fm) were determined, AL was turned on, and ChlF

parameters were recorded every 60 s for 40 minutes.
2.5 Hyperspectral imaging

Hyperspectral images of plants were obtained using the Specim

IQ hyperspectral camera (Specim, Spectral Imaging Ltd., Oulu,

Finland). Images of wheat leaves were separated from the

background, then ROIs were placed (each ROI included the

whole aboveground part of all plants in the pot above 3 cm from

the soil); one reflectance spectrum was integrally obtained from

each ROI. The resulting reflectance spectra of shoots in the range of

400-800 nm in steps of 3 nm were normalized by the reflectance

spectrum of the white standard. Normalized difference indices

(NDIs) were also calculated for each combination of wavelengths

according to the equation:

NDI =  
Il1 −   Il2
Il1 +   Il2

,

where Il1 and Il2 are the intensities of the reflectance at the

wavelengths l1 and l2, respectively.
NDIs were presented as heat maps.
2.6 Statistics

Statistical processing of the results was carried out using

GraphPad Prism (GraphPad Software Inc., San Diego, CA, USA)

andMicrosoft Excel (Microsoft Corporation, Redmond, WA, USA).

The results are presented as average curves with standard errors of

the mean (SEM), average values with SEM, heat maps of

parameters, as well as spectra and heat maps of Pearson

correlation coefficients (r). The probability value (p-value) was

used to assess the statistical significance of the result; p< 0.05 was

considered significant. The normality of data distribution was

assessed using the Kolmogorov–Smirnov test. The one-way

analysis of variance (ANOVA) followed by Tukey’s test was used.

At the age of 2 weeks, 4 pots of 9 plants for each cultivar were

assessed in each experimental group (control, drought-stressed,

heat-stressed). Weight was assessed integrally for a pot (9 plants)

and calculated for an individual plant (n = 4). Shoot and root length

were measured for individual plants. The chlorophyll fluorescence

parameters were registered for 5 plants per pot (n = 20 for 2-week-

o ld p l an t s ; n = 10 for 4 -week-o ld p lan t s in each

experimental group).
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3 Results

3.1 Wheat parameters under control and
stress conditions

3.1.1 Morphological, hyperspectral, and ChlF
parameters under control conditions

In this study, the morphometric parameters of 4-week-old

wheat seedlings, including length, fresh and dry weight of shoots

and roots were assessed (Figure 3, Table S1). Whole plant dry

weight (DW) ranged from 29.4 to 77.05 mg; subsequently, this

parameter was used as the most informative parameter reflecting

the accumulation of biomass by wheat seedlings.

Chlorophyll fluorescence (ChlF) and hyperspectral

characteristics (HS parameters), which were further analyzed as

potential predictors of biomass accumulation and tolerance to

drought and heat stress, were determined in 2-week-old wheat

seedlings. ChlF parameters were recorded using the PAM imaging

method (Table 1). To assess the functioning of the PSA, such

parameters of chlorophyll fluorescence as stationary levels of the

quantum yield of photochemical reactions of photosystem II and

non-photochemical quenching of fluorescence in light and in the

dark, as well as parameters characterizing the rate of transition

processes caused by the dark- l ight t rans i t ion were

analyzed (Figure 2).

Along with determining ChlF parameters, spectral

characteristics of 2-week-old seedlings were recorded. To search

for spectral parameters that can act as predictors of biomass

accumulation and wheat tolerance to soil moisture deficiency and

heating, the reflectance spectra of the studied plants were obtained

using hyperspectral imaging. Figure 4 shows the average reflectance

spectra of shoots of 2-week-old wheat seedlings of 11 cultivars. The

reflectance spectrum has typical minimums in the blue and red

regions, a sharp rise in the red edge band, and high values in the
FIGURE 3

Dry weight (DW) of 4-week-old wheat seedlings. Data are presented
as means with SE bars (n = 4). Significant differences between the
cultivars are indicated by different letters (ANOVA followed by
Tukey’s test, p< 0.05). Values with the same letters are not
significantly different.
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near-infrared (NIR) region. Figure 4 shows an example of a heat

map of normalized difference indices (NDIs). NDIs heat maps for

all studied cultivars are presented in Supplementary Figure 2 in

Supplementary Files. Subsequently, the absolute values of the

intensity of the reflected light (normalized to the intensity of the

light reflected by the white standard) in the range of 400-800 nm in

steps of 3 nm and the entire set of NDIs calculated for this

wavelength range were used to search for correlations of the

reflectance parameters of young plants with dry weight and stress

tolerance of plants of later age.

3.1.2 Relationship between HS and
ChlF parameters

The next step was to study the possible connection between

reflectance properties and the activity of photosynthetic processes.

For this purpose, correlation coefficients were calculated between

the intensity of reflected light at a certain wavelength in the range of

400-800 nm and the ChlF parameters (Figure 5). Fv/Fm, FPSIIef and

NPQs had maximum values of Pearson correlation coefficients (r)

with reflectance intensity in the blue (B) and red (R) regions of the
Frontiers in Plant Science 06
spectrum. These coefficients were negative for Fv/Fm andFPSIIef and

positive for NPQs. A statistically significant (p < 0.05) relationship

was detected for Fv/Fm in the B range (420-490 nm, the correlation

coefficient reached –0.72); there was no significant correlation in the

R range, but a tendency towards a negative relationship was

observed. On the contrary, FPSIIef was significantly negatively

correlated with reflectance intensity in the R range (640-690 nm);

r reached –0.72. No statistically significant correlation was found

for NPQs.

The maximum values of the correlation coefficients for the

parameters t1/2(FPSIIef), NPQmax, and t(NPQmax) occurred in the

far-red-NIR (FR-NIR) range (710-800 nm). The wavelength ranges

with significant correlation were: 720-800 nm for t1/2(FPSIIef) (r

reached –0.75), 710-800 nm for NPQmax (r reached –0.77), and 730-

800 nm for t(NPQmax) (r reached –0.68).

A correlation analysis of the relationship between ChlF

parameters and NDIs, calculated using all combinations of

recorded wavelengths in the range of 400-800 nm, was also

carried out. Figure 5 shows heat maps of correlation coefficients

and statistical significance level values. It was shown that Fv/Fm
TABLE 1 ChlF parameters of 2-week-old wheat plants.

Cultivar Fv/Fm FPSIIef NPQs t1/2(FPSIIef) NPQmax t(NPQmax)

C1 0.812 ± 0.001 0.456 ± 0.010 0.760 ± 0.027 229.2 ± 10.6 1.727 ± 0.031 219.0 ± 7.6

C2 0.813 ± 0.001 0.558 ± 0.008 0.532 ± 0.019 167.2 ± 8.1 1.415 ± 0.043 160.5 ± 7.3

C3 0.810 ± 0.001 0.506 ± 0.011 0.704 ± 0.025 198.4 ± 12.3 1.718 ± 0.036 195.0 ± 10.1

C4 0.810 ± 0.001 0.499 ± 0.010 0.742 ± 0.036 231.5 ± 8.9 1.739 ± 0.028 226.5 ± 7.7

C5 0.808 ± 0.001 0.607 ± 0.006 0.442 ± 0.017 173.3 ± 8.8 1.407 ± 0.050 175.3 ± 6.2

C6 0.808 ± 0.001 0.513 ± 0.013 0.775 ± 0.045 154.5 ± 11.2 1.701 ± 0.051 186.0 ± 7.1

C7 0.820 ± 0.001 0.568 ± 0.007 0.589 ± 0.020 197.2 ± 9.8 1.846 ± 0.040 190.5 ± 5.9

C8 0.812 ± 0.001 0.506 ± 0.013 0.659 ± 0.025 113.7 ± 5.6 1.306 ± 0.036 136.5 ± 10.1

C9 0.805 ± 0.001 0.515 ± 0.009 0.670 ± 0.033 186.4 ± 10.5 1.608 ± 0.030 220.0 ± 9.1

C10 0.812 ± 0.001 0.577 ± 0.007 0.471 ± 0.018 104.9 ± 6.4 1.244 ± 0.033 147.0 ± 6.5

C11 0.810 ± 0.001 0.571 ± 0.009 0.573 ± 0.026 128.5 ± 6.6 1.490 ± 0.031 144.0 ± 6.0
Fv/Fm - maximum quantum yield of photochemical reactions of photosystem II, FPSIIef - steady-state level of photosystem II quantum yield under AL, t1/2(FPSIIef) - time for the FPSII value to
reach ½FPSIIef after switching on AL, NPQmax - maximum value of non-photochemical fluorescence quenching after switching on AL, t(NPQmax) - time for the NPQ value to reach NPQmax after
switching on AL, NPQs - steady-state NPQ level under AL. Data are represented as means ± SEM (n = 20). Significant differences between the cultivars are indicated by different letters (ANOVA
followed by Tukey’s test, p< 0.05). Values with the same letters are not significantly different.
FIGURE 4

Reflectance spectra of 2-week-old wheat seedlings of 11 cultivars (means with SE bars) and an example of an NDIs heat map (cultivar C1).
frontiersin.org

https://doi.org/10.3389/fpls.2024.1344826
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Sherstneva et al. 10.3389/fpls.2024.1344826
correlates significantly (p < 0.05) (max r = –0.68) with NDIs

calculated using l1 650-685 (hereinafter referred to as R range);

l2 510-620 nm. FPSIIef had a wider significant region in this range

(NDI(l1 560-650; l2 500-610) and NDI(l1 650-690; l2 410-560),
max r = –0.88 and –0.83, respectively). In addition, a small

significant region was noted in the FR-NIR range: NDI(l1 700-

800; l2 620-700), max r = 0.84. NPQs also demonstrated a similar

relationship. Transient ChlF parameters showed a significant

relationship with the wider FR-NIR range: NDI(l1 700-800; l2
450-710 for t1/2(FPSIIef) (max r = –0.92), NDI(l1 700-780; l2 450-
700) for NPQmax (max r = –0.72), NDI(l1 700-800; l2 400-720 for t
(NPQmax) (max r = –0.92). In addition, t1/2(FPSIIef) and t(NPQmax)

had a high significant correlation with NDIs in the R range: NDI(l1
560-650; l2 510-570) for t1/2(FPSIIef), NDI(l1 560-650; l2 510-610)
for t(NPQmax) (max r = 0.83 and 0.86, respectively).
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3.1.3 Drought stress
Along with recording parameters under control conditions, the

tolerance of wheat plants to abiotic stressors was assessed. The

residual level of dry weight of the whole plants was assessed as a

criterion for the tolerance of wheat seedlings to drought (Table 2,

Supplementary Table 2). An additional parameter reflecting the

degree of suppression of physiological processes in wheat under

water deficiency was the residual level of activity and integrity of the

PSA, which was determined by the residual levels of such ChlF

parameters as Fv/Fm and FPSIIef (Table 2).

Residual DW of drought-stressed plants (14-day drought),

which was subsequently used as the main indicator of tolerance

(drought tolerance index), varied significantly between cultivars. At

the same time, the relative water content (RWC) of control plants

varied from 85.8 to 89.5% and averaged 87.9 ± 0.2%; RWC in
FIGURE 5

Spectra and heat maps of Pearson correlation coefficients between HS and ChlF parameters of 2-week-old wheat plants. Areas of the spectra with
statistically significant correlation are highlighted in green. Heat maps show correlation coefficients (bottom left) and p-values (top right).
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drought-stressed plants varied from 45.6 to 81.2 and averaged 70.2

± 1.5%. The dynamics of RWC in control and drought-stressed

plants is shown in Supplementary Figure 3 in Supplementary Files.

RWC values did not differ significantly between the studied

cultivars, both in control and under conditions of soil moisture

deficiency. Residual levels of ChlF parameters, reflecting the

sensitivity of photosynthetic processes to water deficiency, varied

significantly (Table 2). At the same time, the residual level of FPSIIef

significantly correlated with the drought tolerance index (Table 3),

which indicates the potential possibility of using this parameter as

an indicator of stress and plant sensitivity to water deficiency.

3.1.4 Heat stress
To study the tolerance of wheat seedlings to elevated

temperatures, gradual heating of wheat leaves was carried out

using a hot plate; the dynamics of FPSII was recorded

simultaneously (Figure 6). The temperature of the hot plate and
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leaves was recorded using a thermal imager. The dynamics of

photosynthesis activity induced by gradual heating was similar for

different cultivars, but the quantitative parameters varied

significantly. Figure 6 shows an example of the average dynamics

of leaf temperature and FPSII in plants of cultivars contrasting in

sensitivity to elevated temperature (C1 and C3, which were later

classified as tolerant and sensitive to heat, respectively). It was

shown that FPSII increased as the hot plate temperature increased

from 25°C to values ranging from 35.5 (C2) to 41°C (C1 and C9);

with a further increase in temperature, FPSII gradually decreased

and reached values in the range from 0.09 (C3) to 0.23 (C8) at a

final hot plate temperature of 55°C. Two parameters were used as

criteria for the tolerance of wheat seedlings to heat: the temperature

of the hot plate, at which FPSII decreased below the initial level at

25°C (tdec), as well as the residual level ofFPSII at 55°C, expressed as

a percentage of the initial level at 25° (FPSII resid). The average

values of tdec and FPSII resid for all studied cultivars are shown in

Table 4. Correlation analysis showed a strong positive relationship

between these parameters of heat tolerance (r = 0.84, p = 0.001),

therefore, only tdec was chosen for further analysis.
3.2 Predictors of biomass accumulation

3.2.1 HS parameters
A correlation analysis of the relationship between the dry

weight of 4-week-old wheat seedlings and the HS parameters of

the shoots of 2-week-old plants was carried out to search for

predictors of biomass accumulation in plants under optimal

temperature and water conditions.

Figure 7 shows the spectrum of correlation coefficients of dry

weight of 4-week-old seedlings with the reflectance intensity

(normalized to the reflectance intensity of the white standard) of

2-week-old seedlings in the wavelength range from 400 to 800 nm.

The highest correlation coefficients for these parameters were in the

R (650-670 nm) and B (480-510 nm) bands (negative correlations),

as well as in the FR-NIR range (750-800 nm, positive correlation). A

statistically significant (p< 0.05) correlation was observed only in

the R range of spectrum; the Pearson correlation coefficient reached

–0.67. In B and FR-NIR bands, r reached –0.49 and 0.5, respectively;

however, the correlation was not significant.

Next, NDIs calculated for all combinations of wavelengths in

the range from 400 to 800 nm were considered as potential

predictors of biomass accumulation. Figure 7 shows a heat map

of correlation coefficients between NDIs of shoots of 2-week-old

wheat seedlings and DW of 4-week-old ones. The highest

correlation coefficients were observed for NDIs calculated using

wavelengths in the R and FR-NIR bands. Pearson correlation

coefficients reached 0.91 and –0.97 (p< 0.05) for NDI(l1 580-670;
l2 520-600) and NDI(l1 710-800; l2 400-700), respectively.

3.2.2 ChlF parameters
An analysis of the relationship between ChlF parameters of 2-

week-old wheat seedlings and the dry weight of 4-week-old plants

showed that a number of parameters of photosynthetic activity at an
TABLE 2 Residual values of dry weight and ChlF parameters, expressed
in % of control, after 14-day drought stress of wheat plants.

Cultivar
Residual DW

plant, %
Residual
Fv/Fm, %

Residual
FPSIIef, %

C1 81.9 ± 0.4ab 93.7 ± 2.4abc 60.5 ± 7.6abc

C2 68.0 ± 3.3a 89.6 ± 4.5ab 28.6 ± 5.6ab

C3 74.8 ± 4.4ab 97.7 ± 1.3abc 46.5 ± 6.7abc

C4 107.9 ± 6.3c 99.3 ± 1.9bc 69.2 ± 5.4c

C5 94.9 ± 6.9bc 97.7 ± 1.1abc 48.5 ± 3.8abc

C6 90.0 ± 2.1abc 89.4 ± 3.6a 49.0 ± 11.7abc

C7 74.0 ± 3.7ab 98.8 ± 0.9bc 53.1 ± 3.3abc

C8 80.7 ± 5.2ab 99.4 ± 0.9bc 41.4 ± 6.2abc

C9 82.6 ± 6.2ab 102.6 ± 0.8c 66.1 ± 1.9bc

C10 67.9 ± 5.0a 88.9 ± 1.8a 26.8 ± 2.9a

C11 92.2 ± 3.1abc 102.2 ± 1.4c 69.3 ± 7.8c
DW plant - dry weight of a whole plant, Fv/Fm - maximum quantum yield of photochemical
reactions of photosystem II,FPSIIef - steady-state level of photosystem II quantum yield under
AL. Data are presented as means ± SEM (n = 10). Significant differences between the cultivars
are indicated by different letters (ANOVA followed by Tukey’s test, p< 0.05). Values with the
same letters are not significantly different.
TABLE 3 Correlation coefficients between the drought tolerance index
and residual levels of ChlF parameters in wheat plants affected by a 14-
day drought.

Drought toler-
ance index

Residual
Fv/Fm, %

Residual
FPSIIef, %

Drought
tolerance index

0.43 0.72

Residual
Fv/Fm, %

0.18 0.72

Residual
FPSIIef, %

0.01 0.01
Statistically significant correlation coefficients and the corresponding P-values (two-tailed, p<
0.05) are in bold.
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early age correlate with the biomass accumulation at a later age

(Table 5). In particular, a significant correlation of DW with

stationary parameters of photosynthetic activity in a state adapted

to light was shown (a positive correlation withFPSII (r = 0.74) and a

negative correlation with NPQ (r = –0.70)). In addition, a number

of parameters reflecting transient processes caused by changes in

lighting conditions were negatively correlated with the biomass

accumulation [r = –0.69 for t1/2(FPSIIef) and r = –0.77 for

t(NPQmax)].
3.3 Predictors of drought tolerance

3.3.1 HS parameters
To search for predictors of drought tolerance of wheat, a

correlation analysis between the reflectance parameters of 2-week-

old plants and the drought tolerance index, estimated by the
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residual DW of 4-week-old drought-stressed plants (in % of

control) was carried out. However, no significant relationship was

shown between the drought tolerance index and the reflectance of

2-week-old seedlings in the wavelength range from 400 to 800 nm

(Figure 8). A similar result was obtained for the residual levels of

ChlF parameters, reflecting the tolerance of the PSA to water

deficiency (Figure 9).

Statistically significant correlation of the NDIs (considered as

potential predictors of drought tolerance) with the drought

tolerance index and residual levels of ChlF parameters were also

not observed (Figures 8, 9). We did not take significant areas of heat

maps for the drought tolerance index and residualFPSII into further

analysis due to their small size and low correlation coefficients.

3.3.2 ChlF parameters
As in the case of spectral characteristics, correlation analysis of

the relationship between ChlF parameters and drought tolerance

also did not show a significant correlation (Table 6).
3.4 Predictors of heat tolerance

3.4.1 HS parameters
The hot plate temperature at which FPSII decreased below the

initial control value at 25°C (tdec) was used as a criterion for the

tolerance of wheat seedlings to heat. Cultivars that exhibited later

FPSII suppression were considered more tolerant, and vice versa.

Figure 10 shows the spectrum of correlation coefficients between

tdec for 4-week-old wheat plants and reflectance in the range of 400-

800 nm for 2-week-old seedlings. A significant (p< 0.05) positive

correlation of these parameters was observed in the R range (610-

675 nm); Pearson correlation coefficient reached 0.71.

Correlation analysis of the relationship between NDIs of 2-

week-old plants and heat tolerance revealed two large areas with

significant correlation on the heat map (Figure 10): R range [NDI

(l1 580-630; l2 520-570), NDI(l1 650-690; l2 420-500)] and FR-

NIR range (NDI(l1 400-700; l2 710-800)); Pearson correlation

coefficients reached 0.91, 0.0.91, and –0.97, respectively (p< 0.05).
FIGURE 6

Dynamics of wheat leaf temperature (left) and FPSII (right) in plants of tolerant (C1) and sensitive to heat (C3) cultivars. Data are presented as means
with SE bars. Red dashed line on the left graph indicates the temperature of a hot plate.
TABLE 4 Parameters of heat tolerance of 4-week-old wheat seedlings
of 11 cultivars.

Cultivar tdec FPSII resid, %

C1 53.5 ± 1.0cd 66.9 ± 7.6d

C2 49.0 ± 0.6ab 44.7 ± 1.8abcd

C3 46.0 ± 1.3ab 23.1 ± 6.6a

C4 54.0 ± 0.6d 64.8 ± 7.4cd

C5 49.5 ± 0.5bc 29.9 ± 3.3ab

C6 47.5 ± 1.1ab 41.6 ± 6.1abcd

C7 47.5 ± 1.4ab 50.1 ± 8.2abcd

C8 48.5 ± 1.0ab 58.0 ± 6.5bcd

C9 55.0 ± 0.0d 68.3 ± 6.8d

C10 45.5 ± 0.5ab 25.6 ± 2.3a

C11 45.0 ± 0.8a 35.3 ± 7.2abc
Data are presented as means ± SEM. Significant differences between the cultivars are indicated
by different letters (ANOVA followed by Tukey’s test, p< 0.05). Values with the same letters
are not significantly different.
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3.4.2 ChlF parameters
The tolerance of 4-week-old wheat seedlings to heat, assessed by

tdec, was positively correlated with t1/2(FPSIIef) (r = 0.66) and t

(NPQmax) (r = 0.76), reflecting the rate of transient processes in PSA

after switching on the AL (Table 7). No pronounced relationship

with stationary parameters was observed.
4 Discussion

Early phenotyping-based prediction of economically important

wheat traits, such as grain yield and tolerance to stressors, is a good

way to develop methods for accelerating the selection of promising

lines in the breeding process. In our study, the predicted traits were

tolerance to heat and drought, as well as biomass accumulation,

which, like yield, is largely determined by the intensity of the

production process. We have previously shown that the biomass

of young wheat plants correlates well with the biomass of older
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plants under controlled conditions (Sherstneva et al., 2021). In the

field, wheat yield has been demonstrated to be related to both the

biomass of mature plants (Okuyama et al., 2004; White and Wilson,

2006; Thapa et al., 2019) and the biomass of significantly younger

plants, including under different conditions of water availability

(Thapa et al., 2019). The presence of a relationship between yield

and biomass suggests that the latter is an important target trait

during phenotyping at the early stages of breeding research.
4.1 Relationship between spectral and
fluorescent parameters in wheat seedlings

An important part of this work was the study of the relationship

between reflectance parameters recorded using HS sensors and

ChlF parameters recorded by PAM fluorometry. An obvious

advantage of multi- and hyperspectral phenotyping methods is

their high throughput and ability to perform measurements over

wide spatial scales. Non-invasively obtained canopy reflectance
FIGURE 7

Spectrum and heat map of Pearson correlation coefficients between
HS parameters of 2-week-old and DW of 4-week-old wheat plants.
Area of the spectrum with statistically significant correlation is
highlighted in green. Heat map shows correlation coefficients
(bottom left) and p-values (top right).
TABLE 5 Correlation coefficients between ChlF parameters of 2-week-old wheat seedlings and the dry weight of 4-week-old plants.

Fv/Fm FPSIIef t1/2(FPSIIef) NPQmax t(NPQmax) NPQs

r
p

0.36
0.27

0.74
0.01

-0.69
0.02

-0.49
0.13

-0.77
0.005

-0.70
0.02
front
Statistically significant correlation coefficients and the corresponding p-values (two-tailed, p< 0.05) are in bold.
FIGURE 8

Spectrum and heat map of Pearson correlation coefficients between
HS parameters of 2-week-old wheat plants and the drought
tolerance index of 4-week-old wheat plants. Heat map shows
correlation coefficients (bottom left) and p-values (top right).
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parameters are widely used to evaluate the structural and

biochemical characteristics of wheat (Al-Tamimi et al., 2022;

Skendžić et al., 2023; Zhang et al., 2023). The PAM fluorometry

method, which directly provides information on the activity of

photosynthesis, a key physiological process that determines

productivity, has both spatial and temporal limitations. In this

regard, studies aimed at assessing the photosynthetic activity of

plants based on reflectance parameters, as well as the search for such

parameters correlating with ChlF parameters, have become

widespread (Sukhova and Sukhov, 2018; Pérez-Bueno et al., 2019;

Fu et al., 2022).

In our work, a number of ChlF parameters were determined

and classified into two groups. The first group (stationary

parameters) includes such parameters as Fv/Fm, FPSIIef, and NPQs

which reflect the functioning of PSA in a state adapted to darkness

or light. The second group (transient parameters) includes the

parameters t1/2(FPSIIef), NPQmax, and t(NPQmax) which reflect

transient processes when actinic light is switched on after dark

adaptation. The relationship of the recorded ChlF parameters with

the reflectance spectra of wheat leaves and NDIs, calculated from all

combinations of recorded wavelengths in the range of 400-800 nm,
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was analyzed. Three wavelength ranges, demonstrating a strong

relationship with PAM parameters, were identified (Figure 5): Blue

(B, 420-490 nm), Red (R, 640-690 nm) and FR-NIR (710-800 nm).

Fv/Fm and FPSIIef (included in the group of stationary

parameters) negatively correlated with the B and R bands of the

VIS spectral range. It is known that leaf reflectance in VIS depends

primarily on the pigment composition of the green parts of plants

(Li et al., 2014; Liu et al., 2022). It can be assumed that the content of

chlorophyll, which has absorption maxima in the B and R spectral

bands, determines the relationship of these spectral bands with

stationary ChlF parameters. The relationship between Fv/Fm and

FPSIIef and chlorophyll content is a well-known fact (Kalaji

et al., 2017).

Reflectance in the FR-NIR range was associated with ChlF

parameters reflecting transient processes caused by the dark-light

transition (NPQmax, t(NPQmax), t1/2(FPSIIef)). The rate of change in

the FPSII and NPQ parameters when actinic light is switched on is

determined by the rate of achieving a balance between the

production of NADPH and ATP in the light-dependent

photosynthetic reactions and their consumption in the reactions

of the Calvin-Benson cycle (Baker, 2008). The activity of the Calvin-
FIGURE 9

Spectra and heat maps of Pearson correlation coefficients between HS of 2-week-old and residual levels of ChlF parameters of 4-week-old wheat
plants. Heat maps show correlation coefficients (bottom left) and p-values (top right).
TABLE 6 Correlation coefficients between ChlF parameters of 2-week-old wheat seedlings and drought tolerance of 4-week-old plants.

Fv/Fm FPSIIef t1/2(FPSIIef) NPQmax t(NPQmax) NPQs

Residual DW
r
p

-0.45
0.16

-0.13
0.69

0.32
0.34

0.26
0.44

0.36
0.27

0.31
0.35

Residual Fv/Fm
r
p

-0.16
0.65

-0.39
0.91

0.20
0.56

0.22
0.51

0.20
0.57

0.1
0.77

Residual FPSII
r
p

-0.29
0.39

-0.34
0.31

0.52
0.10

0.59
0.06

0.58
0.06

0.49
0.13
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Benson cycle reactions is largely determined by the availability of

the substrate – CO2 (Baker, 2008; Flexas et al., 2008; Zhu et al., 2010;

Tholen and Zhu, 2011). In this regard, it is important to note that

the optical properties of the green parts of plants in the FR-NIR

range, characterized by a high reflectance, are determined by the

structural features of plant tissues (Ollinger, 2011). In particular, the

intensity of NIR light reflection positively correlates with the

volume of intercellular air spaces (Ustin and Jacquemoud, 2020),

including at wavelengths in the range we studied (Slaton et al.,

2001). The looser mesophyll may contribute to the greater possible

rate of influx of CO2 consumed in cells in the Calvin-Benson cycle.

Spectral indices (NDIs), calculated for the entire studied

spectral range, showed a more complex relationship with the

parameters of photosynthetic activity. Two significant areas were

identified on the heat maps of NDIs correlations against ChlF

parameters: area for l1 in R band and area for l1 in FR-NIR band.

The highest NDIs correlations in the R range were found for FPSIIef

and NPQs. It is worth noting that these parameters characterize the
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activity of photosynthetic processes in a state adapted to light.

Strong relationship of NDIs in the indicated range was also for t1/2
(FPSIIef) and t(NPQmax); however, the size of this region was

significantly smaller. The second wide area on the NDIs heat map

with high correlation coefficients (FR-NIR) appeared

predominantly for the parameters t1/2(FPSIIef), NPQmax and t

(NPQmax) which characterize transient processes in the

photosynthetic apparatus caused by the switching on the actinic

light. At the same time, stationary parameters correlated with NDIs

in a much narrower range. This effect for NDIs fits into the nature

of the relationship between the reflectance spectrum and the ChlF

parameters, described above; in this case, R and FR-NIR can serve

as measuring wavelength ranges to characterize stationary and

transient processes in the photosynthetic apparatus.

The search for the relationship between NDIs in the studied

wavelength range and ChlF parameters of wheat has been described

in a number of works. In particular, NDVI (Normalized difference

vegetation index) was significantly positively correlated with Fv/Fm
in wheat under optimal conditions (El-Hendawy et al., 2019). The

NDVI and NDRE (Red edge NDVI) indices showed a positive

relationship with Fv/Fm in unstressed leaves of aspen and cherry

trees (Peng et al., 2017). The work of Sukhova and Sukhov (Sukhova

and Sukhov, 2020) showed that the light-induced changes in the

PRIs (DPRIs) can be used to assess a number of parameters of PSI

and PSII activity.
4.2 Search for predictors of biomass
accumulation in wheat seedlings

During the search for predictors of biomass accumulation, a

number of parameters determined by HS and PAM methods in

young plants demonstrated a relationship with the biomass of older

plants. Considering the spectral characteristics, we can highlight the

R range (650-670 nm), which showed a significant negative

correlation with DW of 4-week-old seedlings (Figure 7). When

examining the predictive potential of spectral indices, two regions

on the NDIs heat map with a significant correlation against the DW

of 4-week-old seedlings were found: R and FR-NIR ranges

(Figure 7). It is worth noting that the identified ranges of

statistically significant correlations between NDIs and biomass

accumulation include such widely used spectral indices as

GNDVI (Green normalized difference vegetation index, (R780–

R550)/(R780+R550) (Aparicio et al., 2000), and RNDVI (Red

normalized difference vegetation index, (R780−R670)/(R780+R670)

(Raun et al., 2001). GNDVI and RNDVI, recorded using a

spectrometer with high spectral resolution, showed a high positive

correlation with yield under full irrigation conditions (El-Hendawy

et al., 2017). NDVI (l1 774, l2 656) recorded by a multispectral
FIGURE 10

Spectrum and heat map of Pearson correlation coefficients between
HS parameters of 2-week-old and heat tolerance of 4-week-old
wheat plants. Area of the spectra with statistically significant
correlation is highlighted in green. Heat map shows correlation
coefficients (bottom left) and p-values (top right).
TABLE 7 Correlation coefficients between ChlF parameters of 2-week-old and heat tolerance of 4-week-old wheat plants.

Fv/Fm FPSIIef t1/2(FPSIIef) NPQmax t(NPQmax) NPQs

r
p

-0.33
0.32

-0.53
0.10

0.66
0.03

0.32
0.34

0.76
0.007

0.42
0.20
front
Statistically significant correlation coefficients and the corresponding P-values (two-tailed, p< 0.05) are in bold.
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sensor was positively correlated with the yield of irrigated wheat;

moreover, the yield significantly correlated with the aboveground

biomass (Thapa et al., 2019). Grain yield and biomass were also

positively correlated with GNDVI and RNDVI, starting from the

tillering stage, under different irrigation and nitrogen levels (S.

Pradhan et al., 2012). These data are consistent with the results of

our work, which indicate a significant positive relationship between

NDIs in FR-NIR region and biomass accumulation in wheat plants.

Correlation analysis of the relationship between potential

fluorescent predictors and biomass accumulation revealed a

significant correlation with stationary ChlF parameters (FPSIIef

and NPQs), as well as with transient parameters of light-induced

ChlF dynamics [t1/2(FPSIIef) and t(NPQmax)]. Our previous work

(Sherstneva et al., 2021), carried out using other cultivars, also

showed the potential of FPSIIef and t1/2(FPSIIef) for predicting

seedling biomass. At the same time, t1/2(FPSIIef) maintained a

significant correlation with biomass accumulation with increasing

prediction period.

It is worth noting that the identified HS and ChlF predictors are

related to each other. The presence of such a connection suggests a

generic physiological basis for the predictive potential of the

fluorescent and spectral parameters used. In particular, the R

range of the correlation spectrum with DW lies in the region of

high correlation of the reflectance spectrum with FPSIIef of plants of

the same age (Figure 5). This relationship is consistent with the high

positive correlation between these ChlF parameters and biomass

accumulation 2 weeks after the ChlF recording (Table 5).FPSIIef as a

stationary parameter of photosynthetic activity in the light-adapted

state reflects the efficiency of using the energy of absorbed light by

photosystems and is linearly related to the rate of CO2 assimilation

(Leipner et al., 1999; Maxwell and Johnson, 2000; Baker, 2008).

These processes directly influence the synthesis of organic matter

and the rate of biomass accumulation (Kruger and Volin, 2006;

Ferguson et al., 2021). The parameter t1/2(FPSIIef), which

characterizes the rate at which maximum quantum efficiency is

achieved after actinic light is switched on, depends on the rate of

activation of the Calvin-Benson cycle (Baker, 2008), which is

regulated, in particular, by CO2 availability. The greater

availability of CO2 determines the intensification of the

production process, leading to more intensive accumulation of

biomass. In the case of NDIs heat maps, the significant R region

of correlation with biomass accumulation coincided to a greater

extent with that for heat maps of NDIs correlations against

stationary parameters of ChlF (FPSIIef, NPQs). On the other hand,

the significant region for FR-NIR range corresponded

predominantly to heat maps of NDIs correlations against the

transient ChlF parameters [t1/2(FPSIIef), t(NPQmax)] (Figure 5). In

particular, as noted earlier, such a relationship between the ChlF

parameters which characterize the rate of optimization of the dark

reactions activity regulated by CO2 availability, and HS parameters

in the FR-NIR range may be due to the structural characteristics of

the leaves, in particular, the volume of intercellular air spaces (Ustin

and Jacquemoud, 2020), promoting more intense gas exchange and,

as a result, greater availability of CO2.
Frontiers in Plant Science 13
4.3 Search for predictors of tolerance of
wheat seedlings to drought

The drought tolerance index (reflecting the percentage ratio

between the DW of experimental and control plants) was used as

the main criterion for tolerance of wheat seedlings to water

deficiency. Additional tolerance criteria (residual levels of

photosynthetic activity parameters in plants affected by drought,

also expressed as a percentage of control levels) were also used. A

statistically significant correlation between residual FPSIIef and the

drought tolerance index was found (Table 3), which is consistent

with the data of earlier work, which showed the relationship

between the drought tolerance index and residual FPSIIef 2 weeks

after stopping irrigation (Sherstneva et al., 2021). An approach to

assessing drought tolerance based on the use of several criteria

worked well in the search for fluorescent predictors of tolerance in

wheat seedlings (Sherstneva et al., 2021) and made it possible to

evaluate drought-induced suppression of physiological processes in

plants. However, despite the wide range of wavelengths and high

spectral resolution of the data obtained in our work, which provides

high information content of the method, no strong relationship

between HS and drought tolerance parameters was identified

(Figures 8, 9). This effect persisted for both reflectance and NDIs.

Analysis of the predictive potential of ChlF parameters of 2-week-

old seedlings also did not reveal their connection with tolerance to

14-day drought.

At the moment, there is a sufficient number of works devoted to

the prediction of economically important traits of wheat under

conditions of water deficiency (Aparicio et al . , 2000;

Bandyopadhyay et al., 2014; Tattaris et al., 2016; Becker and

Schmidhalter, 2017; El-Hendawy et al., 2017; Condorelli et al.,

2018; Thapa et al., 2019). In this case, HS parameters covering a

wide range of wavelengths are used. In particular, water and other

indices that take into account the reflectance in a longer

wavelengths region than the range recorded in our work have

shown their efficiency (Bandyopadhyay et al., 2014; Becker and

Schmidhalter, 2017; El-Hendawy et al., 2017). Such indices may

show a higher and more significant correlation with plant yield

under water deficit conditions compared to indices in the range up

to 800 nm (Becker and Schmidhalter, 2017; El-Hendawy et al.,

2017). In addition, there are works showing the potential of NDVI

for predicting biomass accumulation (Tattaris et al., 2016; El-

Hendawy et al., 2017; Condorelli et al., 2018) and crop yield

(Aparicio et al., 2000; Tattaris et al., 2016; Becker and

Schmidhalter, 2017; El-Hendawy et al., 2017; Thapa et al., 2019)

under conditions of water deficiency. At the same time, only a few

studies used spectral predictors recorded under control conditions.

In particular, the work of Condorelli et al. (Condorelli et al., 2018)

showed the potential of NDVI recorded before the irrigation stop to

predict wheat biomass at the terminal stage of drought. In another

work, some vegetation and water indices recorded under full

irrigation correlated with the yield index and a number of

drought tolerance parameters of spring wheat (El-Hendawy

et al., 2017).
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4.4 Search for predictors of tolerance of
wheat seedlings to heat

The next step was to assess the relationship between HS

predictors and the tolerance of wheat seedlings to elevated

temperatures. A fairly wide spectral band that significantly

correlated with tolerance to heating two weeks after HS imaging

was discovered (Figure 10). This range partially coincided with that

for biomass accumulation under control conditions (Figure 7). Heat

maps of correlations of NDIs with tolerance also showed partial

overlap of significant regions with a heat map of correlations against

biomass accumulation in the R band. The direction of the correlation

for biomass accumulation and heat tolerance was opposite.

It is also important to note that ChlF parameters which have a

statistically significant correlation with heat tolerance (Table 7), also

correlated with productivity. As in the case of spectral

characteristics, the correlation of these parameters with biomass

and heat tolerance had the opposite trend. This result is consistent

with the fact that heat tolerance was negatively correlated with

biomass accumulation (r = –0.7, p = 0.02).

The discovered patterns can apparently be due to a number of

causes. It is known that during heat stress, reactive oxygen species

(ROS), the concentration of which increases when exposed to

elevated temperatures, play a significant role in plant damage,

including inactivation of photosynthesis and damage to PSA in

plants (Fortunato et al., 2023). The main sites for the production of

excess ROS under heat stress are the photosynthetic electron

transport chain and the Calvin-Benson cycle (Allakhverdiev et al.,

2008). It can be assumed that the level of ROS increases more

significantly under heat stress in plants with high activity of

photosynthetic processes, which ensure high productivity,

compared to plants with a lower level of photosynthetic activity.

A greater increase in ROS can have a greater negative effect on the

PSA and, as a result, on the biomass accumulation.
5 Conclusion

We found that hyperspectral (HS) characteristics determined in

young wheat plants can act as predictors of biomass accumulation

and tolerance to heat stress. The revealed HS predictors

demonstrate a statistically significant correlation with ChlF

parameters which also correlate with the studied wheat traits. The

presence of a relationship between HS predictors, depending on the

parameters of the composition and structure of plant tissues, and

ChlF predictors, depending on the activity of photosynthetic

processes, increases the reliability of the prediction and allows us

to reasonably assume the physiological basis of their prognostic

potential. The identified potential of HS predictors determines the

possibilities for accelerating the breeding process. Selection of the

most promising genotypes at the early stages will significantly

reduce the consumption of resources and time for further

breeding trials.

Further research should focus on determination of a detailed

relationship between the identified predictors and biochemical,
Frontiers in Plant Science 14
physiological and structural parameters of plants, as well as

genetic markers. Taken together, this approach will not only

increase the reliability of forecasts, but will also contribute to

reliable modeling of plant growth and development in various

conditions based on genotyping and early phenotyping.
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O., Singh, R. P., et al. (2019). Hyperspectral reflectance-derived relationship matrices
for genomic prediction of grain yield in wheat. G3 Genes|Genomes|Genetics 9, 1231–
1247. doi: 10.1534/g3.118.200856

Kruger, E. L., and Volin, J. C. (2006). Reexamining the empirical relation between
plant growth and leaf photosynthesis. Funct. Plant Biol. 33, 421. doi: 10.1071/FP05310

Leipner, J., Fracheboud, Y., and Stamp, P. (1999). Effect of growing season on the
photosynthetic apparatus and leaf antioxidative defenses in two maize genotypes of
different chilling tolerance. Environ. Exp. Bot. 42, 129–139. doi: 10.1016/S0098-8472
(99)00026-X

Lesk, C., Anderson, W., Rigden, A., Coast, O., Jägermeyr, J., McDermid, S., et al.
(2022). Compound heat and moisture extreme impacts on global crop yields under
climate change. Nat. Rev. Earth Environ. 3, 872–889. doi: 10.1038/s43017-022-00368-8

Li, L., Zhang, Q., and Huang, D. (2014). A review of imaging techniques for plant
phenotyping. Sensors 14, 20078–20111. doi: 10.3390/s141120078

Lippmann, R., Babben, S., Menger, A., Delker, C., and Quint, M. (2019).
Development of wild and cultivated plants under global warming conditions. Curr.
Biol. 29, R1326–R1338. doi: 10.1016/j.cub.2019.10.016

Liu, S., Hu, Z., Han, J., Li, Y., and Zhou, T. (2022). Predicting grain yield and protein
content of winter wheat at different growth stages by hyperspectral data integrated with
growth monitor index. Comput. Electron. Agric. 200, 107235. doi: 10.1016/
j.compag.2022.107235

Lozada, D. N., and Carter, A. H. (2020). Genomic selection in winter wheat breeding
using a recommender approach. Genes 11, 779. doi: 10.3390/genes11070779

Mao, H., Jiang, C., Tang, C., Nie, X., Du, L., Liu, Y., et al. (2023). Wheat adaptation to
environmental stresses under climate change: Molecular basis and genetic
improvement. Mol. Plant 16, 1564–1589. doi: 10.1016/j.molp.2023.09.001

Maxwell, K., and Johnson, G. N. (2000). Chlorophyll fluorescence—a practical guide.
J. Exp. Bot. 51, 659–668. doi: 10.1093/jexbot/51.345.659

Ni, Z., Lu, Q., Huo, H., and Zhang, H. (2019). Estimation of chlorophyll fluorescence
at different scales: A review. Sensors 19, 3000. doi: 10.3390/s19133000

Okuyama, L. A., Federizzi, L. C., and Barbosa Neto, J. F. (2004). Correlation and path
analysis of yield and its components and plant traits in wheat. Cienc. Rural 34, 1701–
1708. doi: 10.1590/S0103-84782004000600006

Ollinger, S. V. (2011). Sources of variability in canopy reflectance and the convergent
properties of plants. New Phytol. 189, 375–394. doi: 10.1111/j.1469-8137.2010.03536.x

Peng, Y., Zeng, A., Zhu, T., Fang, S., Gong, Y., Tao, Y., et al. (2017). Using remotely
sensed spectral reflectance to indicate leaf photosynthetic efficiency derived from active
fluorescence measurements. J. Appl. Remote Sens 11, 26034. doi: 10.1117/
1.JRS.11.026034
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