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Introduction: Chieh-qua (Benincasa hispida Cogn. var. Chieh-qua How) is a wax

gourd variety that is generally susceptible to infection and damage by Fusarium

oxysporum during its cultivation. Therefore, analyzing the adaption mechanism

of chieh-qua to F. Oxysporum infection is of great significance for cultivating

resistant varieties.

Methods: Through comparative transcriptome analysis, comparative metabolome

analysis, integrated analysis of transcriptome and metabolome and between

F. Oxysporum infected samples and control samples of susceptible lines

Results: This study found that proteins such asNPR1, TGA and PR1 in plant hormone

signal transduction pathway were up-regulated after infection, whichmay activate a

series of plant secondary metabolic synthesis pathways. In addition, the expression

of 27 genes in the flavonoid biosynthetic process in resistant lines after infection was

significantly higher than that in susceptible lines, indicating that these genes may be

involved in fungal resistance. This study also found that alternative splicing of genes

may play an important role in responding to F. Oxysporum infection. For example,

plant protein kinase genes such as EDR1, SRK2E and KIPK1 were not differentially

expressed after F. Oxysporum infection, but the transcripts they produced differ at

the transcription level. Finally, through comparative metabolome analysis, this study

identified potentially functional substances such as oxalic acid that increased in

content after F. Oxysporum infection. Through integrated analysis of transcriptome

and metabolome, some differential expressed genes significantly related to

differential metabolites were also identified.

Discussion: This study provides a basis for understanding and utilizing chieh-qua’s

infection mechanism of F. Oxysporum through analysis of the transcriptome

and metabolome.
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1 Introduction

Chieh-qua (Benincasa hispida Cogn. var. Chieh-qua How), a

variety of wax gourd (B. hispida), is an important vegetable crop in

the Cucurbitaceae family, which is widely distributed in South

China and Southeast Asian countries (Xie and Peng, 2007;

Xie et al., 2019). As a vigorous annual vine, chieh-qua immature

fruits are consumed and are also known for being a rich source of

essential nutrients, including proteins, vitamins, and minerals

(Zaini et al., 2011; Liu et al., 2014). During growth, chieh-qua is

subjected to a variety of environmental challenges, including

biotic stresses (herbivores attacking and pathogen infection)

and abiotic stresses (drought and high or low temperatures)

(Verma et al., 2013). Among them, Fusarium wilt (FW) caused by

Fusarium oxysporum (F. oxysporum) is one of the most serious soil-

borne diseases, causing severe decreases in production and quality

in chieh-qua (Xie and Peng, 2007).

F. oxysporum is a common soil fungus with broad pathogenicity

across many plant species (Gordon and Martyn, 1997; Diez et al.,

2014). The FW caused by this fungus inflicts severe damage to the

agricultural production of various crops, including tomatoes,

potatoes, cucurbits, maize, and sugarcane (Gullino et al., 2015).

Globally, FW has become a serious plant disease, leading to

significant losses in agricultural production and economic

development. F. oxysporum spreads through soil and seed

transmission, invading the roots and stems of plants, causing tissue

necrosis and decay (Perkowski et al., 1997). In infected plants, F.

oxysporum can enter plant tissues through root injuries or vascular

systems, disrupting water and nutrient supply, resulting in symptoms

such as wilting, withering, and death (Giachero et al., 2022).

To counter fungal infections, including F. oxysporum, plants

have evolved a series of complex and sophisticated defense

mechanisms, including resistance gene analogs (RGAs) and the

mitogen-activated protein kinase (MAPK) signaling pathway

(Sekhwal et al., 2015; Jiang et al., 2018). RGAs, as an important

gene family in the plant genome, play a crucial role in the

interaction between plants and pathogenic fungi. The proteins

encoded by these genes typically possess specific domains related

to the recognition and defense against pathogenic fungi, thus

initiating appropriate defense responses to protect plants from

pathogen invasion (Sekhwal et al., 2015). Meanwhile, the MAPK

signaling pathway is considered a key regulatory factor in plant

defense responses (Delplace et al., 2022). This signaling pathway

can perceive pathogenic signals in the external environment and

regulate plant resistance to pathogenic fungi by controlling gene

expression and metabolic pathways (Meng and Zhang, 2013).

Transcriptomics and metabolomics are two important high-

throughput sequencing technologies used to study changes in gene

expression and metabolite composition in plants under different

physiological conditions. In recent years, with the continuous

development of sequencing technologies and the improvement of

bioinformatics analysis methods, an increasing number of studies

have shown that combined transcriptomic and metabolomic

analysis is of significant importance in unraveling the complex

regulatory networks in plant biological processes, addressing

biological questions, and developing new varieties of crops.
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Transcriptomic–metabolomic analysis of grapes revealed novel

information regarding the dynamics of grape ripening (Fortes

et al., 2011). In a combined transcriptomic and metabolomic

analysis of barley, HvCERK1 was found to enhance barley

resistance to F. graminearum (Karre et al., 2017). Candidate gene

StWRKY1 identified through transcriptomic–metabolomic analysis

regulates phenylpropanoid metabolites, enhancing potato

resistance to late blight (Yogendra et al., 2015). Although the

combined transcriptomic and metabolomic analysis technique is

now well established, there is still a lack of such analysis for

understanding the disease resistance mechanisms in the wax gourd.

In this study, two chieh-qua inbred lines (wilt-susceptible and

wilt-resistant) were used for targeted metabolomic and

transcriptomic comparisons after F. oxysporum infection. Both

lines were derived from “feicui”, an inbred cultivar of chieh-qua

common in Southern China, while the wilt-resistant lines were

natural mutation isolated from “feicui”. Compared to the control,

we identified a large number of DEGs and transcripts, some of

which are RGAs, while others are involved in disease resistance-

related pathways, including the MAPK pathway. Additionally,

integrating the metabolome data, we found differentially

expressed genes (DEGs) significantly associated with differentially

expressed metabolites and constructed a network diagram

illustrating the gene regulation of differentially expressed

metabolites. These findings provide valuable resources for wax

gourd defense against F. oxysporum.
2 Materials and methods

2.1 Plant material and growth conditions

Chieh-Qua (B. hispida Cogn. var. Chieh-qua How) inbred line

“feicui” (FC), a common cultivar in Southern China, was provided

by the Guangzhou Academy of Agricultural Sciences (Guangzhou

Academy of Agricultural and Rural Sciences). The wilt-resistant

lines were natural mutations isolated from “feicui” (Supplementary

Figure 1). The seedlings were grown in 32-well plates filled with an

aseptic organic substrate at 28°C/20°C day/night temperatures in a

greenhouse under a 16-h light/8-h dark photoperiod for

approximately 20 days until the second true leaf stage.
2.2 Inoculation with F. oxysporum

The F. oxysporum provided by the Plant Protection Research

Institute Guangdong Academy of Agricultural Sciences was

cultivated on PDA solid medium at 28°C in the dark for 4 days,

then cultured in potato dextrose broth on a shaker at 180 rpm at 28°

C for 3 days. The spore suspension was diluted to 1×105 spores per

milliliter with sterile distilled water.

Chieh-qua’s leaves from both wilt-resistant and wilt-susceptible

lines isolated from FC were chosen as the subjects of this study

(Table 1). Seedlings were infected with F. oxysporum by irrigation of

the roots with a fungal spore suspension (3 mL per seedling) at the

second true leaf stage. The true leaves of FC seedlings were
frontiersin.org
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harvested at 48 h after inoculation for RNA sequencing (RNA-seq)

and metabolomic analysis. Three biological replicates were

performed for each treatment, with 10 seedlings for each

replicate, and each sample weighed approximately 3 g. Three

sample groups were obtained: CK (control group, wilt-susceptible

lines without pathogen inoculation), GB (wilt-susceptible lines with

pathogen inoculation), and KB (wilt-resistant lines with pathogen

inoculation). Two differential comparative analysis groups were

established: wilt-susceptible (GB) vs. control (CK), as well as wilt-

resistant (KB) vs. GB.
2.3 RNA isolation and sequencing

The total RNA from wax gourd leaf samples subjected to

d i ffe rent trea tments was extrac ted using the CTAB

(cetyltrimethylammonium bromide) method (Gasic et al., 2004),

with the following steps: The leaf samples were ground into powder

in liquid nitrogen and transferred to 2-mL centrifuge tubes

containing 1 mL of preheated CTAB extraction buffer (the CTAB

extraction buffer was preheated in a water bath at 65°C and

supplemented with 2% mercaptoethanol). The mixture of liquid

and powder was vortexed thoroughly and then incubated in a water

bath at 65°C for 5 min before adding an equal volume of

chloroform/isoamyl alcohol (volume ratio of 24:1). The mixture

was centrifuged at 1,200 rpm for 30 min, and the supernatant was

transferred to new 2-mL centrifuge tubes. The chloroform/isoamyl

alcohol extraction and centrifugation steps were repeated once

more, and the pellet was discarded. The supernatant was mixed

with 4 mol/L LiAc and incubated at 4°C for 2 h before

centrifugation at 1,200 rpm for 10 min. The supernatant was

discarded, and the pellet was washed three times with 70%

ethanol. After discarding the supernatant, the pellet was air-dried

in a laminar flow hood. The RNA was dissolved in 30 mL of DEPC-

treated double-distilled water after treatment with DNase I

(Invitrogen) to remove genomic DNA contamination.

Equal amounts of RNA from each sample’s three biological

replicates were used to construct cDNA libraries. RNA purity

(OD260/280 and OD260/230) was measured using a NanoPhotometer

spectrophotometer, and RNA concentration was accurately measured
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using a Qubit 2.0 fluorometer. RNA integrity was assessed using an

Agilent 2100 Bioanalyzer. Subsequently, cDNA libraries were

constructed, followed by sequencing using the Illumina

HiSeq platform.
2.4 Identification of DEGs

The transcriptome sequencing data were initially processed using

fastp (v0.19.5) (Chen, 2023) to remove low-quality sequences and

adapters. Subsequently, HISAT2 (v2.2.1) (Kim et al., 2019) was

employed to map the filtered reads (in fastq format) to the

reference genome of wax gourd (Xie et al., 2019). The resulting

BAM files were sorted using SAMtools (v1.18) (Danecek et al., 2021).

Transcript assembly and quantification were performed using

StringTie to assemble the mapped transcripts and generate a

transcript annotation file (GTF format). STAR (v2.7.10b) (Dobin

et al., 2013) was utilized to map the filtered fastq files to the reference

genome with the newly assembled transcript GTF file. Finally, RSEM

(Grabherr et al., 2011; Dobin et al., 2013) was used to quantify the

transcripts. The transcript reads count was used to represent

transcript resolution. The expression levels of genes were quantified

from the transcriptome data mapped to the reference genome using

featureCounts (v2.0.1) (Liao et al., 2014). Differential expression

analysis of genes and transcripts with differential abundance

between the resistance and susceptible lines relative to the control

(KB vs. CK and GB vs. CK, respectively) was conducted using the R

package DESeq2 (Wang et al., 2010). Transcripts and genes with |

log2FoldChange| >1 and padj < 0.05 were considered differentially

abundant or differentially expressed. The expression levels of genes

and the abundance of transcripts were normalized using FPKM and

presented accordingly.
2.5 Pathogenicity tests and fungal
biomass evaluation

The open reading frame of LOC120087936 and LOC120075251

was amplified by PCR and inserted into the pBI121 vector. The

primers used for plasmid construction are listed in Supplementary

Table 1. The recombinant constructs, as well as empty plasmids,

were transformed into Agrobacterium tumefaciens strain GV3101

using the freeze–thaw method, and then they were transiently

expressed in N. benthamiana leaves through infiltration, as

described previously (Ma et al., 2012).

Pathogenicity test assays were performed as previously

described, with some modifications (Li et al., 2021). After 36 h of

infiltration, the infiltrated plants were sprayed with fresh spore

suspension (1 × 105 conidia/mL) of F. oxysporum and transferred in

a growth chamber under long-day conditions (LD, 25°C, 16 h light/

8 h dark, light intensity of 150 mmol m−2 s−1). After a 1-week

incubation, the plants were photographed using a digital camera.

The experiment was repeated three times, and each treatment used

six seedlings of N. benthamiana.

For the fungal biomass assay, a well-washed piece of infected N.

benthamiana leaf (approximately 1 cm2) was used for DNA
TABLE 1 Sample information.

Tissue site Treatment Name Group name

Leaf Control T1 CK

Leaf Control T2

Leaf Control T3

Leaf Resistance to wilt F1 KB

Leaf Resistance to wilt F2

Leaf Resistance to wilt F3

Leaf Susceptible to wilt Q1 GB

Leaf Susceptible to wilt Q2

Leaf Susceptible to wilt Q3
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extraction using a Fungal DNA kit (Omega, United States)

according to the manufacturer’s protocol. DNA-based qPCR was

performed with 2× iTaq™ Universal SYBR Green Supermix (Bio-

Rad, Hercules, CA, USA). Relative fungal biomass was calculated as

a ratio (FoEF1a/NtEF-1a) represented by the equation 2 [CT(NtEF-

1a)-CT(FoEF1a)] as previously described (Park et al., 2012). The

primer pairs for qPCR are listed in Supplementary Table 1.
2.6 Gene functional enrichment analysis

The upregulated and downregulated DEGs selected from the

two comparison groups (GB vs. CK and KB vs. GB) were subjected

to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) enrichment analysis, respectively, and the

internal function enricher of the R language package cluster

Profiler (Wu et al., 2021) was used to perform functional

enrichment analysis (the threshold is p < 0.05, q < 0.05). Copy

the output GO column and Qvalue column to Revigo (http://

revigo.irb.hr/) (Supek et al., 2011) for processing and draw using

CirGO software (https://github.com/IrinaVKuznetsova/CirGO)

(Kuznetsova et al., 2019) GO enrichment analysis circle plot.

KEGG enrichment analysis results were visualized with GraphPad.
2.7 RGA identification and construction of
co-expression networks with
transcription factors

The RGAugury pipeline (Li et al., 2016) was used to identify

RGAs in the wax gourd genome, including four major categories:

NBS, RLK, RLP, and TM-CC. Log2foldchanges of the differentially

expressed RGA were used to draw the ridge plot using the R

package ggridges and ggplot2 (Villanueva and Chen, 2019). The

protein sequences of plant transcription factors (TFs) were

downloaded from the plantTFDB4.0 database (Jin et al., 2017).

Subsequently, the protein sequences of wax gourd were subjected to

a comparative analysis against the downloaded plant TF protein

sequences using the diamond blastp (Buchfink et al., 2021). Proteins

from wax gourd exhibiting sequence similarity below this 1E-5 were

considered as the TFs of wax gourd.

The Pearson correlation coefficient (PCC) between TFs and

RGAs was calculated, and their significance was determined

using the Benjamini–Hochberg (BH) method. TF–RGA gene

pairs with a |PCC| > 0.8 and a q-value < 0.001 were considered co-

expressed. The co-expression network was plotted using Cytoscape

(Smoot et al., 2011).
2.8 Calculation of FST and pi values for
RGAs in populations

TheSNPdataused in this studywere sourced fromXie et al. (2019).

To assess genetic differentiation among populations, the sliding

window approach implemented in VCFtools (Danecek et al., 2011)

was employed. Specifically, windows of 2,500 base pairs (bp) in size
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weremoved along theRGAgene intervals and their 4,000-bpupstream

and downstream regions with step sizes of 50 bp and 250

bp, respectively.
2.9 Metabolomic sample processing

The samples of both control and infected groups of wilt disease-

resistant varieties were subjected to vacuum freeze-drying.

Subsequently, they were ground into a powder using a grinding

mill (MM400, Retsch) at a frequency of 30 Hz for 1.5 min within

liquid nitrogen. Following this step, 100 mg of the powdered sample

was dissolved in 1 mL of extraction solution (70% methanol

solution). The dissolved samples were stored in a refrigerator at 4°

C overnight, during which they were vortexed three times to enhance

the extraction yield. Afterward, the samples were centrifuged at

10,000g for 10 min, and the supernatant was collected. The filtered

samples were passed through a microporous filter membrane with a

pore size of 0.22 mm and stored in sample vials for subsequent liquid

chromatography–tandem mass spectrometry (LC-MS/MS) analysis.
2.10 Metabolome analysis and integration
with transcriptome

Based on the Metware database (Metware Biotechnology Co.,

Ltd, Wuhan, Hubei, China) and publicly available metabolite

information databases, substance qualitative analysis was

conducted using secondary mass spectrometry data. During the

analysis, isotope signals were excluded, as well as duplicate signals

originating from K+ ions, Na+ ions, NH4+ ions, and fragments of

larger molecules themselves (Chen et al., 2013). Metabolite

quantification is accomplished through the use of a triple

quadrupole mass spectrometer employing a multiple reaction

monitoring (MRM) mode. After obtaining mass spectrometry

data for different samples, peak areas of all metabolite spectra are

integrated, and peak integration is corrected for the same metabolite

across different samples (Fraga et al., 2010). Based on the results of

partial least squares–discriminant analysis (PLS-DA), we can

initially screen for metabolites that exhibit differences between

different varieties or tissues. Additionally, we can further refine

our selection by incorporating p-values or fold change values from

univariate analysis. The combination of fold change and the variable

importance in projection (VIP) from the OPLS-DAmodel is used to

identify differential metabolites. The selection criteria are as follows:

Metabolites with a fold change ≥2 or ≤0.5 are chosen. A fold change

of 2 or more or 0.5 or less indicates significant differences between

the control and experimental groups. Building upon the above

criteria, metabolites with a VIP value ≥1 are selected. VIP values

represent the strength of the impact of the intergroup differences for

the corresponding metabolites in the model’s discriminative

classification of group samples. Generally, metabolites with a VIP

value of ≥1 are considered to be significantly different.

The PCC between the expression level of DEGs and the content

of the differential metabolites was calculated, and their significance

was determined using the BH method. DEGs and differential
frontiersin.org
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metabolites with a |PCC| > 0.8 and a q-value < 0.0005 were

considered significant correlations.
3 Results

3.1 DEGs and functional enrichment

F. oxysporum is a widely prevalent fungal pathogen in plants

(Fravel et al., 2003), and the cultivation industry of chieh-qua is

also affected by this disease. Therefore, understanding the

corresponding mechanisms of chieh-qua against F. oxysporum

infection is of significant value for controlling the pest and

disease encountered during the chieh-qua cultivation process. In

this study, RNA-seq was performed on samples from the CK, GB,
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and KB. Compared to CK, there were 1,912 upregulated DEGs and

2,818 downregulated DEGs in GB (Figure 1A). Compared to the GB

inoculated with the F. oxysporum, 3,448 genes were highly

expressed in KB, with 3,072 DEGs being downregulated. In the

two comparison groups, there were 4,071 (56.7%) commonly

shared DEGs, with 660 (9.2%) specific DEGs in GB vs. CK and

2,449 (34.1%) specific DEGs in KB vs. GB (Figure 1B). KEGG

enrichment analysis of DEGs revealed enrichment of secondary

metabolite biosynthesis pathways involved in biological defense

functions among the upregulated genes after inoculation in the GB

samples. (Figure 1C). At the same time, the rapid synthesis of

secondary metabolites is activated by upstream signal regulation.

The transport of plant hormones from their synthesis sites to target

organs and their subsequent binding to receptors play crucial roles

in plant physiology (Dermastia, 2019). The significantly
FIGURE 1

Gene differential expression analysis and functional enrichment analysis. (A) Bar chart depicting the number of differentially expressed genes
between GB and CK, and between KB and GB. (B) Venn diagram illustrating the overlap of differentially expressed genes between GB and CK, and
between KB and GB. Pathways significantly enriched with upregulated genes (C) and downregulated genes (D) in GB compared to CK, along with
their significance values. Pathways significantly enriched with upregulated genes (E) and downregulated genes (F) in KB compared to GB, along with
their significance value. Enrichment of upregulated genes (G) and downregulated genes (H) in GB compared to CK in biological processes under
Gene Ontology (GO) terms. Enrichment of upregulated genes (I) and downregulated genes (J) in KB compared to GB in biological processes under
GO terms.
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upregulated genes were enriched in GO terms such as “hormone

signal transduction” in the GB vs. CK groups, indicating that the

infection process may activate multiple metabolite synthesis

pathways. Simultaneously, many essential basic functions related

to genes associated with processes such as photosynthesis appear to

be downregulated (Figure 1D). Compared to GB, genes that were

highly expressed in KB were enriched in pathways related to energy

and growth, such as photosynthesis and nitrogen metabolism. This

suggests that KB samples can maintain a better growth status after

infection (Figure 1E). However, genes that were downregulated in

KB were enriched in certain metabolic synthesis-related GO terms,

such as phenylpropanoid biosynthesis (Figure 1F). This may be

because these secondary metabolites do not participate in KB’s

adaptation to F. oxysporum infection.

To explore the functions of DEGs between KB (wilt-resistant

lines) and GB (wilt-susceptible), LOC120087936 and LOC120075251,

which exhibited high expression levels in KB, were selected for further

analysis. Indeed, LOC120087936 encodes a homolog of Arabidopsis

MILDEW RESISTANCE LOCUS O 13 (AtMLO13), which belongs to

a large family of seven-transmembrane domain proteins that are

specific to plants and are involved in conferring resistance to

biotrophic powdery mildew fungus in barley. LOC120075251

encodes a homologous version of Arabidopsis MDIS1-

INTERACTING RECEPTOR LIKE KINASE2 (MIK2), which is a

receptor heteromer involved in responding to various environmental

stresses, including cell wall integrity sensing, salt stress tolerance, and

resistance to F. oxysporum (Julkowska et al., 2016; Van der Does et al.,

2017; Engelsdorf et al., 2018; Chaudhary et al., 2020). The plant

transient expression vector pBI121 plasmid was used to create

constructs of 35S: LOC120087936 and 35S: LOC120075251. The A.

tumefaciens harboring constructs were infiltrated into at least four

leaves (per seedling) of N. benthamiana for transient expression.

After 36 h of infiltration, two transient expressed lines were evaluated

regarding their resistance to F. oxysporum. At 7 days after the

wounded leaves were sprayed with F. oxysporum, the control

tobacco leaves (CK, pBI121 plasmid only) were wilted and shorter.

In contrast, the leaves of overexpression of LOC120087936 and

LOC120075251 were growing well and appeared healthy

(Supplementary Figure 2A). To further determine whether the

expression of LOC120087936 and LOC120075251 affected the

fungal growth in planta, we estimated the relative fungal biomass

in the infected leaves by DNA-based quantitative PCR (q-PCR). The

assays showed that the relative fungal biomass was lower in the

expressed LOC120087936 and LOC120075251 plants compared with

CK (Supplementary Figure 2B). These results showed that

LOC120087936 and LOC120075251 play an essential role in the

pathogenicity of F. oxysporum. The differential expression results in

this study provide a resource for the functional validation of F.

oxysporum-resistant genes.

GO enrichment analysis of upregulated and downregulated

DEGs in GB vs. CK provided more comprehensive information

for assessing gene functions related to F. oxysporum infection.

Specifically, the upregulated DEGs in GB vs. CK were mainly

enriched in pathways such as the auxin-activated signaling

pathway, adaptation to oxidative stress, and cinnamic acid

biosynthetic process (Figure 1G). These enriched secondary
Frontiers in Plant Science 06
metabolite synthesis and regulatory pathways further underscore

the important role of secondary metabolites in the adaptation to F.

oxysporum infection. Similarly, the downregulated DEGs in GB vs.

CK were mainly enriched in pathways such as sulfate assimilation,

lipid metabolic process, glycerol ether metabolic process, response

to light stimulus, and photosynthetic electron transport in

photosystem I (Figure 1H), consistent with the KEGG

enrichment results.

The upregulated DEGs in KB vs. CK were primarily enriched in

pathways related to protein folding, transport, xenobiotic

transmembrane transport, response to light stimulus, response to

wounding, and flavonoid biosynthetic process (Figure 1I).

Conversely, the downregulated DEGs in KB vs. CK were mainly

enriched in pathways such as DNA replication initiation, L-

phenylalanine catabolic process, multicellular organism

development, auxin-activated signaling pathway, and defense

response to fungus (Figure 1J). These findings provide further

insights into the molecular mechanisms underlying the adaptation

of KB to F. oxysporum infection, highlighting the complex interplay

of various biological processes and pathways involved in the host–

pathogen interaction.
3.2 DEGs involved in MAPK signaling
pathways and salicylic acid
signal transduction

Previous studies have demonstrated that the plant MAPK

signaling pathway and plant hormone signaling transduction,

including salicylic acid (SA), are key factors in regulating plant

immunity. Here, we compared the gene expression changes of genes

in the MAPK pathway in GB samples before and after infection

(Figure 2). BAK1 showed significantly upregulated expression after

infection. Studies have shown that BAK1 acts as a positive regulator

in the MAPK signaling pathway (Chinchilla et al., 2007). Its

upregulation activates downstream MEKK1, which is the starting

point of several pathways formed by downstream MAPKs (Zipfel

et al., 2004). Positive feedback responses activate various

downstream pathways, such as the activation of camalexin

synthesis through WRKY33, which is a secondary metabolite that

inhibits bacterial and fungal infection (Koprivova et al., 2019).

During the plant’s adaptation to microbial infection, various

defense genes are regulated by ethylene (Ecker and Davis, 1987).

The results of this study found that genes COPA, MPK3, and ERF1

on this pathway showed upregulation after infection, revealing the

role of the ethylene-regulated pathway in the adaptation to F.

oxysporum infection. Similarly, genes ANP1, MPK7/14, and PR1

involved in the activation of cell death, H2O2 production, and

pathogen defense pathways were upregulated after F. oxysporum

infection. SA is a plant hormone, and several genes related to its

signal transduction, including NPR1 (Nonexpresser of PR Genes 1),

TGA (Transcription Factor GATA), and PR1 (Pathogenesis-Related

Gene 1), showed a similar expression pattern, significantly

upregulated in GB compared to CK. These results not only

suggest that the SA signaling pathway may play a role in the

adaptation to F. oxysporum infection but also provide insights for
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further experiments to study its effects on downstream secondary

metabolite synthesis.
3.3 Identification of RGAs and
co-expression networks with TFs

RGAs are an important class of disease resistance genes. In this

study, 664 RGAs were identified in the wax gourd, with 82, 36, 441,

and 105 genes belonging to the NBS, RLP, RLK, and TM-CC gene

families, respectively. As RGAs associated with plant resistance,

differential expression analysis can identify candidate genes for

further screening and application. From the distribution of RGAs’

log2FoldChanges in GB vs. CK (Figure 3A) and KB vs. GB

(Figure 3B), it can be observed that some members of the TM-CC

gene family not only respond to infection in GB but also show

differences between GB vs. KB. A total of 23 TM-CC genes are

differentially expressed in both GB vs. CK and GB vs. KB, indicating

that these genes not only respond to F. oxysporum infection but also

exhibit a stronger adaptation in resistant varieties. The number of

differentially expressed RLP, TM-CC, and NBS in KB vs. GB is

significantly fewer than that of the RLKs (177), with 17, 33, and 33

genes overlapping with those responding to F. oxysporum infection in

GB, respectively.

To explore potential TFs regulating these RGAs, the PCC

between TFs and differentially expressed RGAs was calculated.
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Using a threshold of |PCC| > 0.8 and q-value < 0.001, a total of

119 TFs were significantly correlated with RGAs (Figure 3C).

Among them, the most abundant TFs were bHLH, which were

mostly associated with the regulation of RLKs. There were 6, 2, 40,

and 8 NBS, RLP, RLK, and TM-CC genes, respectively, potentially

regulated by TFs. These results provide a data foundation for

understanding the regulatory patterns of resistance genes in

chieh-qua in the adaptation to F. oxysporum infection.
3.4 Genetic differences in RGAs among
different populations

The study of Xie et al. divided the wax gourd population into

cultivar1, cultivar2, landrace, and wild, as well as provided

resequencing information (Xie et al., 2019), which laid the

foundation for our analysis of selection signals for differentially

expressed RGAs in the populations. The calculation of pi values for

all RGAs showed that the diversity of RGAs in the landrace

population was similar to that in the wild population (Figure 4A).

However, the diversity of the TMCC, RLP, RLK, and TM-CC

families in the cultivar2 population was the lowest, indicating a

reduction in the genetic diversity of resistance genes in the cultivar2

population during breeding selection. Correspondingly, the Fst

values between cultivar2 and wild were 0.3339, 0.4608, 0.4259,

and 0.4732, respectively, indicating the possible presence of
FIGURE 2

Identify the DEGs involved in the plant MAPK signaling pathway and plant salicylic acid signaling transduction.
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selection signals in the RGA regions between wild and

cultivar2 populations.

To further screen for RGAs that may be under selection, this

study analyzed the distribution of Fst values between populations for

all differentially expressed RGA genes and their upstream and

downstream 4-kb regions. Eight RGA genes (LOC12006786,

LOC120073192, LOC120075251, LOC120075583, LOC120079812,

LOC120083870, LOC120085463, and LOC120090401) had Fst

values greater than 0.5 between cultivated (cultivar1 and cultivar2)

and wild populations, indicating significant genetic differences

between cultivated and wild populations within the 4-kb range

upstream and downstream of these genes (Figure 4B). These results

provided more candidate genes for resistance research.
3.5 Different expression patterns of the
genes in the transcript levels

Gene alternative splicing can lead to the existence of multiple

transcriptional isoforms. In this study, a total of 71,771 transcripts

were identified, originating from the expression of 21,004 genes.

Comparing the differential expressed transcripts with that of genes

can provide new insights into the role of gene alternative splicing

in the adaptation of chieh-qua to F. oxysporum infection. Firstly,

compared to CK, 1,912 upregulated and 2,818 downregulated

DEGs were identified in GB, along with 4,158 upregulated and

4,891 downregulated differential transcripts (Figure 5A). The

proportions of upregulated and downregulated DEGs, as well as

non-DEGs in GB vs. CK were 13.4%, 9.1%, and 77.5%, respectively

(Figure 5B). Among the 2,086 genes without differential

expression but with differential transcripts, 152 genes had both
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upregulated and downregulated transcripts. Among the 16,274

genes with no differential expression, transcripts from 14,188

genes also showed no differential expression between GB and

CK. Additionally, among the transcripts from the 2,086 genes, the

percentages of transcripts with upregulation, downregulation, and

both upregulation and downregulation between GB and CK were

57%, 36%, and 7%, respectively (Figure 5C). This indicates that

different transcripts from the same gene may exhibit different

expression patterns. Among the upregulated DEGs in GB vs. CK,

97.3% of genes also had upregulated transcripts (Figure 5D), while

among the downregulated DEGs, 97.4% of genes also had

downregulated transcripts (Figure 5E). Genes associated with

functions such as Photosystem II and chloroplast envelope

showed consistent expression patterns between transcripts and

genes (Supplementary Figure 3). Comparatively, 3,448

upregulated and 3,072 downregulated DEGs were identified in

KB compared to GB, along with 7,052 upregulated and 6,695

downregulated differential transcripts (Figure 5F). The

proportions of upregulated DEGs, downregulated DEGs, and

non-DEGs in GB vs. CK were 14.6%, 16.4%, and 69%,

respectively (Figure 5G). The percentages of upregulated DEGs,

downregulated DEGs, and genes with both upregulated and

downregulated transcripts were similar to those in GB vs. CK

(Figures 5H, I). However, downregulated transcripts enriched in

pathways such as auxin polar transport and auxin homeostasis in

upregulated genes deserve further attention (Supplementary

Figure 4). Among the genes with no differential expression

between KB and GB, there were 2,576 transcripts that were

significantly differentially abundant, with proportions of

upregulation, downregulation, and both upregulation and

downregulation being 36%, 53%, and 11%, respectively (Figure 5J).
FIGURE 3

Expression and regulation of four differentially expressed RGAs (TMCC, RLP, RLK, and TM-CC). (A) Differential expression fold change stacked plot for
RGA in GB vs. CK comparison analysis results. (B) Differential expression fold change stacked plot for RGA in KB vs. GB comparison analysis results.
(C) The co-expressed network of TFs and differentially expressed RGAs.
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LOC120069995 is a gene encoding a protein with the

McbC_SagB-like_oxidoreductase functional domain. The gene

structure and expression patterns of its transcripts indicate that

LOC120069995 is not differentially expressed in both GB vs. CK

and KB vs. GB (Figure 6A). The gene has five exons; its transcript

MSTRG.25886.12 has five exons, with upregulated expression in GB

vs. CK and downregulated expression in KB vs. GB (Figure 6B);

MSTRG.25886.7 has four exons, with downregulated expression in

GB vs. CK and upregulated expression in KB vs. GB (Figure 6C);

MSTRG.25886.7 has two exons, with no differential expression in

both GB vs. CK and KB vs. GB (Figure 6D). These results provided

insights into the role of gene alternative splicing in the adaptation of

chieh-qua to F. oxysporum infection.
3.6 Transcriptome and metabolome
correlation network

In this study, metabolites from GB and CK samples were

analyzed for metabolomics using ultra-performance liquid

chromatography (UPLC) and MS/MS. Through annotation in the

Metware database, a total of 672 known metabolites were detected

(Supplementary Tables 2, 3, 4). Among them, 417 metabolites with
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annotation information showed differential contents between GB

and CK, including 44 upregulated and 373 downregulated

metabolites (Figure 7A). These metabolites belong to various

categories such as flavanone, terpene, alkaloids, organic acids and

derivatives, and phenylpropanoids. Metabolites of the organic acid

and derivative types, such as oxalic acid and isochlorogenic acid B,

exhibited the highest upregulation in content after F. oxysporum

infection (Figure 7B). These results indicated the significant role of

these substances in the adaptation of chieh-qua to F. oxysporum

infection. Meanwhile, metabolites of the organic acid and derivative

types, such as citraconic acid, showed a decrease in content after F.

oxysporum infection, suggesting a potential inhibitory effect of F.

oxysporum infection on their synthesis.

To further explore the relationship between genes and these

metabolites, we performed a correlation analysis between DEGs

involved in plant MAPK signaling pathway and plant SA signaling

transduction identified in the GB vs. KB comparison group, and

differential metabolites. The results revealed 14 DEGs and 26

metabolites (belonging to 11 classes) showing a positive correlation

(Figure 7C). In particular, genes such as LOC120071745 (Histidine-

containing phosphotransfer protein 3), LOC120077686

(BRASSINOSTEROID INSENSITIVE 1-associated receptor kinase

1), and LOC120070643 (Respiratory burst oxidase homolog protein
FIGURE 4

Population genetic analysis of RGA. (A) Differences in Fst values and pi values of differentially expressed NBS, RLK, RLP, and TMCC genes among
Wild, Cultivar1, Cultivar2, and Landrace. The lines indicate the Fst values between two populations. The numbers inside the circles represent pi
values of the populations. (B) Distribution of Fst values for differentially expressed RGA genes among different populations.
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B) were associated with multiple metabolites in the positive correlation

network. Lipids, flavanones, and other substances play important roles

in the interaction between plants and pathogens (Aseel et al., 2019; Jeon

et al., 2020). This study identified 647 genes, including LOC120067029

(ATPase family AAA domain-containing protein 1-like),

LOC120068100 (zinc finger CCCH domain-containing protein 15-

like), and LOC120080874 (proteinase-activated receptor 2), whose

expression was significantly positively correlated with these

metabolites. Furthermore, 41 DEGs and 72 metabolites (belonging to

17 classes) showed a negative correlation (Figure 7D), among which

organic acids and derivatives had 19 metabolites connected to other

genes in the negative correlation network. Organic acids and

derivatives may have more connections in the plant MAPK signaling

pathway and plant SA signaling transduction process.
4 Discussion

F. oxysporum is a challenging fungal pathogen that spreads

through water and soil. Therefore, uncovering the resistance

mechanisms of the resistant line of chieh-qua against F. oxysporum
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through omics studies is of paramount importance for breeding

resistant varieties. In this study, transcriptomic analysis revealed the

involvement of a wide range of genes related to secondary metabolite

synthesis in the adaptation to the infection. Genes in the SA signaling

pathway, one of the plant hormones, were upregulated after F.

oxysporum infection. This triggers plant immune functions, with

one important pathway being the activation of genes related to

secondary metabolite synthesis (van Butselaar and Van den

Ackerveken, 2020). Plants have evolved complex and diverse

biosynthetic pathways, particularly activating pathways for specific

metabolites in the adaptation to biological stresses such as insects and

fungi (Bai et al., 2023). Therefore, the analysis of genes involved in the

production of responsive secondary metabolites is the basis for

designing functional experiments. For example, in the flavonoid

biosynthesis pathway, 27 genes including LOC120078171 in KB

were significantly expressed higher than in GB under F. oxysporum

treatment, potentially enhancing the efficiency of flavonoid

biosynthesis. Interestingly, in a cotton study, flavonoid biosynthesis

was found to be associated with resistance to F. oxysporum, providing

clues for exploring candidate resistance genes (Wang et al., 2022). In

addition to secondary metabolites, the MAPK signaling pathway in
FIGURE 5

Differential gene and transcript resolution analysis in GB vs. CK and GB vs. KB. (A) Number of differentially expressed genes and transcripts between
GB vs. CK. (B) Percentage of non-differentially expressed, upregulated, and downregulated genes in GB vs. CK. (C–E) Percentage of transcript
differences expression pattern within non-differentially expressed (C), upregulated (D), and downregulated (E) genes in GB vs. CK. (F) Number of
differentially expressed genes and transcripts between GB and KB. (G) Percentage of non-differentially expressed, upregulated, and downregulated
genes in GB vs. KB. (H–J) Percentage of transcript differences expression pattern within upregulated (H), downregulated (I), and non-differentially
expressed (J) genes in GB vs. KB.
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plants is considered a crucial signaling pathway in plant defense

(Thulasi Devendrakumar et al., 2018). This study found that they

activate pathways such as Camalexin synthesis, which are associated

with the synthesis of some metabolites related to plant defense

(Nguyen et al., 2022).

During the lengthy process of evolution, plants have developed

highly effective mechanisms to recognize and respond to pathogenic

microbial invasions, with RGAs containing specific motifs and

domains playing a crucial role (Sekhwal et al., 2015). In our study,

we investigated the expression patterns of RGAs and found that

TMCC responded differently to F. oxysporum infection compared to

the RLK, RLP, and NBS families. Specifically, 33 members of the

TMCC family showed significant upregulation in the KB vs. GB

comparison. Additionally, considering population genomic

information, the genetic diversity of TMCC in both cultivar1 and

cultivar2 populations was significantly lower than that in the wild and

landrace populations. To further explore RGAs, we conducted genetic

differentiation analysis of the upstream and downstream 4-kb regions

and gene regions of differentially expressed RGAs, identifying

candidate genes such as LOC120085463 and LOC120075583 in the

TMCC family. These genes exhibited significant genetic
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differentiation between cultivar1 and wild, between cultivar2 and

wild, and between landrace and wild populations. Based on other

large-scale population genomic studies, it is known that in the process

of crop domestication, resistance tends to weaken, often requiring the

introduction of wild genetic resources to enhance resistance (Guo

et al., 2019; Zhao et al., 2019). Therefore, the identified RGAs in our

study, which not only respond to F. oxysporum infection at the

transcriptional level but also exhibit genetic differences between wild

and domesticated populations, are important candidate genes for

enhancing F. oxysporum resistance. Furthermore, we identified 119

TFs that may be involved in regulating differentially expressed RGAs,

thereby expanding the range of candidate genes.

Because of the presence of alternative splicing, the abundance of

transcripts often does not fully correlate with that of genes (Hu et al.,

2022). Analyzing chieh-qua’s adaptation to F. oxysporum infection at

the transcript level can provide new insights. Protein kinases are

conserved regulatory factors in plants’ adaptation to pathogenic

microbial invasion, catalyzing reversible protein phosphorylation

reactions to regulate various cellular processes (Turrà et al., 2014).

In this study, transcripts with a significant difference in abundance

were identified within plant kinase genes that showed no differential
FIGURE 6

Diagram of alternative splicing for the LOC120069995. (A) The gene structure of LOC120069995 and bar graphs representing its expression values
in different sample groups. (B–D) Exon structures of three transcripts generated by this gene and bar graphs representing their expression values in
different sample groups.
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expression at the gene level (Supplementary Figure 3), including

TOR, ALE2, EDR1, SRK2E, and KIPK1 genes. This indicates that

specific splicing patterns may play a role in the F. oxysporum

infection process. Interestingly, this phenomenon has also been

confirmed in other studies, such as the regulation of plant kinases

SNC4 (SUPPRESSOR OF NPR1-1, CONSTITUTIVE4) and CERK1

(CHITIN ELICITORRECEPTOR KINASE1) by gene splicing factors

during plant immune adaptations. Therefore, based on differential

transcript analysis, we can identify potential factors in chieh-qua’s

adaptation to F. oxysporum infection, aiding in understanding the

immune mechanisms of chieh-qua.

Secondary metabolites play a crucial role in the interactions

between plants and other harmful organisms, making them a

primary focus of chemical ecology research. This study employed

comparative metabolomic analysis to elucidate the changes in

metabolites during the F. oxysporum infection process in chieh-

qua. Although the qualitative identification of unknown

metabolites needs improvement, this study clarified the
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alterations in metabolites from existing libraries, laying the

foundation for understanding the plant’s resistance at the

metabolic level. For instance, oxalic acid, significantly elevated

in GB, has been known to confer Botrytis cinerea resistance in

tomatoes (Sun et al., 2019). The synthesis of functional secondary

metabolites involves complex pathways, and identifying candidate

genes in these pathways or genes regulating the pathways is crucial

work. Transcription–metabolite integration analysis is a vital

approach in this region (Schlüter et al., 2016). Through

correlation analysis between transcriptome and metabolome,

this study identified a series of genes potentially associated with

important metabolite synthesis, providing a basis for further

research into secondary metabolite synthesis. In summary, by

comparing transcriptome and metabolome data, this study

deciphered the changes in genes, transcripts, and metabolites in

chieh-qua after F. oxysporum infection, offering insights into the

responsive processes and laying an important groundwork for

subsequent functional studies.
FIGURE 7

Metabolite analysis and correlation with transcriptomics. (A) Differential metabolite volcano plot in GB vs. CK: In this plot, each point represents a
specific metabolite, with the x-axis indicating the logarithm of the quantitative fold change of a metabolite between two samples. Red points
represent upregulated differentially metabolites, and gray points represent metabolites detected but not exhibiting significant differences in
expression. (B) Metabolite differential fold change bar chart in GB vs. CK. (C) Network analysis of metabolites positively correlated with gene
expression in GB vs. CK and KB vs. GB. (D) Network analysis of metabolites negatively correlated with gene expression in GB vs. CK and KB vs. GB.
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SUPPLEMENTARY FIGURE 1

Three treatments of wax gourd: CK (no treatment, left), GB (susceptible, treatment
with F. oxysporum, middle) and KB (resistant, treatment with F. oxysporum, right).

SUPPLEMENTARY FIGURE 2

Pathogenicity assay of the transient expression of LOC120087936 and

LOC120075251 in N. benthamiana. (A) Disease phenotype. The seedlings of
tobacco at sixth or seventh leaf stage were selected for infiltration. Before and

after 1-week incubation with spores of F. oxysporum, the seedlings were
photographed, respectively. Scale bar = 5 cm. (B) Relative biomass assay. The

relative F. oxysporum growth was measured by [2 CT (NtEF-1a)-CT (FoEF1a) ×100]
using q-PCR. Values are means ± SE based on three independent

experiments. Means with different letters are significantly different from

each other (one-way ANOVA, p ≤ 0.05). “ND” means not detected.

SUPPLEMENTARY FIGURE 3

GO enrichment analysis column chart of three types of differentially expressed

genes (upregulated, downregulated, and no significance). Red represents genes
with differentially expressed transcripts that are only downregulated, green

represents genes with differentially expressed transcripts that are only

upregulated, and yellow represents genes with differentially expressed
transcripts that are both downregulated and upregulated.

SUPPLEMENTARY FIGURE 4

KEGG enrichment analysis column chart of three types of differentially expressed
genes (upregulated, downregulated, and no significance). Red represents genes

with differentially expressed transcripts that are only downregulated, green

represents genes with differentially expressed transcripts that are only
upregulated, and yellow represents genes with differentially expressed

transcripts that are both downregulated and upregulated.

SUPPLEMENTARY TABLE 2

The quantitative results of sample metabolites obtained in this study.

SUPPLEMENTARY TABLE 3

Differential metabolites in GB_vs_CK.

SUPPLEMENTARY TABLE 4

Differential metabolites in KB_vs_GB.
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