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Protein, oil content, linoleic acid, and lignan are several key indicators for

evaluating the quality of flaxseed. In order to optimize the testing methods for

flaxseed’s nutritional quality and enhance the efficiency of screening high-quality

flax germplasm resources, we selected 30 flaxseed species widely cultivated in

Northwest China as the subjects of our study. Firstly, we gathered hyperspectral

information regarding the seeds, along with data on protein, oil content, linoleic

acid, and lignan, and utilized the SPXY algorithm to classify the sample set.

Subsequently, the spectral data underwent seven distinct preprocessing

methods, revealing that the PLSR model exhibited superior performance after

being processed with the SG smoothing method. Feature wavelength extraction

was carried out using the Successive Projections Algorithm (SPA) and the

Competitive Adaptive Reweighted Sampling (CARS). Finally, four quantitative

analysis models, namely Partial Least Squares Regression (PLSR), Support

Vector Regression (SVR), Multiple Linear Regression (MLR), and Principal

Component Regression (PCR), were individually established. Experimental

results demonstrated that among all the models for predicting protein content,

the SG-CARS-MLR model predicted the best, with and of 0.9563 and 0.9336,

with the corresponding Root Mean Square Error Correction (RMSEC) and Root

Mean Square Error Prediction (RMSEP) of 0.4892 and 0.5616, respectively. In the

optimal prediction models for oil content, linoleic acid and lignan, the R2
p was

0.8565, 0.8028, 0.9343, and the RMSEP was 0.8682, 0.5404, 0.5384,

respectively. The study results show that hyperspectral imaging technology has

excellent potential for application in the detection of quality characteristics of

flaxseed and provides a new option for the future non-destructive testing of the

nutritional quality of flaxseed.
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1 Introduction

Flax (Linum usitatissimum) occupies an important position in oil

and fiber crops (Oomah, 2001). According to its application scope, it

is divided into fiber, oil, and fiber oil three (Zhang et al., 2011).

Flaxseed is rich in essential omega-3 fatty acids, a-linolenic acid, and
linoleic acid is recognized as a major source of high-quality proteins,

lignan, lipids, and dietary fiber (Katare et al., 2012; Goyal et al., 2014),

has a positive effect on the human diet and health, and its processed

products in the world have a wide range of demand, belonging to the

typical functional crops.

Currently, protein content in flaxseed is primarily determined

through chemical analytical methods, like Kjeldahl nitrogen

determination (Mueller et al., 2010; Yao et al., 2022). This

method first requires drying and grinding of the sample, adding

chemical reagents and heating, followed by distillation, titration

treatment with a standard hydrochloric acid solution, and finally, a

comprehensive calculation of the protein content results based on

the values obtained from each process. Other methods for

determining oil content often involve organic solvent extraction,

while the quantification of linoleic acid and lignan is typically

carried out using high-performance liquid chromatography

(Meng et al., 2001; Feng et al., 2016). These traditional

biochemical determinations of flaxseed nutrient content must be

operated by professionals to complete the handling and operation

process, which is both complex and professional, not only time-

consuming and labor-intensive but also destructive to the sample

and incidentally produces chemical pollution. To enhance the

efficiency of screening high-quality flax germplasm resources, it is

imperative to identify an accurate, rapid, and non-destructive

method for assessing protein, oil content, linoleic acid, and

lignan content.

HSI technology simultaneously captures the target’s spatial

characteristics and spectral information, effectively combining

image and spectral data (Xiang et al., 2022). The spectral properties

of an object are closely related to its intrinsic physicochemical

properties, and the differences in the composition and structure of

substances result in the selective absorption and emission of photons

of different wavelengths within the substance. Presently, HSI serves as

a non-destructive and expeditious analytical tool across various

domains, including medical diagnosis (Bjorgan and Randeberg,

2015), food industry (Ma et al., 2019), fruit damage and disease

detection (Tian et al., 2020; Yadav et al., 2022; Jiang et al., 2023), and

plant seed analysis (Zhu et al., 2019). HSI has proven to be an effective

technique for non-destructive seed quality testing by many scholars.

For instance, Tu et al. (Tu et al., 2022) used HSI to detect similar

maize authenticity. Zou et al. (Zou et al., 2023) employed HSI to

gauge peanut seed vigor. In addition, Yoo et al. (Yoosefzadeh-

Najafabadi et al., 2021) used HSI for soybean yield prediction.

Zhang et al. (Zhang et al., 2022) Used HSI to detect hybrid wheat

seed purity. Lu et al. (Lu et al., 2022) ingeniously combined HSI with

deep convolutional generative adversarial networks to predict the oil

content of individual corn kernels. Yu et al. (Yu et al., 2016) effectively

measured fat content in peanuts (R2
p = 0.84 and SEP = 1.88) and Ma

et al. (Ma et al., 2021) further devised a streamlined model for the

non-destructive assessment of protein content in rice, achieving
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notable success (R2
p = 0.8011 and RMSEP = 0.52). All of these

studies demonstrated the feasibility of detecting seed quality based

on HSI. However, few studies have been reported on HSI detection of

the internal quality of flaxseed. Leomara Floriano Ribeiro et al.

employed infrared reflectance spectroscopy and multivariate

correction to predict linolenic and linoleic acid content in flaxseed,

achieving prediction sets with R2
p values as high as 0.90 and 0.86

(Ribeiro et al., 2013). While this method achieves high accuracy, it is

limited to determining the content of linolenic and linoleic acids in

only two types of flaxseed. Currently, with over 5,000 flax varieties in

commercial cultivation, each exhibiting significant variations in

nutrient composition, the method lacks generalizability and

stability, rendering it ineffective for the determination of other

species. Party Zhao et al. used near infrared analysis technology to

determine the quality of flax germplasm resources, and Ye Jiali et al.

used non-destructive near infrared spectroscopy to quantitatively

analyze the content of flax seed protein, linolenic acid, and lignan

(Dang and Zhao, 2008; Ye et al., 2021). The above three non-

destructive tests on the nutritional quality of flaxseed are used in

the infrared spectrometer wavelength range of 1100-2500 nm, 900-

1700 nm, and 1000-2499 nm. The wavelength range of the imaging

instrument, although high precision, the cost is expensive; the

processing and operation of the process are both complex and

professional, and it is not only not applicable to field operations

but also general scientific researchers and flax planting researchers

cannot be realized. In addition, these methods might not completely

capture the internal features of the specimen, and they are solely

employed to acquire spectral details from a solitary point source. The

uniformity of the sample distribution consistently influences this and

may not be the optimal selection. (Ozaki, 2021; Hu et al., 2023).

This project is dedicated to studying the 400-1000nm spectral

range of flaxseed nutritional quality detection to fill the existing

band range of research gaps. The spectral range of imaging

instruments is relatively common and inexpensive. General

researchers and flax planting researchers can easily buy and use.

This study simultaneously analyzed the flaxseed protein, oil

content, linoleic acid, and lignans’ 4 nutrient content. Common

reports of up to 3 nutrients have been analyzed in the literature.

From the results of the literature available from multiple sources, it

is the first time that the content of four nutrients was analyzed

simultaneously. Additionally, comprehensively detecting multiple

indicators of flaxseed allows for a more integrated assessment of its

quality. Various nutrients in flaxseed are interconnected; therefore,

solely predicting a single nutritional indicator is insufficient for

quality measurement. Practical significance is achieved only

through a simultaneous and comprehensive evaluation of several

indicators. This integrated research approach contributes to a more

thorough, systematic understanding and utilization of the potential

value of flaxseed. Thus, this study seeks to establish a non-

destructive and expeditious method utilizing HSI for detecting

protein content, oil content, linoleic acid, and lignan in flaxseed.

The primary research objectives encompass: (1) establish a PLSR

prediction model of flaxseed protein content based on raw and

preprocessed spectra and determine the optimal preprocessing

method through model evaluation; (2) construct prediction

models for flaxseed protein, oil content, linoleic acid, and lignan
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based on distinctive wavelengths extracted by SPA and CARS, using

PLSR, PCR, SVR, and MLR. The selection of the optimal prediction

model for flaxseed protein, oil content, linoleic acid, and lignan

relies on R2
p and RMSEP values to achieve swift, non-destructive,

and precise nutritional quality prediction; (3) identifying

characteristic spectral bands pertinent to protein, oil content,

linoleic acid, and lignan in flaxseed based on the most

effective model.
2 Materials and methods

2.1 Experimental materials

As shown in Table 1, thirty flaxseed varieties, extensively

cultivated in Northwest China, were selected for the study. Seed

samples were obtained from the Gansu Academy of Agriculture’s

Crop Institute. All the varieties were harvested in 2022 from the

experimental field of Lanzhou New District, Gansu Province,

China, situated at an altitude of 1520 m above sea level (103°

72’E,36°03’N). To limit water absorption, the flaxseeds were stored

in sealed paper bags. Every sampling session involved collecting fifty

intact and undamaged flaxseeds from each variety. Following

acquiring hyperspectral images, they were immediately dispatched

to the Gansu Academy of Agricultural Sciences in China to analyze

protein, oil content, linoleic acid, and lignan for each variety.
2.2 Hyperspectral image capture

2.2.1 Hyperspectral imaging system
The Gaia Field portable hyperspectral system (Sichuan Dualix

Spectral Imaging Technology Co., Ltd) is shown in Figure 1, which

includes GaiaField-V10E hyperspectral camera, 2048×2048 pixels

imaging lens, HSI-CT-150×150 standard whiteboard (PTFE),

HSIA-DB indoor imaging dark box, four groups of shadowless
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lamp light source, HSIA-TP-L-A tripod rocker set, and

hyperspectral data acquisition software Spec View. The spectral

range is 380-1018 nm, spectral bands are 320, spectral resolution is

2.8 nm, the numerical aperture is F/2.4, slit size is 30 mm× 14.2 mm,

the detector is SCMOS, and the imaging mode is built-in push-scan,

autofocus, and dynamic range is 14 bits. The core components of the

hyperspectral equipment include a standardized light source, a

spectral camera, an electronically controlled mobile platform, a

computer, and control software. The working principle is that the

system adopts the push-scan imaging mode, the surface array detector

and the imaging spectrometer are combined, and under the drive of

the scanning control electric moving platform, the slit of the imaging

spectrometer and the focal plane of the imaging lens undergoes

relative motion, the detector collects real-time information relative

to the line target, and finally splices into a complete cube of data.

2.2.2 Image acquisition and calibration
Enact the hyperspectral instrument switch and the dark box

light source before image acquisition. Allow a 30-minute warm-up

period, then configure the instrument parameters, setting the

camera exposure time to 49ms, gain to 2, frame rate to

18.0018Hz, and forward speed to 0.00643cm/s. We have selected

a total of 30 varieties of flaxseed; for each variety of hyperspectral

images were collected a total of three times, each time from the

corresponding varieties of randomly selected 50 seeds placed in the

dark box on the mobile platform, as shown in Figure 1, and then

these 50 seeds as the same ROI, to get an average spectral curve of

these 50 seeds. After one acquisition for each variety, the sample

under test was re-poured into the sample bag and shaken manually.

Then, 50 seeds were randomly taken out for the subsequent image

acquisition of that variety, repeated three times to get three average

spectral curves and a total of 150 seeds were scanned. Ninety

acquisitions were made for 30 varieties, with 4,500 seeds scanned,

and 90 average spectral curves were obtained. After completing the

acquisition, the original hyperspectral images underwent black-

and-white correction to eliminate dark current noise introduced
TABLE 1 Flaxseed varieties.

No. Variety No. Variety No. Variety

1 Onyc 11 Hua Ya 5 21 Yi Ya 3

2 Shuang You Ma 1 12 Hua Ya 6 22 Ba Ya 18

3 Shuang Ya 12 13 Ding Ya 17 23 Ba 14

4 Shuang Ya 14 14 Hei Ya 2 24 901 Ba Ya 15

5 Shuang Ya 15 15 Ning Ya 10 25 139 Ba Ya 17

6 Zhang Ya 3 16 Ba 9 26 Hua Ya 1

7 Ba 6 17 Ba 11 27 Hua Ya 2

8 Ba 5 18 Gan Ya 3 28 Hua Ya 3

9 Ba 4 19 Yan Za 10 29 Hua Ya 4

10 Ba 3 20 Jin Ya 7 30 Ba 2
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by the camera. (Wang et al., 2022). The black-and-white correction

formula is shown in Equation (1):

Ic =
Iraw − Idark
Iwhite − Idark

(1)

Where Iraw is the raw image, Iwhite is the white reference image,

Idark is the dark reference image, and Ic is the calibrated image.

In order to extract the spectral information from the corrected

hyperspectral image, the 50 flax seed region in a single image was

used as the region of interest, and the spectral information was

extracted, as shown in Figure 2. Firstly, the regions of interest (ROIs)

of flax seeds and background were created separately in ENVI5.3

software, and then according to the different ROIs, the flax seeds and

background were classified using support vector machine (SVM) in

supervised classification and transformed into vectors, followed by

masking process and transformed into mask images. Applying the

mask image to the original hyperspectral image separates the
Frontiers in Plant Science 04
hyperspectral image of all the flaxseed sample regions from the

background to get the region of interest for the whole sample.

Finally, it calculates the average of the spectra of all the flaxseeds

on the hyperspectral image as the spectrum of that sample.
2.3 Sample Content Determination
and Segmentation

The protein, oil content, linoleic acid, and lignan contents of 30

varieties of flaxseed were determined by the Gansu Academy of

Agricultural Sciences in China. Sample set partitioning based on

joint X - Y distances (SPXY) (Liu et al., 2011) was employed to

allocate flaxseed protein, oil content, linoleic acid, and lignan into

modeling and prediction sets at a 2:1 ratio. The reasonableness of

the sample division was assessed by calculating the samples’

maximum, minimum, average, and standard deviation in the
A B

DEF

C

FIGURE 2

Sample hyperspectral image classification mask and spectral extraction flowchart. (A) Hyperspectral image; (B) Classification image; (C) Mask image;
(D) Application mask image; (E) Region of interest image; (F) Average spectral curve.
FIGURE 1

The hyperspectral imaging system.
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training and prediction sets (Shao et al., 2020). The results are

shown in Table 2. The maximum and minimum values of the

training set for protein, oil content, and lignan included the

prediction set, and the minimum values of the training set for

linoleic acid and the prediction set were almost the same. Therefore,

the overall division of the sample set is deemed reasonable.
2.4 Spectral preprocessing methods

During the acquisition of raw spectral data, it is often subject to

various noise interferences, such as instrumental noise and

environmental interference. In order to improve the quality and

analyzability of the data, the extracted spectral information better

reflects the changes in the sample curves to ensure that accurate and

reliable results are obtained when building predictive models or

conducting analyses. Therefore, it is necessary to pre-process the

raw spectra to eliminate the noise as much as possible or reduce the

influence of other environmental factors on the spectral

information. The study employed various preprocessing

techniques (Savitzky-Golay (SG) smoothing, normalization,

baseline, standard normal variable correction (SNV), moving

average (MA), multiple scattering correction (MSC), and first-

order derivative (1st Der)) on the raw flaxseed spectra (Aulia

et al., 2023). SG is mainly used to achieve the effect of smoothing

curves and reducing noise by fitting local polynomials to

the original spectra using a sliding window; Normalize can

normalizes the spectral data to the same scale, which usually

scales the value of each wavelength to a value between 0 and 1. It

is mainly used to eliminate intensity differences due to differences in

spectral measurement instruments, measurement conditions, and

other factors; Baseline is based on the principle of removing baseline

fluctuations in the spectrum due to instrumental drift, background

changes, and other reasons, and can be used to improve the

accuracy of the data; SNV is standardized by calculating the ratio

of the spectral value at each wavelength to the mean and standard

deviation of all spectral values at that wavelength; The aim is to

reduce the intensity differences in the spectra and highlight the

chemical information; MA focuses on averaging the spectral data

over a sliding window to reduce high-frequency noise and smooth

the spectral curves; MSC is based on the principle of correcting for

multiple scattering by comparing the spectral data with a selected

reference spectrum. This includes fitting each spectrum to the mean
Frontiers in Plant Science 05
using least squares regression and calculating the preprocessed data

by decomposing the slope and intercept of the regression. The aim

is to reduce the effect of multiple scattering and emphasize the

chemical information to improve the accuracy of quantitative

analysis; 1st Der is to perform first-order derivative operations on

the spectral data to highlight the rate of change of the spectral lines,

enhance the peaks and valleys in the spectra, and highlight spectral

line features. Subsequently, a PLSR prediction model for the

protein content of flaxseed was established based on the raw and

pretreatment spectra, and the optimal pretreatment method was

determined by model evaluation.
2.5 Feature band extraction methods

Various sources frequently disrupt raw spectral data

acquisition. Since the full spectrum contains 320 wavelength

variables, not all wavelengths are useful for the analysis task.

Extracting characteristic wavelengths reduces data dimensions,

eliminates redundancy, and enhances modeling efficiency and

performance. This study employs the successive projections

algorithm (SPA) and the competitive adaptive reweighted

sampling (CARS) algorithm for wavelength feature extraction.

SPA algorithm is a forward looping feature variable selection

method, which is a method of selecting feature wavelengths by

calculating the correlation between each wavelength and the target

variable, which is capable of filtering out the invalid information

and greatly reducing the influence of covariance among the data.

SPA has intuition and simplicity for the downscaling and feature

selection of spectral data, which makes the model easier to interpret

and understand (Li et al., 2023). CARS is an innovative variable

selection algorithm proposed by Li (Li et al., 2009). At the same

time, CARS is also a commonly used method for selecting the

characteristic wavelengths, which firstly utilizes the PLS model to

screen the wavelengths with large regression coefficients and then

optimally selects the wavelengths with the smallest root-mean-

square error through ten-fold cross-validation A subset of

wavelengths is selected through ten-fold cross-validation, and the

most critical variable for the prediction target is selected as the

wavelength. The CARS algorithm is more flexible and adaptive than

the traditional weighting methods, which helps to retain more

useful information. In addition, CARS can more fully consider

the correlation between wavelengths, thus better reflecting the
TABLE 2 Flaxseed protein, oil content, linoleic acid, and lignan sample set contents.

Sample set
Protein Oil content Linoleic acid Lignan

Cal Pre Cal Pre Cal Pre Cal Pre

Number of samples 60 30 60 30 60 30 60 30

Maximum (%) 28.46 27.76 40.9 40.5 13.81 13.58 11.06 8.39

Minimum (%) 23.01 23.07 33.38 34.65 9.93 9.92 4.79 5.67

Average (%) 25.1 25.21 36.5 36.4 11.96 11.93 8.14 7.38

Standard deviation 1.54 1.28 1.62 1.5 0.86 0.82 1.49 0.71
fr
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characteristics of the data. In hyperspectral data, the CARS

algorithm helps select representative characteristic wavelengths

more comprehensively, considering that there may be complex

relationships between wavelengths (Xu et al., 2022).
2.6 Modeling methods

Partial least squares regression (PLSR) is a multivariate

statistical method (Wang et al., 2019). PLSR models the spectral

data by minimizing the covariance between the spectral data and

the target variable. It achieves data downscaling by introducing

latent variables and then regressing these latent variables on the

target variables.

Support vector regression (SVR) can fit data quickly (Xiang

et al., 2022), and it deals with nonlinear relationships by mapping

the data into a high-dimensional space and then constructing a

linear regression model in that space.

Principal component regression (PCR) models spectral data by

downscaling them into principal components to explain the

variance of the spectral data and predict the target variable

(Mahesh et al., 2015).

Multiple linear regression (MLR) is a conventional linear

regression method that establishes the relationship between

multiple independent variables and the dependent variable. In

MLR, each wavelength is treated as a predictor variable, and the

model tries to find a linear combination between these variables to

fit the target variable best. However, MLR modeling only applies

when the number of variables is less than the number of samples.
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Consequently, in this study, only wavelengths extracted by CARS

and SPA algorithms were used for modeling (Rajkumar et al., 2012).
2.7 Software and model assessment

Besides using Spec view software for hyperspectral image

acquisition and ENVI 5.3 for spectrum extraction, we utilized 3ds

Max to construct a 3D model of the HSI system. Unscrambler X

handled spectrum preprocessing and model building, while

MATLAB R2021b extracted the featured wavelengths and plotted

the waveforms. This paper assesses the model’s performance using

various evaluation metrics, including the cross-validation correlation

coefficient (R2
cv) and root mean square error (RMSECV), the

calibration set correlation coefficient (R2
c) and root mean square

error (RMSEC), and the prediction set correlation coefficient (R2
p)

and root mean square error (RMSEP) (Zhang and Guo, 2020). The

calculation process is detailed in Equation (2) and Equation (3). A

well-performing model is characterized by high R2
cv, R

2
c , or R

2
p values

and low RMSECV, RMSEC, or RMSEP values. These metrics gauge

the model’s fitting and prediction capabilities, ensuring it excels in

data fitting and new data prediction. The processing of the whole

experiment is shown in Figure 3.

R2 = 1 −o
n
i−1(yi − ŷ i)

2

on
i−1(yi − y

−

i)
2

(2)

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
no

n
i−1(yi − ŷ i)

2

r
(3)
A B

FIGURE 3

Experimental procedure. (A) Process of raw hyperspectral image acquisition and ROI extraction. (B) Spectral preprocessing, feature extraction, and
modeling processes.
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3 Results and analyses

3.1 Spectral characterization and selection
of optimal preprocessing

Figure 4 shows the average spectra of 30 different flaxseed varieties

and the average spectra of 7 pre-treatments containing a total of 4,500

samples. As evident from Figure 4A, the average spectral profiles of

various flaxseed varieties exhibit a consistent trend. However, notable

deviations appear in the 450-800nm range, likely attributable to

variations between flaxseed varieties. Further studies revealed that the
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average spectral profile of flaxseed has a significant reflectance peak at

420 nm, which is mainly caused by carotenoids (Yang et al., 2021). In

addition, the spectral profile shows a clear upward trend in the range of

600-750 nm, which is attributed to the fact that this wavelength

corresponds to the vibration of the N-H chemical bond of amino

acids in the seeds (Xu et al., 2022). The absorption peak near 980 nm

originates from the O-H stretching vibration, which is related to the

structure of water molecules (Yu et al., 2014).

To minimize the influence of noise and irrelevant information

in spectral data, preprocessing of raw spectral information is

essential. The Partial Least Squares Regression (PLSR) model
A B

D

E F

G H

C

FIGURE 4

Flaxseed spectral reflectance curves. (A) Raw spectral curve of flaxseed; (B) SG preprocess spectral curve of flaxseed; (C) Normalize preprocess
spectral curve of flaxseed; (D) Baseline preprocess spectral curve of flaxseed; (E) SNV preprocess spectral curve of flaxseed; (F) MA preprocess
spectral curve of flaxseed; (G) MSC preprocess spectral curve; (H) 1stDer preprocess spectral curve.
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comprehensively addresses the relationship between independent

and dependent variables, even in scenarios of significant

multicollinearity. The PLSR model for predicting flaxseed

protein content identifies the best preprocessing method using

stochastic cross-validation, employing Cross-validation set R2
cv

and RMSECV as model evaluation metrics. Figure 5 illustrates

that, among the PLSR models predicting flaxseed protein content

without pretreatment and with seven different pretreatment

methods, the SG-PLSR model offered superior results, displaying

a R2
cv value of 0.8394 and an RMSECV value of 0.6010. Thus, the

SG pretreatment method was adopted for further feature

extraction in predicting oil content, linoleic acid, and

lignan content.
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3.2 Results of feature extraction

Figures 6A, B shows the wavelength distribution of flaxseed

protein characteristics selected by the SPA algorithm, specifying the

number of variables N = 1 to 30. When the variable is 14, the RMSE

value is the smallest. Therefore, the final number of wavelengths

selected is 14, accounting for 4.3% of the total number of

wavelengths. These wavelengths, displayed in Figure 6B,

correspond to the variables 391, 394, 405, 408, 424, 440, 465, 491,

640, 793, 842, 902, 990 nm and 1014 nm, respectively.

Figure 7 shows the process of selecting the characteristic

wavelengths of flaxseed proteins by the CARS algorithm, which

includes the relationship between the number of sampling runs and
A B

D

E F

G H

C

FIGURE 5

Protein content prediction results of the PLSR model based on different preprocesses. (A) Raw-PLSR; (B) SG-PLSR; (C) Normalize-PLSR; (D)
Baseline-PLSR; (E) SNV-PLSR; (F) MA-PLSR; (G) MSC-PLSR; (H) 1stDer-PLSR.
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the number of selected wavelength variables, the relationship

between the RMSECV values and the relationship between the

regression coefficients path. This figure illustrates that the efficiency

of feature variable selection significantly improves from rough to

fine screening with the increased number of sampling runs.

Moreover, when the number of runs reached 21, RMSECV

minimized, selecting 33 characteristic wavelengths crucial for

predicting protein content. These wavelengths include 405, 408,
Frontiers in Plant Science 09
424, 438, 441, 465, 468, 494, 497, 501, 517, 519, 529, 569, 571, 574,

576, 593, 595, 598, 772, 844, 846, 880, 910, 931, 933, 958, 960, 986,

988, 1009 nm and 1014 nm, amounting to 10.3% of the total

wavelength. This process indicates removing substantial irrelevant

hyperspectral data and flaxseed protein content prediction in runs 1

to 20. The SPA and CARS methods were also used for characteristic

wavelength extraction in subsequent oil content, linoleic acid, and

lignan prediction modeling.
A B

FIGURE 6

SPA extraction of feature variables. (A) Trend of RMSE with feature variables, (B) Distribution of preferred feature variables.
FIGURE 7

The process of extracting feature variables by CARS.
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3.3 Results of modeling

3.3.1 Modeling of hyperspectral prediction of
protein content in flaxseed

After determining the protein content of 30 flaxseed varieties,

the original spectral data and the seven preprocessed data were

combined with the actual protein content data to establish the PLSR

prediction model of flaxseed protein. The cross-validation set R2
cv

and RMSECV were used as evaluation indexes to determine the best

preprocessing method. It was found that the model prediction of the

data model after SG preprocessing was the best; therefore, the SG

preprocessing method was used for the original spectral data to be

preprocessed. Subsequently, we utilized both feature bands and full-

band data extracted from the raw bands through SPA and CARS.

These data were then input into regression models, including PLSR,

SVR, PCR, and MLR, to predict flaxseed protein content. The

results of these predictions are presented in Table 3. An analysis

of the results in Table 3 indicates that the PLSR, SVR, and PCR

models, employing feature wavelengths extracted by the CARS

algorithm, outperformed the models relying on full-band spectra.

Specifically, they showed increased R2
p and decreased RMSEP

values. Conversely, the SPA algorithm did not enhance the

predictive performance and, in some cases, even reduced it. This

observation suggests that SPA trims information redundancy but

may also eliminate valuable information for accurate model

predictions. In summary, different algorithms extracting distinct

feature wavelengths significantly influence the effectiveness of the
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prediction models. The optimal model, SG-CARS-MLR, exhibited a

training set R2
c of 0.9563, an RMSEC value of 0.4892%, a prediction

set R2
p of 0.9336, and an RMSEP value of 0.5616%. The results for

flaxseed protein content prediction in both the training and

prediction sets are illustrated in Figure 8A. The other two models,

SG-CARS-PLSR and SG-CARS-PCR (Figures 8B, C), also provided

reasonably accurate protein content predictions, with R2
p values of

0.8930 and 0.8671, and RMSEP values of 0.4189% and 0.4670%,

respectively. These findings confirm that the combination of

HSI and the SG-CARS-MLR model delivers strong predictive

performance for different flaxseed varieties’ protein content.

Finally, characteristic bands associated with significant protein

influence were identified using the SG-CARS-MLR model

(Figure 9). Generally, when the absolute t-value surpasses a

specific threshold (usually 2.0), it indicates the significant impact

of a corresponding independent variable on the dependent variable.

In this context, Figure 8 shows that the bands at 595 and 772 nm

exceed this threshold, signifying their substantial influence on the

MLR model for protein content prediction.

3.3.2 Hyperspectral prediction modeling of oil
content, linoleic acid and lignan in flaxseed

The prediction results for oil content, linoleic acid, and lignan

content of flaxseed are presented in Table 4. The MLR model

performs better than the PLSR, PCR, and SVR models. The R2
p

values of PLSR, PCR, and SVR regression algorithms are all less

than 0.8, indicating these models aren’t suitable for predicting the
TABLE 3 Protein prediction result table.

Modeling
method

Feature
extraction
method

Number
of
feature
variables

Cal Pre

R2 RMSEC R2 RMSEP

Protein

PLSR

Non 320 0.9376 0.3848 0.7950 0.5800

SPA 14 0.8933 0.5032 0.8197 0.5438

CARS 33 0.9357 0.3907 0.8930 0.4189

SVR

Non 320 0.9546 0.3193 0.6366 0.9233

SPA 14 0.9546 0.3193 0.6639 0.8845

CARS 33 0.8632 0.6024 0.8061 0.7091

PCR

Non 320 0.6188 0.9512 0.4605 0.9408

SPA 14 0.5479 1.0359 0.4282 0.9686

CARS 33 0.9206 0.4340 0.8671 0.4670

MLR

Non 320 * * * *

SPA 14 0.9010 0.5597 0.9329 0.5642

CARS 33 0.9563 0.4892 0.9336 0.5616
fro
Represents that MLR modeling under 320 bands was not performed because MLR modeling is only applicable when the number of variables is less than the number of samples. Bold values
indicate optimal model metrics.
ntiersin.org

https://doi.org/10.3389/fpls.2024.1344143
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhu et al. 10.3389/fpls.2024.1344143
A

B

C

FIGURE 8

The optimal prediction of proteins based on (A) MLR, (B) PLSR, and (C) PCR models.
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TABLE 4 Oil content, Linoleic acid, and lignan prediction result table.

Modeling
method

Feature
extraction
method

Number of
feature variables

Cal Pre

R2 RMSEC R2 RMSEP

Oil content

PLSR

Non 320 0.7401 0.826 0.6864 0.8397

SPA 20 0.5218 1.1205 0.6058 0.9413

CARS 10 0.6678 0.9339 0.6438 0.8948

SVR

Non 320 0.94 0.3952 0.5884 1.0305

SPA 20 0.9399 0.3953 0.5884 1.0305

CARS 10 0.94 0.3953 0.5884 1.0306

PCR

Non 320 0.5835 1.0458 0.6002 0.9481

SPA 20 0.5917 1.0353 0.6077 0.939

CARS 10 0.6866 0.9071 0.6572 0.8779

MLR

Non 320 * * * *

SPA 20 0.7675 0.9691 0.8565 0.8682

CARS 10 0.6876 1.0022 0.8532 0.8779

Linoleic acid

PLSR

Non 320 0.7204 0.4550 0.5502 0.5497

SPA 20 0.6871 0.4813 0.5490 0.5504

CARS 16 0.6404 0.5160 0.4495 0.6081

SVR

Non 320 0.9461 0.1977 0.7363 0.4516

SPA 20 0.9462 0.1977 0.7362 0.4516

CARS 16 0.9462 0.1977 0.7362 0.4516

PCR

Non 320 0.6474 0.5110 0.5381 0.557

SPA 20 0.4604 0.6320 0.3418 0.6649

CARS 16 0.6564 0.5043 0.4381 0.6143

MLR Non 320 * * * *

(Continued)
F
rontiers in Plant Science
 12
 fro
FIGURE 9

Significance map of MLR model for CARS extracted feature bands.
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aforementioned contents in flaxseed. The extraction of feature

wavelengths by SPA and CARS algorithms appears applicable to

the MLR model. Specifically, the SG-SPA-MLR models perform

better than SG-CARS-MLR in predicting oil content, linoleic acid,

and lignan. For instance, the R2
p and RMSEP for oil content are

0.8565 and 0.8682%, and for linoleic acid are 0.8028 and 0.5404%,

respectively. In contrast, the best model in literature predicting oil

content for rapeseed seeds had an R2
p and RMSEP of 0.868 and

1.0698% (Li et al., 2023), respectively. Furthermore, lignan content

was predicted with R2
p and RMSEP of 0.9343 and 0.5834%,

respectively. Studies suggest that feature wavelengths derived

from SPA and CARS algorithms enhance the predictive

performance of MLR models, as observed in the prediction of

moisture content of tobacco leaves (Sun et al., 2016) and the use

of hyperspectral image technology for egg freshness detection

(Wang et al., 2015). The scatter plots for the three types of

flaxseed nutritional quality in both training and prediction sets

are depicted in Figure 10, indicating the superior predictive

performance of the SG-SPA-MLR model. Even though the R2
p for

linoleic acid in the prediction set is 0.8028, the RMSEP is 0.5404%,

affirming the model’s aptness for prediction. Finally, Figure 11

highlights the importance of SPA-extracted feature bands in the

MLR model. Figures 11A, C underscore the significance of these

bands in predicting oil and lignin content. Notably, in Figure 11C,

the MLR model predicts 18 feature bands with t-values greater than

2.0 in lignin content. These bands primarily appear around 470 nm

(related to nitrogen content) (Li et al., 2022) and 800 nm (related to
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oxygen content) (Yuan et al., 2021), demonstrating the SG-SPA-

MLR model’s superior prediction of lignan content.

This project employs HSI technology within the 380-1018nm

spectral range to gather data from flax seeds. The PLSR model

cross-validation is then utilized to select the optimal pre-processing

method, SG. Subsequently, characteristic wavelengths are extracted

employing SPA and CARS algorithms. Finally, the spectral data

corresponding to these characteristic wavelengths are combined

with the protein, oil content, linoleic acid, and lignan acquired from

the flax seeds through biochemical methods. This integration

constructs four nutritional quality prediction models (SG-CARS/

SPA-MLR) for rapid and non-destructive testing. The models

achieve a prediction accuracy exceeding 0.93 for protein and

lignan content, surpassing 0.85 for oil content. Although the

linoleic acid content prediction accuracy is slightly lower, it still

exceeds 0.80. These results fully address the requirements of

practical production for rapid, non-destructive detecting of the

nutritional quality of flaxseed grain.
4 Conclusions

The protein, oil content, linoleic acid, and lignan are

crucial indicators for evaluating the quality of flaxseed. This

study aimed to construct a model for the rapid and non-

destructive detection of these components in flaxseed using

HSI technology. Through experimental comparisons of various
TABLE 4 Continued

Modeling
method

Feature
extraction
method

Number of
feature variables

Cal Pre

R2 RMSEC R2 RMSEP

SPA 20 0.7489 0.5728 0.8028 0.5404

CARS 16 0.6740 0.5803 0.7286 0.6340

Lignan

PLSR

Non 320 0.8597 0.5562 0.6626 0.8057

SPA 29 0.5404 1.0067 0.5103 0.9707

CARS 24 0.6362 0.8957 0.5475 0.9331

SVR

Non 320 0.9761 0.2688 0.6136 0.9082

SPA 29 0.8464 0.6738 0.5177 1.0478

CARS 24 0.9400 0.3953 0.5884 1.0306

PCR

Non 320 0.3959 1.1542 0.5105 0.9705

SPA 29 0.5387 1.0086 0.4346 1.0430

CARS 24 0.6249 0.9094 0.4880 0.9926

MLR

Non 320 * * * *

SPA 29 0.9024 0.6562 0.9343 0.5384

CARS 24 0.7635 0.9455 0.8285 0.8697
fro
Represents that MLR modeling under 320 bands was not performed because MLR modeling is only applicable when the number of variables is less than the number of samples. Bold values
indicate optimal model metrics.
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FIGURE 10

Predicted results of oil content, linoleic acid, and lignan content based on the optimal model SG-SPA-MLR. (A) Oil content prediction results.
(B) Results of linoleic acid content prediction. (C) Prediction results of lignan content.
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spectral image preprocessing methods and feature wavelength

extraction algorithms, the preferred model achieved swift and

non-destructive detection of protein, oil content, linoleic acid,

and lignan in flaxseed grains, yielding better results. This

research introduces a novel method for the future investigation

of rapid, non-destructive, and high-precision detection of

nutritional quality in different flaxseed varieties, enhancing the

efficiency of screening and evaluating flax germplasm resources.

The study’s results hold positive practical significance for the

sustainable development of the flax industry and the selection

and breeding of high-quality flax varieties.
Frontiers in Plant Science 15
Data availability statement

The original contributions presented in the study are included

in the article/supplementary material. Further inquiries can be

directed to the corresponding author.
Author contributions

DZ: Conceptualization, Data curation, Methodology, Software,

Writing – original draft. JH: Conceptualization, Investigation,
A

B

C

FIGURE 11

Significance map of MLR model for CARS extracted feature bands. (A) Significance map of the characteristic band of oil content; (B) Significance
map of the characteristic band of linoleic acid; (C) Significance map of the characteristic band of lignan.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1344143
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhu et al. 10.3389/fpls.2024.1344143
Resources, Supervision, Writing – review & editing. CL: Funding

acquisition, Resources, Supervision, Writing – review & editing. JZ:

Data curation, Resources, Writing – review & editing. YQ: Data

curation, Resources, Writing – review & editing.
Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. National

Natural Science Foundation of China (No.32360437); Innovation

Fund for Higher Education of Gansu Province(No.2021A-056);

Industrial Support Program for Higher Education Institutions of

Gansu Province (No.2021CYZC-57).
Frontiers in Plant Science 16
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
References
Aulia, R., Amanah, H. Z., Lee, H., Kim, M. S., Baek, I., Qin, J., et al. (2023). Protein
and lipid content estimation in soybeans using Raman hyperspectral imaging. Front.
Plant Sci. 14. doi: 10.3389/fpls.2023.1167139

Bjorgan, A., and Randeberg, L. L. (2015). Towards real-time medical diagnostics using
hyperspectral imaging technology. Eds. J. Q. Brown and V. Deckert (Munich, Germany:
European Conference on Biomedical Optics), 953712. doi: 10.1117/12.2184155

Dang, Z., and Zhao, L. (2008). Application of the near infrared reflectance
spectroscopy (NIRSin analyzing flaxseed germplasm quality. Acta Agric. Boreali-
Occident. Sin. 17, 110–113.

Feng, X., Li, G., Song, J., and Shao, H. (2016). Determination of lignan in flaxseed by
HPLC. Anim. Husb. Feed Sci. 37, 17–18+22. doi: 10.16003/j.cnki.issn1672-5190.2016.12.005

Goyal, A., Sharma, V., Upadhyay, N., Gill, S., and Sihag, M. (2014). Flax and flaxseed
oil: an ancient medicine & modern functional food. J. Food Sci. Technol. 51, 1633–1653.
doi: 10.1007/s13197-013-1247-9

Hu, H., Wang, T., Wei, Y., Xu, Z., Cao, S., Fu, L., et al. (2023). Non-destructive
prediction of isoflavone and starch by hyperspectral imaging and deep learning in
Puerariae Thomsonii Radix. Front. Plant Sci. 14. doi: 10.3389/fpls.2023.1271320

Jiang, M., Li, Y., Song, J., Wang, Z., Zhang, L., Song, L., et al. (2023). Study on black
spot disease detection and pathogenic process visualization on winter jujubes using
hyperspectral imaging system. Foods 12, 435. doi: 10.3390/foods12030435

Katare, C., Saxena, S., Agrawal, S., Prasad, G., and Bisen, P. S. (2012). Flax seed: a
potential medicinal food. J. Nutr. Food Sci. 2, 120–127.

Li, H., Liang, Y., Xu, Q., and Cao, D. (2009). Key wavelengths screening using
competitive adaptive reweighted sampling method for multivariate calibration. Anal.
Chim. Acta 648, 77–84. doi: 10.1016/j.aca.2009.06.046

Li, X., Peng, F., Wei, Z., Han, G., and Liu, J. (2023). Non-destructive detection of
protein content in mulberry leaves by using hyperspectral imaging. Front. Plant Sci. 14.
doi: 10.3389/fpls.2023.1275004

Li, M., Zhu, X., Li, W., Tang, X., Yu, X., and Jiang, Y. (2022). Retrieval of nitrogen
content in apple canopy based on unmanned aerial vehicle hyperspectral images using
a modified correlation coefficient method. Sustainability 14, 1992. doi: 10.3390/
su14041992

Liu, F., Jin, Z. L., Naeem, M. S., Tian, T., Zhang, F., He, Y., et al. (2011). Applying
near-infrared spectroscopy and chemometrics to determine total amino acids in
herbicide-stressed oilseed rape leaves. Food Bioprocess Technol. 4, 1314–1321.
doi: 10.1007/s11947-010-0445-y

Lu, Y., Jia, B., Yoon, S.-C., Zhuang, H., Ni, X., Guo, B., et al. (2022). Spatio-temporal
patterns of Aspergillus flavus infection and aflatoxin B1 biosynthesis on maize kernels
probed by SWIR hyperspectral imaging and synchrotron FTIR micro spectroscopy.
Food Chem. 382, 132340. doi: 10.1016/j.foodchem.2022.132340

Ma, C., Ren, Z., Zhang, Z., Du, J., Jin, C., and Yin, X. (2021). Development of
simplified models for nondestructive testing of rice (with husk) protein content using
hyperspectral imaging technology. Vib. Spectrosc. 114, 103230. doi: 10.1016/
j.vibspec.2021.103230

Ma, J., Sun, D.-W., Pu, H., Cheng, J.-H., and Wei, Q. (2019). Advanced techniques
for hyperspectral imaging in the food industry: principles and recent applications.
Annu. Rev. Food Sci. Technol. 10, 197–220. doi: 10.1146/annurev-food-032818-121155

Mahesh, S., Jayas, D. S., Paliwal, J., andWhite, N. D. G. (2015). Comparison of partial
least squares regression (PLSR) and principal components regression (PCR) methods
for protein and hardness predictions using the near-infrared (NIR) hyperspectral
images of bulk samples of Canadian wheat. Food Bioprocess Technol. 8, 31–40.
doi: 10.1007/s11947-014-1381-z

Meng, D., Ji, Z., and Ren, L. (2001). Determination of linoleic acid in grain by
underivatized high performance liquid chromatography. Anal. Test. Technol. Instrum.
71–74.

Mueller, K., Eisner, P., and Kirchhoff, E. (2010). Simplified fractionation process for
linseed meal by alkaline extraction – Functional properties of protein and fiber
fractions. J. Food Eng. 99, 49–54. doi: 10.1016/j.jfoodeng.2010.01.036

Oomah, B. D. (2001). Flaxseed as a functional food source. J. Sci. Food Agric. 81, 889–
894. doi: 10.1002/jsfa.898

Ozaki, Y. (2021). Infrared spectroscopy—Mid-infrared, near-infrared, and far-
infrared/terahertz spectroscopy. Anal. Sci. 37, 1193–1212. doi: 10.2116/analsci.20R008

Rajkumar, P., Wang, N., EImasry, G., Raghavan, G. S. V., and Gariepy, Y. (2012).
Studies on banana fruit quality and maturity stages using hyperspectral imaging. J. Food
Eng. 108, 194–200. doi: 10.1016/j.jfoodeng.2011.05.002

Ribeiro, L. F., Peralta-Zamora, P. G., Maia, B. H. L. N. S., Ramos, L. P., and Pereira-
Netto, A. B. (2013). Prediction of linolenic and linoleic fatty acids content in flax seeds
and flax seeds flours through the use of infrared reflectance spectroscopy and
multivariate calibration. Food Res. Int. 51, 848–854. doi: 10.1016/j.foodres.2013.01.061

Shao, Y., Wang, Y., Xuan, G., Gao, C., Wang, K., and Gao, Z. (2020). Visual detection
of SSC and firmness and maturity prediction for feicheng peach by using hyperspectral
imaging. Trans. Chin. Soc Agric. Mach. 51, 344–350.

Sun, J., Zhou, X., Wu, X., Zhang, X., and Li, Q. (2016). Identification of moisture
content in tobacco plant leaves using outlier sample eliminating algorithms and
hyperspectral data. Biochem. Biophys. Res. Commun. 471, 226–232. doi: 10.1016/
j.bbrc.2016.01.125

Tian, X., Fan, S., Huang, W., Wang, Z., and Li, J. (2020). Detection of early decay on
citrus using hyperspectral transmittance imaging technology coupled with principal
component analysis and improved watershed segmentation algorithms. Postharvest
Biol. Technol. 161, 111071. doi: 10.1016/j.postharvbio.2019.111071

Tu, K., Wen, S., Cheng, Y., Xu, Y., Pan, T., Hou, H., et al. (2022). A model for
genuineness detection in genetically and phenotypically similar maize variety seeds
based on hyperspectral imaging and machine learning. Plant Methods 18, 81.
doi: 10.1186/s13007-022-00918-7

Wang, Y., Guo, W., Zhu, X., and Liu, Q. (2019). Effect of homogenization on
detection of milk protein content based on NIR diffuse reflectance spectroscopy. Int. J.
Food Sci. Technol. 54, 387–395. doi: 10.1111/ijfs.13948

Wang, Z., Huang, W., Tian, X., Long, Y., Li, L., and Fan, S. (2022). Rapid and non-
destructive classification of new and aged maize seeds using hyperspectral image and
chemometric methods. Front. Plant Sci. 13. doi: 10.3389/fpls.2022.849495

Wang, Q., Zhou, K., Wang, C., and Ma, M. (2015). Egg freshness detection based on
hyperspectral image technology. Adv. J. Food Sci. Technol. 7, 652–657. doi: 10.19026/
ajfst.7.1623

Xiang, Y., Chen, Q., Su, Z., Zhang, L., Chen, Z., Zhou, G., et al. (2022). Deep learning
and hyperspectral images based tomato soluble solids content and firmness estimation.
Front. Plant Sci. 13. doi: 10.3389/fpls.2022.860656

Xu, Y., Wu, W., Chen, Y., Zhang, T., Tu, K., Hao, Y., et al. (2022). Hyperspectral
imaging with machine learning for non-destructive classification of Astragalus
membranaceus var. mongholicus, Astragalus membranaceus, and similar seeds.
Front. Plant Sci. 13. doi: 10.3389/fpls.2022.1031849
frontiersin.org

https://doi.org/10.3389/fpls.2023.1167139
https://doi.org/10.1117/12.2184155
https://doi.org/10.16003/j.cnki.issn1672-5190.2016.12.005
https://doi.org/10.1007/s13197-013-1247-9
https://doi.org/10.3389/fpls.2023.1271320
https://doi.org/10.3390/foods12030435
https://doi.org/10.1016/j.aca.2009.06.046
https://doi.org/10.3389/fpls.2023.1275004
https://doi.org/10.3390/su14041992
https://doi.org/10.3390/su14041992
https://doi.org/10.1007/s11947-010-0445-y
https://doi.org/10.1016/j.foodchem.2022.132340
https://doi.org/10.1016/j.vibspec.2021.103230
https://doi.org/10.1016/j.vibspec.2021.103230
https://doi.org/10.1146/annurev-food-032818-121155
https://doi.org/10.1007/s11947-014-1381-z
https://doi.org/10.1016/j.jfoodeng.2010.01.036
https://doi.org/10.1002/jsfa.898
https://doi.org/10.2116/analsci.20R008
https://doi.org/10.1016/j.jfoodeng.2011.05.002
https://doi.org/10.1016/j.foodres.2013.01.061
https://doi.org/10.1016/j.bbrc.2016.01.125
https://doi.org/10.1016/j.bbrc.2016.01.125
https://doi.org/10.1016/j.postharvbio.2019.111071
https://doi.org/10.1186/s13007-022-00918-7
https://doi.org/10.1111/ijfs.13948
https://doi.org/10.3389/fpls.2022.849495
https://doi.org/10.19026/ajfst.7.1623
https://doi.org/10.19026/ajfst.7.1623
https://doi.org/10.3389/fpls.2022.860656
https://doi.org/10.3389/fpls.2022.1031849
https://doi.org/10.3389/fpls.2024.1344143
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhu et al. 10.3389/fpls.2024.1344143
Yadav, P. K., Burks, T., Frederick, Q., Qin, J., Kim, M., and Ritenour, M. A. (2022).
Citrus disease detection using convolution neural network generated features and
Softmax classifier on hyperspectral image data. Front. Plant Sci. 13. doi: 10.3389/
fpls.2022.1043712

Yang, J., Sun, L., Xing, W., Feng, G., Bai, H., and Wang, J. (2021). Hyperspectral
prediction of sugarbeet seed germination based on gauss kernel SVM. Spectrochim.
Acta A. Mol. Biomol. Spectrosc. 253, 119585. doi: 10.1016/j.saa.2021.119585

Yao, S., Liao, M., Kang, J., Wei, Z., Liu, N., and REn, H. (2022). Optimization of
simultaneous extraction of oil, protein and gum from flaxseed by enzyme – assisted
three phase partitioning. China Oils Fats 47, 11–17. doi: 10.19902/j.cnki.zgyz.1003-
7969.210239

Ye, J., Jia, H., Guo, D., Yan, W., and Xie, L. (2021). Establishment and applicant of
near-infrared reflectance spectroscopy models for predicting protein, linolenic acid and
lignan contents offlaxseed. Chin. J. Oil Crop Sci. 43, 353–360. doi: 10.19802/j.issn.1007-
9084.2019308

Yoosefzadeh-Najafabadi, M., Earl, H. J., Tulpan, D., Sulik, J., and Eskandari, M.
(2021). Application of machine learning algorithms in plant breeding: predicting yield
from hyperspectral reflectance in soybean. Front. Plant Sci. 11. doi: 10.3389/
fpls.2020.624273

Yu, H., Liu, H., Wang, N., Yang, Y., Shi, A., Liu, L., et al. (2016). Rapid and visual
measurement of fat content in peanuts by using the hyperspectral imaging technique
with chemometrics. Anal. Methods 8, 7482–7492. doi: 10.1039/C6AY02029A
Frontiers in Plant Science 17
Yu, K.-Q., Zhao, Y.-R., Liu, Z.-Y., Li, X.-L., Liu, F., and He, Y. (2014). Application of
visible and near-infrared hyperspectral imaging for detection of defective features in
loquat. Food Bioprocess Technol. 7, 3077–3087. doi: 10.1007/s11947-014-1357-z

Yuan, Z., Ye, Y., Wei, L., Yang, X., and Huang, C. (2021). Study on the optimization
of hyperspectral characteristic bands combined with monitoring and visualization of
pepper leaf SPAD value. Sensors 22, 183. doi: 10.3390/s22010183

Zhang, Y., and Guo, W. (2020). Moisture content detection of maize seed based on
visible/near-infrared and near-infrared hyperspectral imaging technology. Int. J. Food
Sci. Technol. 55, 631–640. doi: 10.1111/ijfs.14317

Zhang, H., Hou, Q., Luo, B., Tu, K., Zhao, C., and Sun, Q. (2022). Detection of seed
purity of hybrid wheat using reflectance and transmittance hyperspectral imaging
technology. Front. Plant Sci. 13. doi: 10.3389/fpls.2022.1015891

Zhang, Z.-S., Wang, L.-J., Li, D., Li, S.-J., and Özkan, N. (2011). Characteristics of
flaxseed oil from two different flax plants. Int. J. Food Prop. 14, 1286–1296.
doi: 10.1080/10942911003650296

Zhu, S., Chao, M., Zhang, J., Xu, X., Song, P., Zhang, J., et al. (2019). Identification of
soybean seed varieties based on hyperspectral imaging technology. Sensors 19, 5225.
doi: 10.3390/s19235225

Zou, Z., Chen, J., Wu, W., Luo, J., Long, T., Wu, Q., et al. (2023). Detection of peanut
seed vigor based on hyperspectral imaging and chemometrics. Front. Plant Sci. 14.
doi: 10.3389/fpls.2023.1127108
frontiersin.org

https://doi.org/10.3389/fpls.2022.1043712
https://doi.org/10.3389/fpls.2022.1043712
https://doi.org/10.1016/j.saa.2021.119585
https://doi.org/10.19902/j.cnki.zgyz.1003-7969.210239
https://doi.org/10.19902/j.cnki.zgyz.1003-7969.210239
https://doi.org/10.19802/j.issn.1007-9084.2019308
https://doi.org/10.19802/j.issn.1007-9084.2019308
https://doi.org/10.3389/fpls.2020.624273
https://doi.org/10.3389/fpls.2020.624273
https://doi.org/10.1039/C6AY02029A
https://doi.org/10.1007/s11947-014-1357-z
https://doi.org/10.3390/s22010183
https://doi.org/10.1111/ijfs.14317
https://doi.org/10.3389/fpls.2022.1015891
https://doi.org/10.1080/10942911003650296
https://doi.org/10.3390/s19235225
https://doi.org/10.3389/fpls.2023.1127108
https://doi.org/10.3389/fpls.2024.1344143
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

	Modeling of flaxseed protein, oil content, linoleic acid, and lignan content prediction based on hyperspectral imaging
	1 Introduction
	2 Materials and methods
	2.1 Experimental materials
	2.2 Hyperspectral image capture
	2.2.1 Hyperspectral imaging system
	2.2.2 Image acquisition and calibration

	2.3 Sample Content Determination and Segmentation
	2.4 Spectral preprocessing methods
	2.5 Feature band extraction methods
	2.6 Modeling methods
	2.7 Software and model assessment

	3 Results and analyses
	3.1 Spectral characterization and selection of optimal preprocessing
	3.2 Results of feature extraction
	3.3 Results of modeling
	3.3.1 Modeling of hyperspectral prediction of protein content in flaxseed
	3.3.2 Hyperspectral prediction modeling of oil content, linoleic acid and lignan in flaxseed


	4 Conclusions
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References


