AUTHOR=Shobade Samuel O. , Zabotina Olga A. , Nilsen-Hamilton Marit
TITLE=Plant root associated chitinases: structures and functions
JOURNAL=Frontiers in Plant Science
VOLUME=15
YEAR=2024
URL=https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2024.1344142
DOI=10.3389/fpls.2024.1344142
ISSN=1664-462X
ABSTRACT=
Chitinases degrade chitin, a linear homopolymer of β-1,4-linked N-acetyl-D-glucosamine (GlcNAc) residues found in the cell walls of fungi and the exoskeletons of arthropods. They are secreted by the roots into the rhizosphere, a complex and dynamic environment where intense nutrient exchange occurs between plants and microbes. Here we modeled, expressed, purified, and characterized Zea mays and Oryza sativa root chitinases, and the chitinase of a symbiotic bacterium, Chitinophaga oryzae 1303 for their activities with chitin, di-, tri-, and tetra-saccharides and Aspergillus niger, with the goal of determining their role(s) in the rhizosphere and better understanding the molecular mechanisms underlying plant-microbe interactions. We show that Zea mays basic endochitinase (ZmChi19A) and Oryza sativa chitinase (OsChi19A) are from the GH19 chitinase family. The Chitinophaga oryzae 1303 chitinase (CspCh18A) belongs to the GH18 family. The three enzymes have similar apparent KM values of (20-40 µM) for the substrate 4-MU-GlcNAc3. They vary in their pH and temperature optima with OsChi19A activity optimal between pH 5–7 and 30–40°C while ZmChi19A and CspCh18A activities were optimal at pH 7-9 and 50–60°C. Modeling and site-directed mutation of ZmChi19A identified the catalytic cleft and the active residues E147 and E169 strategically positioned at ~8.6Å from each other in the folded protein. Cleavage of 4-MU-GlcNAc3 was unaffected by the absence of the CBD but diminished in the absence of the flexible C-terminal domain. However, unlike for the soluble substrate, the CBD and the newly identified flexible C-terminal domain were vital for inhibiting Aspergillus niger growth. The results are consistent with the involvement of the plant chitinases in defense against pathogens like fungi that have chitin exoskeletons. In summary, we have characterized the functional features and structural domains necessary for the activity of two plant root chitinases that are believed to be involved in plant defense and a bacterial chitinase that, along with the plant chitinases, may participate in nutrient recycling in the rhizosphere.