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Long Qin1, Linshuang Ma1, Jichen Li1, Yumin Su1 and Qi Wu2*
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2College of Water Resource, Shenyang Agricultural University, Shenyang, China
Rapid and accurate identification and timely protection of crop disease is of great

importance for ensuring crop yields. Aiming at the problems of large model

parameters of existing crop disease recognition methods and low recognition

accuracy in the complex background of the field, we propose a lightweight crop

leaf disease recognition model based on improved ShuffleNetV2. First, the

repetition number and the number of output channels of the basic module of

the ShuffleNetV2model are redesigned to reduce themodel parameters tomake

the model more lightweight while ensuring the accuracy of the model. Second,

the residual structure is introduced in the basic feature extraction module to

solve the gradient vanishing problem and enable the model to learn more

complex feature representations. Then, parallel paths were added to the

mechanism of the efficient channel attention (ECA) module, and the weights

of different paths were adaptively updated by learnable parameters, and then the

efficient dual channel attention (EDCA) module was proposed, which was

embedded into the ShuffleNetV2 to improve the cross-channel interaction

capability of the model. Finally, a multi-scale shallow feature extraction

module and a multi-scale deep feature extraction module were introduced to

improve the model’s ability to extract lesions at different scales. Based on the

above improvements, a lightweight crop leaf disease recognition model REM-

ShuffleNetV2 was proposed. Experiments results show that the accuracy and F1

score of the REM-ShuffleNetV2 model on the self-constructed field crop leaf

disease dataset are 96.72% and 96.62%, which are 3.88% and 4.37% higher than

that of the ShuffleNetV2 model; and the number of model parameters is 4.40M,

which is 9.65% less than that of the original model. Compared with classic

networks such as DenseNet121, EfficientNet, and MobileNetV3, the REM-

ShuffleNetV2 model not only has higher recognition accuracy but also has

fewer model parameters. The REM-ShuffleNetV2 model proposed in this study

can achieve accurate identification of crop leaf disease in complex field

backgrounds, and the model is small, which is convenient to deploy to the

mobile end, and provides a reference for intelligent diagnosis of crop leaf disease.
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1 Introduction

Various diseases in the process of crop growth will significantly

reduce the yield and quality of agricultural products and seriously

restrict agricultural production. To improve agricultural production

efficiency, timely detection and early prevention of crop diseases are

crucial (Hassan et al., 2021; Wang and Wang, 2021). At present, crop

disease identification mainly relies on manual diagnosis, however the

wide variety of crop diseases and the similarity of symptoms of some

of them lead to a time-consuming and laborious diagnostic process

(Barbedo, 2016). Image processing and machine vision can adapt to

complex and changeable natural scenes and lay the foundation for

accurate identification and diagnosis of crop disease (Zhang et al.,

2014; Hossain et al., 2021; Ye et al., 2021). Therefore, computer vision

and image processing strategies are utilized to design an intelligent

recognition algorithm that can diagnose crop diseases quickly,

inexpensively, and accurately, which is of great practical

significance for the establishment of disease prediction mechanisms

for timely prevention and control.

Since the 1980s, researchers have started to identify crop

diseases using machine learning and image processing methods,

proposing many traditional methods for image recognition of crop

diseases (Camargo and Smith, 2009; Ma et al., 2017; Zhang et al.,

2020). Tian et al. (2016) proposed a recognition method for

eggplant brown streak disease based on spot characteristics, using

the H component of the HSI color space to extract the feature

parameters of the spot area and selecting the feature parameters to

form a classification feature vector for classification by principal

component analysis, which achieved better experimental results.

Zhang and Zhang (2014) used region growing segmentation

algorithm to segment disease spot images in diseased maize leaves

and reorganized them into one-dimensional vectors, and used a

nearest neighbor classifier to identify the disease categories with

good recognition results. These traditional methods require manual

design of features such as color, texture, and edge gradient of disease

images for recognition. However, manually designed features

require expensive resource conditions and specialized knowledge

and are susceptible to subjectivity. In addition, the inability to

efficiently segment leaves and corresponding disease images under

complex background conditions has led to the inability of these

methods to meet the needs of modern agriculture for accurate

identification of crop disease.

In recent years, with the rapid development of deep learning

techniques and the enhancement of computer processing power,

crop leaf disease recognition methods based on convolutional

neural networks (CNNs) have become a research focus of many

researchers (Huang et al., 2021; Bao et al., 2022; Du et al., 2023;

Praveen et al., 2023). Sun et al. (2021) embedded the coordinate

attention mechanism in the MobileNetV2 model, and then

performed fusion and extraction operations on feature maps of

different sizes. The recognition accuracy of the improved model for

a variety of crop leaf diseases was 92.20%. Rangarajan et al. (2018)

used the strategy of fine-tuning and transfer learning for AlexNet

and VGG16 to propose two fast converging models, which obtained

97.29% and 97.49% recognition rates on the tomato dataset. Gao

et al. (2023) proposed an Apple Leaf Disease Recognition Model
Frontiers in Plant Science 02
(BAM-Net) that uses an aggregated coordinate attention

mechanism to enhance the network’s focus on disease features,

introduces a multi-scale feature refinement module to improve the

network’s ability to discriminate between similar disease features,

which achieved an accuracy of 95.64% on the test set. Peng et al.

(2022) introduced the SimAM module on the ShuffleNetv2 model

to enhance the effective extraction of important features and used

the activation function Hardswish to reduce the number of network

model parameters, which resulted in a recognition accuracy of

84.9% on lychee pests and diseases. Bhagat et al. (2023) introduced

local binary pattern for feature fusion based on the VGG-16 model

and used random forest method for classification, which effectively

improved the robustness of the model and achieved an accuracy of

99.75% on the sweet pepper leaf dataset. Agarwal et al. (2020)

proposed a simplified convolutional neural network model that was

tested on the tomato leaf dataset and the experimental results

showed that the proposed model has better results than

traditional machine learning methods. The above studies have

proved the feasibility of CNNs in crop leaf disease recognition,

but there are also problems such as a large number of network

parameters, a large amount of calculation, and complex model,

which make the model difficult to carry and move.

To solve the problem of mobile deployment of deep learning

models, some researchers have proposed methods such as

knowledge distillation and model pruning, aiming to improve the

performance of network models and reduce the number of model

parameters. Peng and Li (2023) proposed a plant leaf disease

recognition model RLDNet based on improved MobileNetV2.

The model used the reparameterized inverted residual module to

improve the inference speed. The DepthShrinker pruning method is

used to reduce the space occupation. The recognition accuracy of

the RLDNet model on the PlantVillage dataset under simple

background is 99.53%, and the number of parameters is 0.65 M.

Liu et al. (2023) used the ResNet model as the baseline model,

introduced a multi-teacher joint distillation strategy to train the

model, and utilized model pruning to reduce the number of model

parameters. After pruning the model by 90%, the model achieved

up to 97.78% accuracy on the PlantVillage dataset, while after

pruning the model by 70%, the model achieved up to 91.94%

accuracy on the Apple Leaf Disease dataset in a complex context.

Wen et al. (2023) used ShuffleNetV2 as the base network,

introduced the efficient channel attention mechanism with the

silu activation function for structural improvement, and also

combined the knowledge distillation technique to train the model.

The improved model achieved 95.21% accuracy in recognizing 11

diseases of two crops in a complex environment. However, although

the above methods make the crop leaf disease recognition model

lightweight, the effect of disease recognition in real scenes needs to

be improved.

Based on the above problems, this study constructed a variety of

crop disease datasets contained in the field context, and then used

ShuffleNetV2-1.0 network as the baseline model, fine-tuned the

model parameters, and introduced the efficient dual channel

attention (EDCA) module, the multi-scale feature fusion module,

and residual structure connection strategy. We propose a field crop

leaf disease recognition model-REM-ShuffleNetV2 based on
frontiersin.org
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improved ShuffleNetV2. This model can effectively extract the

subtle features of crop leaf diseases and improve the accuracy of

crop disease classification in the field. Meanwhile, the model has the

advantages of small size and few parameters, which can provide a

reference for subsequent related research. The main innovations of

this paper are as follows:
Fron
1. A lightweight CNN model REM-ShuffleNetV2 is proposed

for the automatic identification of leaf diseases in field

crops on mobile devices.

2. The number of repetitions and output channels of the basic

module of the ShuffleNetV2 model are fine-tuned to reduce

the model parameters and make the model lightweight.

3. The EDCA module is embedded in the basic feature

extraction module, which enhances the model’s ability to

extract effective feature information in crop disease, and

introduces residual structure to alleviate the problem of

information loss and gradient loss in the model.

4. A multi-scale shallow feature extraction module and a

multi-scale deep feature extraction module are designed

to enable the model to capture feature information at

different scales, thus improving the model’s perceptual

and expressive capabilities.
2 Datasets

2.1 Data acquisition

In this study, the dataset used contains 17 categories of diseased

leaf images of six crops (apple, soybean, maize, strawberry,

sugarcane, and wheat) and healthy leaf images of five crops

(apple, soybean, maize, strawberry, and sugarcane), totaling 22

categories and 8,408 sample images from the field collection, the
tiers in Plant Science 03
official website of Kaggle(https://www.kaggle.com/), and the website

of Baidu Fly Paddle(https://aistudio.baidu.com/), and the sample

images were all taken in a field background Photographed (Muhab

and Ercan, 2022). Disease types include apple alternaria leaf spot,

bean angular leaf spot, maize northern leaf blight, strawberry

calciumdeficieny, sugarcane red rot, wheat powdery mildew, etc.

Some sample images are shown in Figure 1.
2.2 Data set segmentation
and preprocessing

The original dataset is randomly divided into a training set and a

test set in a ratio of 8:2 (Liu and Cui, 2023), where the training set has

6732 images and the test set has 1676 images. To increase the

diversity of crop disease datasets, and enhance the generalization

ability and robustness of the model, this study performs data

enhancement on the training set (Shorten and Khoshgoftaar, 2019).

Data enhancement follows the principle of increasing the number of

samples while keeping the sample features unchanged to better reflect

the real background. In this study, two image enhancement

techniques were used: 1) Brightness enhancement and attenuation:

used to simulate different lighting conditions in real field background;

2) Rotation and flip: used to simulate the shooting of the recognition

device at different angles. Finally, a sufficient and balanced training

set with 22217 images is obtained by the augmentation technique.

Detailed sample information is shown in Table 1.
2.3 The process of disease identification

The overall process of crop leaf disease identification is shown

in Figure 2. Firstly, the disease image data were collected through

multiple channels and the useless images were manually removed.

Secondly, the constructed dataset is preprocessed and divided into
FIGURE 1

Diseased images of crops in a field background.
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training and testing sets in 8:2 ratio, and the original dataset is

expanded by data enhancement to increase the diversity to improve

the generalization ability of the trained model. Finally, the data-

enhanced dataset is used to train the REM-ShuffleNetV2 model and

the model weights with the best performance during training are

saved. Based on the above trained REM-ShuffleNetV2 model, the

images in the test set are used to get the prediction categories of the

test samples for crop disease recognition on leaves. If more disease

image data is subsequently collected, all can follow this process to

retrain the model to improve the performance.
3 Crop leaf disease recognition model

3.1 ShuffleNetv2 model

With the rapid development of convolutional neural networks

in the field of computer vision, although the traditional

convolutional neural networks have good accuracy, their large

number of model parameters is difficult to adapt to today’s
Frontiers in Plant Science 04
mobile devices with limited computational resources (Liu et al.,

2017). ShuffleNetV2 is an extremely efficient lightweight

convolutional neural network for mobile devices proposed by Ma

et al. (2018). The network introduces the concept of group

convolution which divides the input and output channels into

multiple groups and performs convolution operations within each

group. This design enables the network to parallelize processing

efficiently and significantly reduce the computational cost. By

rearranging the feature channels, information from different

channels can be mixed and exchanged, leading to better

representation learning and reducing the overall complexity of

the network. The basic feature extraction module of ShuffleNetV2

is shown in Figure 3.
3.2 EDCA module

The crop disease samples in the dataset constructed in this

study were taken in a field environment with complex background

information. The attention mechanism adjusts the weight of the
TABLE 1 Detailed sample information on the dataset.

Crops Types of diseases Number Before After Test set

Apple

Alternaria leaf spot A1 219 1095 54

Grey spot A2 131 1048 32

Health A3 516 1032 129

Mosaic A4 137 1096 34

Powdery mildew A5 549 1098 137

Rust A6 447 894 111

Scab A7 477 954 119

Bean

Angular leaf spot B1 264 1056 66

Bean rust B2 264 1056 66

Healthy B3 264 1056 66

Maize

Gray Leaf Spot M1 398 1194 99

Health M2 265 1060 66

Northern leaf blight M3 419 1257 104

Northern leaf spot M4 441 882 110

Strawberry
Calciumdeficieny S1 378 1134 94

Healthy S2 369 1107 92

Sugarcane

Bacterial blight SU1 80 640 20

Healthy SU2 80 640 20

Red rot SU3 80 640 20

Wheat

Powdery mildew W1 208 1040 51

Smut W2 330 990 82

Rust W3 416 1248 104

Total – – 6732 22217 1676
fro
“Before” represents the original training set; “After” represents the augmented training set.
ntiersin.org

https://doi.org/10.3389/fpls.2024.1342123
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhou et al. 10.3389/fpls.2024.1342123
input feature map to suppress redundant background information

and enhance the feature representation of the foreground disease in

the image, thereby improving the recognition performance of the

model (Huang et al., 2023). SE (Squeeze and Excitation) module

uses global average pooling to aggregate global information, and
Frontiers in Plant Science 05
then captures nonlinear cross-channel interactions by compressing

channels for dimensionality reduction, but this approach is not

conducive to learning inter-channel dependencies (Glorot et al.,

2011). The ECA (Efficient Channel Attention) module uses one-

dimensional convolution to realize cross-channel interactions and
FIGURE 2

The overall process of disease identification.
BA

FIGURE 3

Basic feature extraction module for the ShuffleNetV2 model. “Conv” represents standard convolution; “BN” represents batch normalization; “ReLU”
represents activation function; “Concat” represents channel splicing. (A) Basic module. (B) Downsampling module.
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learns inter-channel dependencies while keeping the channel

dimensions unchanged, and the model requires fewer parameters

and less computation to introduce the ECA module compared to

the SE module (Wang et al., 2020). To further optimize the global

information extraction capability of the ECA module, inspired by

the SRM (Style-based Recalibration Module) module (Lee et al.,

2019), this study proposes an EDCA (Efficient Dual Channel

Attention) module, and its structure is shown in Figure 4.

Suppose X is the input feature, and the size of the feature map is

H×W×C, where H represents the height of the feature map, W

represents the width of the feature map, and C represents the

number of channels of the feature map. The EDCA module

processes the input using average pooling (AvgPool) and standard

deviation pooling (StdPool) to compress it into 1×1×C feature

maps, respectively, and generates weights for each channel by

one-dimensional convolution of size K. The average value and

standard deviation are calculated as shown in (Equations 1, 2):

Ac =
1

HWoH
h=1oW

w=1Xc(h,w) (1)

Sc =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

HW o
H

h=1
o
W

w=1
(Xc(h,w) − Ac)

2

s
(2)

In (Equations 1, 2), Ac and Sc represent the average value and

standard deviation of each element in the channel.

The convolution kernel size K can be adaptively determined by

nonlinear mapping of the channel dimensions, and the adaptation

function is defined as shown in (Equation 3):

K = y (C) =
log2(C)

g
+
b
g

����
����
odd

(3)

In (Equation 3), C represents the input feature channel

dimensions, |x|odd represents the closest singularity to x, g and b

are used to change the ratio between the number of channels C and

the convolution kernel size, and are taken to be g = 2 and b = 1

according to empirical values taken from the literature. Then, the

elements of the feature maps obtained by the two paths are added

together, and the weight w of each channel is obtained by the

Sigmoid function. At last, the weights w are multiplied by the

original input feature map. The calculation of the weights w is
Frontiers in Plant Science 06
shown in (Equation 4):

w = s (C1Dk(y1) + C1Dk(y2)) (4)

In (Equation 4), represents the Sigmoid activation function,

C1D represents the one-dimensional convolution, K represents the

one-dimensional convolution kernel size, y1 represents the feature

map output by the average pooling path, y2 represents the feature

map output by the standard deviation pooling path.
3.3 Multi-scale feature extraction module

In the convolutional neural networks, the low-level convolutions

mainly extract simple features such as color, texture, and edge of

images, which usually have strong expressive power in local regions

of images Yang et al., 2022), while the features extracted by high-level

convolutions are abstract, global, and have global expressive power

(Li et al., 2020). In the ShuffleNetV2 model, a 3×3 convolutional layer

and a maximum pooling layer are used to extract low-level

convolutional features. However, this method extracts fewer

features, and the receptive field is fixed. This leads to the fact that

low-level convolution cannot adequately capture the subtle feature

differences of different size spots in crop leaf diseases (Shah et al.,

2017). Therefore, this study designed a multi-scale shallow feature

extraction module (Figure 5A) with a combination of a maximum

pooling layer and multiple 3×3 convolutional layers to improve the

response of the shallow network to features of different granularity.

Meanwhile, a multi-scale deep feature extraction module (Figure 5B)

with the combination of 3×3 convolutional layers and 5×5

convolutional layers was designed to further improve the global

feature extraction capability of the model.
3.4 Crop leaf disease recognition model
REM-ShuffleNetV2

ShuffleNetV2 model adopts lightweight design strategies such as

depthwise convolution, channel random rearrangement, etc., which

has less parameters and computation. However, the early lesions of

crop leaf diseases are sparsely distributed, and the lesions tend to

exhibit small area, inconspicuous features, and different

morphologies, resulting in a lower overall recognition accuracy of

the ShuffleNetV2 model. To further improve the accuracy of the

model, this study optimized the ShuffleNetV2 model by first

changing the number of repetitions of the basic modules in the

Stage2, Stage3, and Stage4 phases of the model to [2, 3, 2], and fine-

tuning the number of output channels to reduce the number of

parameters in the model. Then, the residual structure is introduced

into the basic feature extraction module of the ShuffleNetV2 model.

The residual structure can increase the network learning path while

preserving the original features, so that the network can pass the

shallow information directly to the deep layer, solve the problem of

gradient disappearance or gradient explosion that occurs in the

process of model training, thereby improving the expression ability

of the model (Le et al., 2023). In the residual structure of the

downsampling module, the maximum pooling layer was used to
FIGURE 4

EDCA Module.
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complete the downsampling, and the number of channels was

adjusted by 1×1 convolution, to ensure that the output number of

channels was consistent. The EDCA module is introduced after the

pointwise convolution at the tail of the basic feature extraction

module, so that the model can pay targeted attention to the disease

spot features in the input data, to improve the model’s ability to

extract effective feature information. Finally, a multi-scale feature

extraction module is introduced to enhance the model’s ability to

extract shallow semantic information and deep semantic

information. Combining the above improvement approaches, this

study proposes the high-precision and low-consumption network

model REM-ShuffleNetV2, as shown in Figure 6.
4 Results and analysis

4.1 Experimental environment setup

The experiments were conducted using a desktop computer as

the processing platform, the operating system wasWindows 10, and

the Pytorch framework was used, the experimental environment

was constructed in the Anaconda3 software, and the program was

written in Python 3.8, the CUDA version was 11.1, and the Torch

version was 1.8.0. Hardware: The processor is Intel Pentium G4560,

the running memory is 16G, the graphics card is NVIDIA GeForce

RTX3050, and the video memory is 8G.

Considering the hardware performance of the equipment and the

training effect, the batch training method was used to divide the

training and testing process into multiple batches, each batch

contained 32 images, and the number of iterations was set to 60.

The loss function uses cross-entropy loss and the classification layer

uses Softmax function. The model was trained using an SGD

optimizer with a momentum parameter of 0.9 and a weight decay

parameter of 0.0005. The initial learning rate was 0.01, which was
Frontiers in Plant Science 07
tuned using a cosine annealing decay strategy, with a total number of

steps in a cycle of 60, and a lower value of 1e-9 for the learning rate.
4.2 Evaluation metrics

To evaluate the performance of the REM-ShuffleNetV2

network, this paper uses model size and number of parameters as

the evaluation criteria for model complexity, and precision P, recall

R, F1 score, and accuracy A on the test set as the evaluation indexes

for model performance. The above four performance indicators are

calculated as shown in Equations 5–8.

P =
TP

TP + FP
(5)

R =
TP

TP + FN
(6)

A =
TP + TN

TP + TN + FP + FN
(7)

F1 =
2 * P * R
P + R

(8)

Where TP is the result of correctly predicting positive classification;

FP is the result of incorrectly prediction of positive classification; TN is

the result of correctly predicting negative classification; FN is the result

of incorrectly predicting negative classification.
4.3 ShuffleNetV2-1.0 model
parameter tuning

To obtain the optimal parameters of the ShuffleNetV2-1.0

model, this study adjusted the number of basic modules and the
BA

FIGURE 5

Multi-scale feature extraction module (MFEM). (A) Multi-scale Shallow Feature Extraction Module (MSFEM). (B) Multi-scale Deep Feature Extraction
Module (MDFEM).
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number of output channels in the Stage2, Stage3, and Stage4 phases,

designed five different parameters and conducted experiments, and

the experimental results are shown in Table 2. Under the condition

of the constant number of output channels, the best training results

of the model are obtained when the number of basic modules in

Stage2, Stage3, and Stage4 is [2, 3, 2], and based on this, the best

model recognition results with the accuracy of 93.50% were

obtained when the number of output channels of the model was

[116, 232, 464, 1024]. However, with the number of output channels

set to [96, 192, 384, 1024], the accuracy of the model was only 0.18%

lower than the best case, but the size of the model was reduced by

22%. To consider the accuracy rate and model size, this study sets

the number of basic modules in Stage2, Stage3, and Stage4 to [2, 3,

2], and the number of output channels to [96, 192, 384, 1024], and

under this parameter, the accuracy rate of the model was improved
Frontiers in Plant Science 08
by 0.48% compared with that of the original model, and the size of

the model was reduced by 1.89MB. The next optimization

experiments were carried out under this parameter.
4.4 Effects of different down sampling
methods in residual structure on
model performance

To study the effect of different down sampling methods in the

residual structure of the down sampling module on the

performance of the model, this study conducted comparative

experiments using the completed down sampling methods of the

maximally pooled layer (RM), the average pooled layer (RA), and

the 3 × 3 convolutional layer (RC). The results are shown in Table 3,
TABLE 2 ShuffleNetV2-1.0 Parameter Tuning.

Number Repeat Output channels Accuracy/% Model size/MB

0 [3, 7, 3] [116, 232, 464, 1024] 92.84 5.03

1 [3, 3, 3] [116, 232, 464, 1024] 93.20 4.56

2 [2, 3, 2] [116, 232, 464, 1024] 93.50 4.12

3 [1, 3, 1] [116, 232, 464, 1024] 93.08 3.63

4 [2, 3, 2] [96, 192, 384, 1024] 93.32 3.14

5 [2, 3, 2] [96, 192, 384, 768] 92.96 2.74
FIGURE 6

Overall model structure diagram.
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using RM and RA to complete downsampling in residual structure

improves the performance of the model, this is because the pooling

layer retains the main feature information of the image while

completing downsampling (Saeedan et al., 2018). Among them,

the best results achieved by using RM to complete the

downsampling, the F1 score and accuracy of the model increased

by 2.02% and 1.67% compared with the original model, this is

mainly because RM, by selecting the maximum value, can select the

feature activation value with the strongest response and discard the

other weaker responses, realizing the downsampling of retaining

the important information (He et al., 2022). The use of RC to

accomplish downsampling was the least effective, with the number

of parameters and model size increasing by 3.25M and 17.84MB,

and the F1 score and accuracy decreasing by 0.82% and 0.48%.
4.5 Effects of different attention
mechanisms on model performance

To verify the effectiveness of the EDCAmodule proposed in this

study, comparative experiments are conducted with the SE module,

the original ECA module, and the SRM module, respectively.

Table 4 shows that compared to the ShuffleNetV2 model, the

model recognition accuracies with the introduction of the SE

module, ECA module, SRM module, and EDCA module

increased by 0.30%, 0.54%, 0.71%, and 0.89%, respectively; and

the F1 scores increased by 0.19%, 0.17%, 0.44%, and 0.68%,

suggesting that the introduction of the attention mechanism helps

in the recognition of leaf diseases in crops. Meanwhile, the

introduction of the EDCA module compared to the original ECA

module improved the F1 score and accuracy by 0.51% and 0.35%,

respectively. In addition, compared with other attention mechanism

modules, the EDCA module achieves the optimal recognition effect

with the number of parameters and model size basically unchanged.
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Heatmap can intuitively show whether the network learns the

key features or not through the degree of color change, this paper

visualizes the feature map after the introduction of the attention

mechanism in the ShuffleNetV2 model in the form of a heatmap

(Figure 7), in which the more the color tends to be in deep red,

indicating that the model is more responsive in that region. As is

shown in Figure 7, compared with the ShuffleNetV2 model, the

model incorporating the attention mechanism can better notice the

feature regions related to crop disease leaves and has a stronger

ability to recognize the feature information of the crop disease.

Meanwhile, the introduction of the EDCA module can extract the

feature information of the diseased area more accurately than other

attention mechanisms, effectively avoiding the interference of non-

important features such as the background environment, which

further proves the effectiveness of the EDCA module.
4.6 Effect of MSFEM module on
model performance

To better extract shallow feature information, different network

models are designed with different network structures. As shown in

Figure 8, Stem-A is the shallow feature extraction module of the

ShuffleNetV2 model, which consists of a 3×3 convolutional layer

with a step size of 2 and a 3×3 maximum pooling with a step size of

2. Stem-B is the shallow feature extraction module of the ResNet

model, which consists of a 7×7 convolutional layer with a step size

of 2 and a 3×3 maximum pooling with a step size of 2. Stem-C is the

shallow feature extraction module of the Inception-ResnetV2

model, which uses a stack of three 3×3 convolutional layers

instead of 7×7 convolutional layers, and combines the 3×3

convolutional layers with the maximum pooling layer through a

branch structure (Szegedy et al., 2017). To verify the effectiveness of

the MSFEM module, a comparison experiment was conducted and
TABLE 3 Experimental results for different downsampling methods in residual structure.

Model
Precision

/%
Recall
/%

F1 score
/%

Accuracy
/%

Parameters
/M

Model size/MB

ShuffleNetV2 92.27 92.42 92.53 93.32 3.03 3.14

ShuffleNetV2-RM 95.00 94.31 94.55 94.99 3.39 5.17

ShuffleNetV2-RA 93.62 92.97 93.14 93.74 3.39 5.17

ShuffleNetV2-RC 92.12 91.55 91.71 92.84 6.28 20.99
TABLE 4 Experimental results of introducing different attention mechanisms into the model.

Model F1 score/% Accuracy/% Parameters/M Model size/MB

ShuffleNetV2 94.55 94.99 3.39 5.17

ShuffleNetV2+SE 94.74 95.29 3.49 5.28

ShuffleNetV2+ECA 94.72 95.53 3.39 5.18

ShuffleNetV2+SRM 94.99 95.70 3.41 5.23

ShuffleNetV2+EDCA 95.23 95.88 3.39 5.18
frontiersin.org

https://doi.org/10.3389/fpls.2024.1342123
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhou et al. 10.3389/fpls.2024.1342123
FIGURE 7

Comparison of the heatmap for different attention mechanisms. The red boxes in the original image indicate the main areas of disease in the crop.
B CA

FIGURE 8

Stem module structure. (A) Stem-A. (B) Stem-B. (C) Stem-C.
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the results are shown in Table 5. The introduced Stem-B module

has basically the same number of parameters and model size

compared to the original model (ShuffleNetV2-Stem-A), but the

F1 score and accuracy are reduced by 0.66% and 0.38%. The

introduction of the Stem-C module increased the model’s

nonlinear capability and receptive fields, and the model’s F1 score

and accuracy improved by 0.86% and 0.53%, respectively. The

introduction of the MSFEM module increased the number of

parameters and model size by 0.25M and 0.26MB, but the F1

score and accuracy improved by 1.01% and 0.77%, respectively.

Taken together, the test with the introduction of the MSFEM

module was the most effective.
4.7 Ablation experiment with the
REM-ShuffleNetV2 model

To explore the performance enhancement of the ShuffleNetV2

model brought about by the improved approach of using

architecture tuning, residual structure connection, EDCA module,

and Multiscale Feature Fusion Module (MFEM), ablation

experiments are conducted and the results are shown in Table 6.

After data enhancement, the F1 score and accuracy of the

ShuffleNetV2-1.0 model improved by 6.83% and 5.01%,

respectively, without increased model parameters. After

parameter tuning, the F1 score of the model was improved by

0.28% and the accuracy by 0.48%, while the number of parameters

and model size were reduced by 1.84M and 1.89MB. When the

residual structure method is introduced into the basic feature

extraction module of the model, the F1 score and accuracy of the
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model increased by 2.02% and 1.67%, respectively, but the number

of parameters and model size increased by 0.39M and 2.03MB. The

introduction of the EDCA module improves the F1 score and

accuracy of the model by 0.68% and 0.89% while keeping the

number of parameters constant. With the introduction of the

multi-scale feature fusion module, the F1 score and accuracy of

the model increased by 1.39% and 0.84%, while the number of

parameters and model size increased by 1.01M and 1.05MB,

respectively. Finally, the F1 score and accuracy of the REM-

ShuffleNetV2 lightweight model proposed in this study were

96.62% and 96.72%, which were 4.37% and 3.86% higher than the

original model, the number of covariates was 4.40M which was

0.47M less than that of the original model, and the size of the model

was 6.23MB which was 1.20MB more than that of the

original model.

To observe the variation of performance metrics of

ShuffleNetV2 model and REM-ShuffleNetV2 model on different

crop diseases, the precision P, recall R, F1 score, and accuracy A of

the models were visualized for different crops. As shown in Figure 9,

the recognition effect of the ShuffleNetV2 model on apple disease,

soybean disease, and wheat disease was poor, this is because they

have more types of diseases and high similarity of lesion

characteristics, which leads to recognition difficulties. The

recognition effect of ShuffleNetV2 model on maize disease,

strawberry disease, and sugarcane disease was better, this is

because they are easy to differentiate due to their fewer types of

diseases and distinct disease characteristics. REM-ShuffleNetV2

improved crop disease recognition to varying degrees. On the

more difficult to recognize apple, bean, and wheat diseases, the

average F1 score and average accuracy improved by 7.52% and
TABLE 5 Comparison of experimental results of different shallow feature extraction modules.

Model F1 score/% Accuracy/% Parameters/M Model size/MB

ShuffleNetV2-Stem-A 92.53 93.32 3.03 3.14

ShuffleNetV2-Stem-B 91.87 92.94 3.04 3.15

ShuffleNetV2-Stem-C 93.39 93.85 3.10 3.22

ShuffleNetV2-MSFEM 93.54 94.09 3.28 3.40
TABLE 6 Ablation experiment with the REM-ShuffleNetV2 model.

Model
Data

enhancement
Parameter
tuning

Residual
structure

EDCA
module

Multi-
scale
feature
fusion
module

F1
score/

%

Accuracy
/%

Parameters
/M

Model
size/
MB

ShuffleNetV2

– – – – – 85.42 87.83 4.87 5.03

√ - – – – 92.25 92.84 4.87 5.03

√ √ – – – 92.53 93.32 3.03 3.14

√ √ √ – 94.55 94.99 3.39 5.17

√ √ √ √ – 95.23 95.88 3.39 5.17

REM-
ShuffleNetV2

√ √ √ √ √ 96.62 96.72 4.40 6.23
fro
“-” means not to use the improvement factor, “√” means to use the improvement factor.
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6.24%, 6.08% and 5.35%, 4.33% and 5.14%, respectively, compared

to the original model. For the easily recognized maize disease and

strawberry disease, the average F1 score and average accuracy

improved by 1.42% and 1.31%, 2.05% and 5.42%, respectively,

compared with the original model. For sugarcane diseases, the

average precision, average recall, and average accuracy of the

REM-ShuffleNetV2 model were the same as those of the original

model, but the average F1 score was improved by 0.85%.
4.8 Different network
comparison experiments

To further verify the effectiveness of the REM-ShuffleNetV2

model, this paper compared it with the DenseNet121 (Huang et al.,

2017), EfficientNet (Tan and Le, 2019), MobileNetV3 (Howard

et al., 2019), MobileVit (Mehta and Rastegari, 2021) and RepVGG
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(Ding et al., 2021) models under the same test conditions. The

change curves of accuracy and loss value of different models are

shown in Figure 10.

As can be seen in Figure 10A, after 60 iterations, the accuracy of

each model in crop disease tends to stabilize, which indicates that

the performance of the model has been fully demonstrated. REM-

ShuffleNetV2 is the fastest converging model among these models.

When iterating to the 5th round, the accuracy of the REM-

ShuffleNetV2 model had already reached 90%. As the iteration

proceeds, the accuracy of the model reaches 96% at round 20 and

begins to converge. In contrast, the training curves of the remaining

models behave similarly. After 15 rounds of iterations, these models

all achieve 90% accuracy and begin to converge after 30 rounds. In

the later stages of training, the REM-ShuffleNetV2 model exhibits

higher accuracy with less fluctuation. This shows that REM-

ShuffleNetV2 had stronger robustness and faster convergence on

the crop leaf disease test set. Figure 10B shows that the loss value of
FIGURE 9

Performance metrics of the model before and after improvement on individual crops.
BA

FIGURE 10

Accuracy and loss of comparative network model. (A) Accuracy; (B) Loss value.
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REM-ShuffleNetV2 decreases the fastest and obviously, and at 20

rounds of iteration, the loss value basically stabilizes, and the

network loss value maintains around 0.146. From the perspective

of loss-value convergence, the REM-ShuffleNetV2 model is ideally

trained. Other measures of the model are shown in Table 7.

As shown in Table 7, compared to the conventional models

DenseNet121 and RepVGG, the REM-ShuffleNetV2 lightweight

model had higher accuracy and F1 scores, and the number of

parameters was significantly reduced. Compared with the

lightweight convolutional networks EfficientNet, MobileNetV3,

and MobileVit, the number of parameters of the REM-

ShuffleNetV2 model were only 28.57%, 27.28% and 59.38% of

those of EfficientNet, MobileNetV3 and MobileVit, but the

model’s F1 scores and accuracy are 1.45% and 0.66%, 1.93% and

1.43%, 3.01% and 1.67% higher than them respectively. In

summary, the REM-ShuffleNetV2 model achieves good

performance in terms of performance and complexity.
4.9 Analysis of model
robustness performance

To further verify the anti-interference ability of the REM-

ShuffleNetV2 model, we performed a variety of treatments on the

test set, including adding Gaussian noise, performing a rotation

process, and adjusting the luminance to simulate more realistic

environmental conditions (as shown in Figure 11). These

treatments help to evaluate the performance of the models in the

face of complex, variable environments and thus provide a more

complete picture of their robustness and reliability. The

classification accuracy of each model under different treatments is

shown in Table 8.

Table 8 shows that the classification accuracy of each model

generally decreases more significantly when Gaussian noise and 30-

degree rotation treatments are added. Under Gaussian noise

processing, the recognition effect of the REM-ShuffleNetV2 model

is significantly worse than that of the DenseNet121 model and the

EfficientNet model; while under the brightness reduction

processing, the recognition effect of the REM-ShuffleNetV2 model

is slightly lower than that of the MobileVit model. However, under

other conditions of processing, the recognition effect of the REM-

ShuffleNetV2 model is better than the other models. Taken
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together, REM-ShuffleNetV2 still shows good recognition results

under different treatments, showing good robustness.
4.10 Confusion matrix for different models

The confusion matrix is usually used as an evaluation metric for

machine learning classification models, which can demonstrate the

number of observations that are misclassified and right-classified by

the model, thus assessing the performance of the model (Bi et al.,

2023). In the dataset used in this experiment, the types of apple leaf

diseases are the most numerous, and different apple leaf diseases

only have slight differences in a certain localization, which is

characterized by “high within-class variance and low between-

class variance”, therefore, the confusion matrix of apple leaf

diseases was used to present the results, as shown in Figure 12.

From Figure 12, Alternaria leaf spot and gray spot are easily

confused because of their high spot similarity, while scab and

powdery mildew are easily confused with healthy leaf because

their early spot characteristics are not obvious and basically

indistinguishable from those of healthy leaf, which leads to

misclassification in the model. The REM-ShuffleNetV2 model

performed well in the identification of confusing apple leaf

diseases with a number of recognition errors of 28, which was

comparable to the Efficientnet model. Compared with the

DenseNet121, MobileNetV3, MobileVit, and RepVGG models,

the REM-ShuffleNetV2 reduced 6, 5, 7, and 10 recognition

errors, respectively.
5 Discussion

Advanced convolutional neural networks are often designed to

be deep and wide to learn patterns of features from different objects.

However, in the crop leaf disease images used in this paper, the

disease features are similar and scattered, and no obvious patterns

exist to be learned. Therefore, blindly stacking the number of

network layers and increasing the model width may overfit

useless feature information without improving the performance of

the model. On the contrary, doing so may increase the number of

parameters and computational effort of the model, thus affecting the

efficiency and usefulness of the model (Peng and Li, 2023). In this
TABLE 7 Performance comparison results of different models.

Model Precision/% Recall/%
F1 score

/%
Accuracy/% Parameters/M Model size/MB

DenseNet121 95.69 94.99 95.30 96.00 26.61 27.21

EfficientNet 95.67 94.82 95.17 96.06 15.40 15.69

MobileNetV3 95.01 94.49 94.69 95.29 16.14 16.34

MobileVit 93.84 93.66 93.61 95.05 7.41 7.56

RepVGG 94.11 93.03 93.41 94.09 29.97 30.18

REM-ShuffleNetV2 96.85 96.48 96.62 96.72 4.40 6.23
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study, it was found that properly reducing the parameters of the

model did not degrade the model performance, but rather improved

it. This indicates that appropriately reducing the number of

parameters of the model helps the model learn features better.

Therefore, reducing the number of parameters of the model

appropriately for a specific task and dataset may be an effective

strategy to help improve the performance and generalization of

the model.

In the task of image classification, the region of interest is often

distributed in multiple regions of the image, and more global

information and higher-level feature information are needed to

better recognize the target. The smaller the receptive field is, the

smaller the range of the original image to which it corresponds,
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which means that it contains features that tend to be more localized

and detailed, and the high-level semantic information used to deal

with the complex task is difficult to be captured by the network; the

larger the receptive field is, the larger the range of the original image

to which it corresponds, which means that it contains more global

and higher semantic level features. In the real environment, crop

diseases have problems such as different sizes of spots and a wide

range of disease distribution. In this paper, a multi-scale feature

extraction module is introduced to enhance the model’s ability to

extract feature information at different scales and to solve the

problem of los ing smal l feature information due to

downsampling. To further improve the model performance, this

paper draws on the idea of ResNet and introduces a residual
TABLE 8 Classification accuracy of each model under different treatments.

Model A B C D E F

DenseNet121 96.00 90.69 85.20 94.63 90.45 92.36

EfficientNet 96.06 90.45 83.53 93.32 90.69 94.27

MobileNetV3 95.29 80.85 72.85 88.42 88.07 93.50

MobileVit 95.05 88.60 82.70 89.68 91.83 93.20

RepVGG 94.09 72.85 59.55 88.96 88.60 88.31

REM-ShuffleNetV2 96.72 91.53 86.87 89.68 91.64 94.87
A, B, C, D, E, and F in the table correspond to the different treatments of a, b, c, d, e, and f in Figure 11, respectively. The data in the table are in %.
B C

D E F

A

FIGURE 11

Example plots under different treatments. (A) Original image. (B) Rotate 15 degrees. (C) Rotate 30 degrees. (D) Gaussian noise. (E) Decreased
brightness. (F) Increased brightness.
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structure to overcome the problems of gradient vanishing and

gradient explosion during network training, to better fit the data.

Attentional mechanisms are often used to improve the

performance of models by better aggregating information about the

features of the network model for the region of interest and reducing

the influence of extraneous background (Sun et al., 2022; Liao et al.,

2023). However, different attention mechanisms work differently and

have different impacts on model performance. Compared with other

attention mechanisms, the introduction of the EDCA module

designed in this paper can effectively improve the performance of

the ShuffleNetV2 model for crop leaf disease recognition. This is

because the attention module uses two different pooling layers to

couple the global information and a local cross-channel interaction

strategy without dimensionality reduction to obtain more accurate

attention information by aggregating the cross-channel information

with a one-dimensional convolutional layer.

Although the study has achieved some results, there are still some

limitations. Firstly, the sample images used in the experiment were

taken under real environments on sunny or cloudy days, and

although realistic factors were taken into account to a certain

extent, further in-depth research is needed to fully reflect the

performance under various environmental conditions. Secondly,

due to the limitation of shooting conditions, the types of disease

samples collected are limited, which limits the application range of

the model to a certain extent. In future work, we will collect more

plant disease data from real scenarios, covering different types, parts

and developmental stages of the disease, and develop more efficient

and accurate deep learning models to be able to differentiate between

more types of crop disease. In addition, we try to deploy the model to

cell phones to help farmers find diseases on plants in time so that they

can take appropriate control measures to prevent the spread of

diseases. In addition, we also plan to deploy it into field

management robots for real-time monitoring of crop diseases. This
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will help professionals understand the type, distribution and severity

of diseases and develop more effective disease management strategies.
6 Conclusions

Aiming at the problems of low recognition accuracy and complex

model structure of existing models, this paper proposes a lightweight

crop leaf disease recognition model REM-ShuffleNetV2. First, we

build a field crop disease dataset, which contains 22 categories of 6

crops with a total of 8408 sample images. To reduce the complexity of

the model, architectural adjustments were made to the ShuffleNetV2

model. The residual structure was introduced in the basic feature

extraction module, which solved the problem of the model’s gradient

disappearing during the training process and improved the

convergence speed of the model. To improve the model’s ability to

extract effective features in complex backgrounds, we used the EDCA

module to filter out the complex interference information in the

samples. Meanwhile, we also introduced the MSFEM module and

MDFEM module designed in this paper to improve the model’s

ability to extract feature information at different scales. Finally, the

REM-ShuffleNetV2 model achieved 96.72% recognition accuracy on

the crop leaf disease test set, which increased by 3.86% compared to

the ShuffleNetV2 model.

In order to further evaluate the performance of the REM-

ShuffleNetV2 model, we conducted comparison experiments with

the DenseNet121, ResNet18, MobileNetV2, and GhostNet models.

The experimental results show that the recognition accuracies of the

REM-ShuffleNetV2 model were 0.72%, 1.67%, 2.09%, and 11.52%

higher than these models, while the model structure was more

streamlined. In addition, the superiority of the REM-ShuffleNetV2

model in fine-grained classification is further demonstrated by the

analysis of the confusion matrix.
FIGURE 12

Confusion matrix of different models.
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