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Diseases cause crop yield reduction and quality decline, which has a great impact

on agricultural production. Plant disease recognition based on computer vision

can help farmers quickly and accurately recognize diseases. However, the

occurrence of diseases is random and the collection cost is very high. In many

cases, the number of disease samples that can be used to train the disease

classifier is small. To address this problem, we propose a few-shot disease

recognition algorithm that uses supervised contrastive learning. Our algorithm

is divided into two phases: supervised contrastive learning and meta-learning. In

the first phase, we use a supervised contrastive learning algorithm to train an

encoder with strong generalization capabilities using a large number of samples.

In the second phase, we treat this encoder as an extractor of plant disease

features and adopt the meta-learning training mechanism to accomplish the

few-shot disease recognition tasks by training a nearest-centroid classifier based

on distance metrics. The experimental results indicate that the proposed method

outperforms the other nine popular few-shot learning algorithms as a

comparison in the disease recognition accuracy over the public plant disease

dataset PlantVillage. In few-shot potato leaf disease recognition tasks in natural

scenarios, the accuracy of the model reaches the accuracy of 79.51% with only

30 training images. The experiment also revealed that, in the contrastive learning

phase, the combination of different image augmentation operations has a greater

impact on model. Furthermore, the introduction of label information in

supervised contrastive learning enables our algorithm to still obtain high

accuracy in few-shot disease recognition tasks with smaller batch size, thus

allowing us to complete the training with less GPU resource compared to

traditional contrastive learning.
KEYWORDS

plant disease recognition, few-shot learning, meta-learning, supervised contrastive
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1 Introduction

Plant diseases are a significant factor that impacts crop yield and

quality (Flood, 2010). In the traditional method of plant disease

identification, the diagnosis is usually made by a human based on

plant symptoms (Fang and Ramasamy, 2015), which relies heavily

on human experience and is highly subjective. Moreover, this

method is time-consuming, inefficient and cannot realize the

automation of disease detection. In developing countries, accurate

disease recognition is certainly a challenge for farmers with limited

education. Misjudging or omitting the type of disease can result in

missing the optimal period for disease control, leading to

inappropriate use of pesticides, increased risk of crop yield

reduction and environmental pollution. Therefore, the creation of

an automatic recognition system for plant diseases is very helpful to

alleviate the above situations (Shruthi et al., 2019), which would

enable farmers to recognize the type of disease in time and take the

right control measures to minimize the losses.

Plant disease recognition methods based on computer vision

have been widely studied and practical results have been achieved.

In recent years, the disease recognition methods based on deep

learning have become the mainstream due to its faster detection

speed and higher accuracy in comparison with traditional methods.

Kawasaki et al. (2015) proposed a novel plant disease detection

system based on CNN. Using a total of 800 cucumber leaf images

for training, which resulted in an average accuracy of 94.90% on two

disease categories and one non-disease category. Mohanty et al.

(2016) used 54,306 diseased and healthy plant leaf images from

PlantVillage to train a deep convolutional neural network to

recognize 14 plants and 38 species, achieving an accuracy of

99.35% on the testing set. Ferentinos (2018) trained multiple

model architectures on 25 different plants in the combination of

58 different classes of plants and diseases by means of deep learning,

and the best in terms of recognition performance was the VGG

network with the accuracy of 99.53%. Picon et al. (2019) used an

adaptive algorithm based on deep residual neural networks for the

detection of multiple plant diseases in 8178 images with a balanced

accuracy of 87%. Liu et al. (2019) used two lightweight networks,

MobileNet and Inception V3, to realize the recognition of

PlantVillage on Android mobile phones. Barman et al. (2020)

used MobileNet and self-structured classifier (SSCNN) to detect

and classify leaf diseases in citrus growth stages. Experiments were

conducted on 2,939 citrus leaf samples and the results showed that

the accuracy of MobileNet and SSCNN was 92% and 99%,

respectively. Saleem et al. (2020) trained several CNNs on

PlantVillage and concluded that the Xception architecture trained

with the Adam optimizer achieved the highest verification accuracy

and F1 value, which was 99.81% and 99.78%, respectively. Zhou

et al. (2021) proposed a vegetable disease recognition model with

complex background based on region proposal and progressive

learning (PRP-Net), and the average recognition accuracy reached

98.26% for 6 kinds of disease. Hassan and Maji (2022)

proposed a new deep learning model utilizing initial layers and

residual connection, achieving 99.39% accuracy on the dataset

PlantVillage, 99.66% on the rice disease dataset, and 76.59% on

the cassava dataset. Chakraborty et al. (2022) explored some CNN
Frontiers in Plant Science 02
models for automatic recognition of late blight and early blight,

with VGG 16 having the highest accuracy of 92.69%. Liu and Zhang

(2023) proposed an Inception-V3 based transfer learning method

called PiTLiD, which was shown to outperform the comparison

method with 99.45% accuracy.

Although deep learning methods have delivered positive

outcomes in plant disease recognition work, these methods

usually require a large amount of labeled data to learn the

differences between disease features or similar diseases. However,

the truth is that collecting a large number of images of a particular

plant disease is extremely expensive, and some rare diseases are very

scarce. In addition, labeling large quantities of disease images is a

time-consuming process that requires a large number of

professionals, resulting in a high learning cost.

To address the concern that deep learning heavily depends on

extensive labeled data, researchers have introduced the concept of

Few-shot Learning (FSL) (Ravi and Larochelle, 2016; Wang et al.,

2020; Zhao et al., 2020; Jadon and Jadon, 2023), which draws on the

ability of humans to acquire knowledge swiftly. Unlike traditional

networks, the few-shot learning aims to train learning tasks with

fewer samples, that is, to train the classifiers with good performance

by inputting only one or a few labeled images. The concept of N-

Way K-Shot is often used to describe the specific problems

encountered by FSL. In this case, the support set represents the

small dataset used in the training phase and generates reference

information for the second testing phase. The query set is the task

that the model actually needs to predict. Note that the query set

classes never appear in the support set. N-way K-shot represents a

support set with N categories and K samples per category, then the

entire task only has N * K samples. Many strategies can be used in

FSL, such as meta-learning, learning fine-tuning, metric learning,

and data augmentation. Meta-learning aims to learn optimal initial

values of the model from a large number of prior tasks, utilizing

previous knowledge to expedite the learning process of the model in

new tasks (Vanschoren, 2018). Learning fine-tuning is given a

trained basic network, which is obtained by training on a large-

scale dataset containing rich labels, and then fine-tune to the

domain-specific data. This approach usually gives good results

with a little training on a small number of samples. A typical

approach is MAML (Finn et al., 2017), which is based on the idea of

learning an initialization parameter, and when this initialization

parameter encounters new tasks, only a few steps of gradient

descent using a small number of samples are required to achieve

good results. Metric learning is learning an embedding function that

maps the input space to a new feature representation space, where

there is a similarity metric to distinguish between the classes. When

faced with new tasks, using this representation function to map the

classified sample points inside the representation space and using

the similarity metric comparison to classify. Classical methods such

as Siamese network (Koch et al., 2015), Matching network (Vinyals

et al., 2016), Prototypical network (Snell et al., 2017) and Relation

network (Sung et al., 2018) are all belong to metric learning. Data

augmentation aims at increasing the number of samples when the

number of samples is small and improving the generalization ability

of the model. Common methods include rotating, flipping,

cropping, panning and adding noise to the images.
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The work on plant disease recognition have been explored by

researchers using FSL. Argüeso et al. (2020) designed a few-shot

learning architecture based on Inception v3 network and SVM

classifier. Triplet loss was introduced to learn image embeddings,

and more refined multi-class SVM was introduced to effectively

learn new class boundaries from a few examples. Xiao et al. (2021)

compared the disease recognition performance of matching

network, prototypical network and relational network on

PlantVillage. The average accuracy of the three networks under 5-

way 1-shot condition was 72.29%, 72.43% and 69.45%, respectively.

The average accuracy of the three networks under the 5-way 5-shot

condition was 87.11%, 87.50% and 82.92%, respectively. Liang

(2021) employed metric learning method to classify the cotton

leaf disease spots. Wang et al. (2021) proposed a few-shot

recognition model for vegetable diseases in complex contexts

based on image text collaborative representation learning (ITC-

Net), which combined the disease image modal information with

the disease textual modal information. They utilized the correlation

and complementarity between the two types of diseases to achieve

the collaborative recognition of disease features. Wang and Wang

(2021) suggested an improved meta-learning method (IMAL) for

few-shot classification of plant diseases. The result showed that their

method was superior to many current few-shot learning methods.

Li and Chao (2021) proposed a semi-supervised method for

recognizing plant leaf diseases, which was single-shot semi-

supervised method and iterative semi-supervised method,

respectively. The former achieved the average accuracy of 92.6%

at 6-way 10-shot, while the latter achieved the average accuracy of

90% at 6-way 5-shot. Chen L. et al. (2021) presented a few-shot

method for detecting plant diseases called LFM-CNAPS, and the

result showed that the model could detect unseen plant diseases

using only 25 annotated examples with the average accuracy of

93.9%. Lin et al. (2022a) proposed a network based on the meta-

baseline few-shot learning method, and combined the cascaded

multi-scale features with channel attention. Under the optimal

configuration, the accuracy of 5-way 1-shot task and 5-way 5-shot

task reached 61.24% and 77.43% respectively in the task of single

plant, and 82.52% and 92.83% respectively in the task of multiple

plants. Tassis and Krohling (2022) used a dataset composed of

biotic stresses in coffee leaves as a case study to evaluate the

performance of few-shot learning in classification task and

severity estimation task, respectively. Lin et al. (2022b) introduced

frequency representation into few-shot learning paradigm for plant

disease recognition, designed the discrete cosine transform mode to

convert RGB color images to frequency domain, and proposed a

learning-based frequency selection method to select information

frequency. The data setup for this work simulated two application

scenarios: for mixed plant targets, the recognition accuracy of the 5-

way 5-shot task could reach 95% when expanding a new class, and

for single plant target, the recognition accuracy of the 5-way 5-shot

task could reach 80% when expanding a new disease.

So far, FSL has not been sufficiently investigated for plant

disease recognition, and new learning paradigms are expected to

provide the impetus for improving disease recognition accuracy.

Contrastive learning is usually a self-supervised learning method,
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which pre-trains a model with a large amount of unlabeled data to

learn feature representation. The model can be suitable for

downstream tasks by acting as a feature extractor and training a

classifier/regressor on a labelled dataset. Self-supervised learning

uses unlabeled agent tasks on source task data in the hope that

generalizable feature representations can be learned from the source

tasks for rapid adaptation in the target tasks. Contrastive learning

has been widely verified by experiments for its generalization in

downstream tasks (Huang et al., 2023), and has shown very high

accuracy in visual classification tasks (Caron et al., 2020; Chen et al.,

2020b; Grill et al., 2020; Chen X. et al., 2021).

The typical contrastive learning method usually obtains two

subsamples from an original image by image augmentation. The

pair of subsamples forms a pair of positive pairs and forms negative

pairs with the subsamples of other images. The class information of

the images is not used within such a setup, so there is no way to

know which images belong to the same class, and therefore there is

no way to keep the features of similar images close to each other. In

order to train a high-performance encoder, a very large batch size or

memory bank is usually required, which is very demanding on the

GPU hardware (Chen et al., 2020; Chen X. et al., 2021). The

supervised contrastive learning proposed by Khosla et al. (2020)

allows to use the image class labels, and the basis of training has

changed from whether they come from the same image to whether

they belong to the same class. Positive samples from multiple other

images in the same class may exist for each anchor during loss

function computation. This has the advantage of bringing the

feature representations of similar samples closer together in

hypersphere space. The additional benefit is that the loss function

contains richer positive samples in the computation, which helps to

reduce the batch size, thus alleviating the hardware requirements. In

fact, we implement the training using only 4 GPUs (NVIDIA RTX

3070). Compare to the previous work (e.g., Chen et al., 2020), the

requirements for the training hardware configuration are

much lower.

Essentially, both FSL and contrastive learning transfer

knowledge from a set of source tasks, thereby reducing the need

to collect a large amount of labeled training data for the target tasks.

Therefore, for few-shot plant disease recognition tasks, we consider

combining them in a framework to improve the accuracy under

few-shot condition. Based on this intuition, we propose a few-shot

disease image classification algorithm based on supervised

contrastive learning (Supervised Contrastive Few-shot Learning,

SC-FSL). In the pre-training phase, using the label information of

the disease to carry out supervised contrastive learning training, so

as to obtain an encoding network with strong generalization ability

for the disease recognition tasks. In the second phase, the encoder

learned in the previous phase is used as a feature extractor for the

diseases, by training a nearest-centroid classifier, which carries out

the few-shot disease recognition tasks. The experiments

demonstrate that the use of feature extractors with good

generalization performance, obtained in contrastive learning by

learning from a large amount of disease data, has a significant

effect on the subsequent improvement of disease recognition

accuracy for few shots. The success of the approach indicates that
frontiersin.or
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adopting large-scale training in the first phase can enable the feature

extractor to achieve better feature clustering performance, which

helps to improve the accuracy of the classifier in the second phase of

FSL. We believe that this kind of training strategy may provide a

new paradigm for FSL. The result of a recent work also supported

our idea (Xie et al., 2022). However, our implementation is quite

different from this work.

The main contributions of this work are two folds:
Fron
1. We introduce the paradigm of contrastive learning into the

few-shot learning process. Firstly, an encoder with strong

generalization ability is learned by contrastive learning and

a large number of disease images in the open plant disease

dataset. Secondly, for the specific few-shot task of disease

recognition, we use the encoder as a disease feature

extractor, and train the disease classifier based on

distance metrics and nearest-centroid principle.

2. Thanks to the strategy of supervised contrastive learning, a

large number of positive and negative samples can be input

simultaneously during one iteration of training the disease

encoder, which reduces the size of the batch and allows us

to use fewer GPU resources to complete the training.
The rest of this paper is as follows: Section 2 introduces

methods and materials, including the overall architecture of SC-

FSL, supervised contrastive learning, nearest-centroid classification

network, the experimental dataset and evaluation methods. In

Section 3, the elaborative experiments are carried out and results

are described. This part includes the effects of data augmentation,

batch size and iteration times, encoding networks and temperature

coefficients on the performance of the model, as well as the

performance comparison with several classical FSL algorithms,

and the application in potato disease of natural scenes. Section 4

summarizes this work.
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2 Materials and methods

2.1 Architecture of SC-FSL

The overall architecture of SC-FSL is shown in Figure 1. The

method is divided into two phases. In the first phase, the supervised

contrastive learning is employed to pre-train the encoding network

to obtain more generalized representation. In the second phase, the

pre-trained encoding network is frozen and treated as the feature

extractor of plant disease. We train a nearest-centroid classification

network on the few-shot dataset to complete the final disease

classification prediction.

The modules in the Figure 1 are introduced as follows:
1. Data Augmentation, denoted as: Aug(•), for each input

sample x, two random data augmentations exi and exj are
generated by Aug(•) and regarded as a pair of positive

samples, each of which represents a different view of

the data.

2. Encoder Network, denoted as: Enc(•), the two enhanced

samples are input into the same encoding network to

obtain a pair of vector representations hi = Enc(exi) and hj =
Enc(exj). Then the representation is normalized, which can

improve the generalization ability to a certain extent. The

encoding network can be any convolutional neural

network. We use ResNet in this study, which is also the

fq of the lower part of Figure 1 as a few-shot

feature extractor.

3. Projection Network, denoted as Proj(•), maps the

representation vector obtained after the encoding network

to the contrastive loss space. Usually, Proj(•) is instantiated

as a Multi-Layer Perceptron (MLP) and discarded after the

contrastive training (Tian et al., 2020).
FIGURE 1

Overview of supervised contrastive few-shot learning framework.
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4. Contrastive loss, denoted as L, aims to decrease the

distance between positive samples in the representation

space, and push the distance between the negative samples,

so as to achieve the representation learning.
2.2 Supervised contrastive learning

The idea of supervised contrastive learning is that image label

information is used in the embedding space so that representations

from the same category in the feature representation space are

closer together than representations from different categories. This

method extends self-supervised contrastive learning to a fully

supervised training paradigm. For plant disease recognition tasks,

this allows us to effectively use disease label information. The idea

behind the method is to gather the disease sample clusters with the

same class labels as much as possible in the feature representation

space, while the disease sample clusters with different class labels are

as far away as possible, so as to improve the discriminant ability of

the model in the case of intra-class diversity and inter-

class similarity.

Figure 2 shows an illustration of self-supervised contrastive

learning and supervised contrastive learning in the feature

representation space. In self-supervised contrastive learning, the

positive samples of each anchor are obtained by their own data

augmentation, which are closer to the anchor in the feature

representation space. The negative samples are composed of all

other samples remaining in the batch and should be kept as far away

from the anchor as possible. In supervised contrastive learning,

since the label information of each sample is known, all samples

belonging to the same class are regarded as positive samples, and the

samples of other classes are regarded as negative samples. In

Figure 2, Sample A (marked in red) belongs to the same class as

the anchor, but it is not acquired through anchor augmentation.

Thus, A is pushed further away from the anchor in self-supervised

contrastive learning. However, in supervised contrastive learning,

the use of class label information can narrow the distance between it

and the anchor, so that the diseases belonging to the same class are

arranged more closely in the feature representation space.

To compute the supervised contrastive loss, in addition to

considering the negative example samples, the positive example

samples are considered for each anchor. This is different from the

traditional self-supervised contrastive learning. In the traditional

way, only single positive sample can be seen, and the rest are all

negative samples. Meanwhile, the positive samples in supervised

contrastive learning are sampled from other instances with the same

anchor class. The supervised contrastive loss function is designed as

follows (Equations 1–4):

Lsup =o2N
i=1Lsup

i (1)

Lsup
i =

1
2Nyi − 1o

2N
j=11½i≠j� · 1½yi=yj � · ‘ij (2)
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‘ij = −log
exp(sim(zi, zj(i))=t )

o2N
k=11½i≠k�exp(sim(zi, zk)=t )

(3)

sim(zi, z j(i)) = zTi zj(i)=( ∥ zi ∥ ∥ zj(i) ∥ ) (4)

The notation of the above equation is explained as follows. i

denotes the anchor. Nyi represents the total number of images with

the same label yi as i. zi = Proj(Enc(~xi)) represents the output of the

feature ~xi after it has been encoded by the encoding network Enc(•)

and projected by the projection network Proj(•). 1½i≠k� ∈ 0, 1f g is an
indicator function, if and only if i ≠ k is 1, otherwise it is 0. j(i)

denotes the positive example samples of anchor i, and the other 2

(N-1) terms denote the negative example samples. t denotes the

scalar temperature coefficient. sim(zi, zj(i)) denotes the similarity

measure function between zi and zj(i).

Algorithm 1 gives the pseudo-code of the proposed method.

Table 1 lists the symbols used in Algorithm 1 and their meanings.
1 input: D, batch size N, t, Enc, Proj.

2 for sampled minibatch xkf gNk=1~D do

3 for all k ∈ 1,…,Nf g do

4 ~x2k−1 = t(xk) # the first augmentation

5 h2k−1 = Enc(~x2k−1) # representation

6 z2k−1 = Proj(h2k−1) # projection

7 ~x2k = t0(xk) # the second augmentation

8 h2k = Enc(~x2k) # representation

9 z2k = Proj(h2k) # projection

10 end for

11 for all i ∈ 1,…, 2Nf g and j ∈ 1,…, 2Nf g do

12 sim(zi ,zj(i)) = zT
izj(i)=( ∥zi ∥ ∥zj(i) ∥ ) # pairwise

similarity

13 end for

14 ‘(i, j) = −log exp(sim(zi ,zj(i) )=t)

o2N
k=1

1½i≠k�exp(sim(zi ,zk)=t)

15 Lsup
i = 1

2Nyi
−1o2N

j=11½i≠j� · 1½yi=yj � · ‘ij

16 Lsup =o2N
i=1Lsup

i

17 update networks Enc and Proj to minimize Lsup

18 end for

19 return encoder network Enc(•)
Algorithm 1.
Supervised contrastive Pre-training’s main learning algorithm.

The output of supervised contrastive learning is not a classifier,

but a superior encoder which brings similar classes of data as close

together as possible in feature space and excludes different classes of

data. The encoder can be used as a feature extractor in downstream

classification tasks, depending on the specific objects recognized and

the number of categories. When implementing a specific

classification task, it can be trained again after simply adding a

classification layer behind the feature extractor. Any CNN network

can used as the encoder. In fact, we use the ResNet in the later

experiments, deleted its fully connected layer (classification layer) and

only retained the previous convolutional layer and residual layer.
frontiersin.org
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It is worth noting that the paradigm of contrastive learning

belongs to large-scale learning. Therefore, in the first stage of SC-

FSL we still adopt the strategy of large-scale training. Only in the

second stage, the M-way N-shot method is used. This is different

from traditional FSL in which M-way N-shot method is usually

employed in both stages.
2.3 Nearest-centroid classification network

The few-shot disease recognition model based on supervised

contrastive learning is a two-phase few-shot learning method. In the

first phase, an encoding network for learning the feature

representation of disease images is trained by supervised

contrastive learning method. In the second phase, the trained

encoding network is used as the feature extractor, and a nearest-

centroid classification network is trained by using the few-shot

general learning paradigm (N-way K-shot), so as to realize the few-

shot disease recognition tasks. Note: in this stage, the feature

extractor is frozen and its parameters are not modified in any

way. We simply train the parameters of the classifier.

The basic idea of the nearest-centroid classification network is

to create a prototype representation for each class, which is called

class prototype. For the query sample that need to be classified, the
Frontiers in Plant Science 06
distance metric between the query sample feature vector and the

class prototype is calculated, and the corresponding class of the class

prototype with the smallest distance is selected as the predicted

class. The structure of the nearest-centroid classification network is

shown in Figure 3.

Firstly, the sample of training set xi of each class of disease

images is mapped to the feature representation by nonlinear feature

encoder fq, and then the mean value of each class in the feature

representation is calculated separately as the class prototype

mm(m = 1 eM) (M is the number of classes), and the calculation

formula is shown in Equation 5:

mm =
1
Smj jo(xi ,yi)∈Sm

f q (xi) (5)

where mm denotes the class prototype of the class m. fq denotes

the nonlinear feature mapping function. Sm denotes the set of data

samples with the class m in the training set S, and |Sm| is the total

number of samples. (xi, yi) denotes the sample and the

corresponding label of training set.

The Euclidean metric is used as the metric function between the

query set samples and the class prototypes, then the class

distribution for a given sample x is (Equations 6, 7):

p(y = mjx) = exp( − d(f q (x),mm))
om0exp( − d(f q (x),mm0 ))

(6)

d(f q (x),mm) =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(f q(x) − mm)

2
q

(7)

where mm’ denotes the class prototype of each class in mm.
2.4 Dataset

Two plant disease datasets are utilized in the study to conduct

the experiments for few-shot disease recognition. The first is

PlantVillage (Hughes and Salathe, 2016) which is the most widely

used open-access plant disease image database. It collects 54,306

images of plant disease leaves, including 14 kinds of plants and a

total of 38 classes. All images in this dataset are taken under
FIGURE 2

Contrastive loss in the embedding space.
TABLE 1 Symbols and meaning.

Symbols Meaning

D training dataset

N batch size

t temperature

Enc encoder network

Proj projection network

xkf gNk=1 minibatch in training dataset

t data augmentation operator

t' data augmentation operator
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laboratory conditions with controlled lighting and simple

backgrounds. Table 2 displays all the plants and their disease

types, and some examples in PlantVillage are given in Figure 4A.

The size of each image is 256*256*3.

The second dataset is the Potato Disease Dataset (PDD) in

natural scenes. The images of PDD are collected from the Internet

by us. Unlike PlantVillage, they are taken under natural light

conditions and the background is complex. PDD includes five

types of images of potato leaf diseases, namely early blight, late

blight, leaf curl, anthracnose and healthy leaves, with 40 images in

each class. Some examples of these five diseases are given in

Figure 4B. To be consistent with the PlantVillage, all images are

resized to 256*256*3.

In order to evaluate the transferability of the few-shot disease

recognition algorithm proposed in this paper between the source
Frontiers in Plant Science 07
domain and target domain, two scenarios are arranged in the

experiments. Scenario A: both source domain data and target

domain data are from PlantVillage. Scenario B: The source

domain data comes from PlantVillage, while the target domain

data comes from PDD. In Scenario A, PlantVillage is split into two

non-overlapping parts, one is the source domain and the other is

the target domain. We evaluate several factors that affect the

performance of SC-FSL, and compare the recognition accuracy of

SC-FSL with other nine algorithms. Although the target domain

and source domain have different disease classes, the images in

them are taken under the same conditions. Therefore, the feature

distributions of the two domains are similar. We further evaluate

the transferability of our algorithm between two domains with

completely different feature distributions in Scenario B. In Scenario

A, we randomly select N classes from the source domain or target
TABLE 2 Information of PlantVillage.

Class Plant name Disease Images Class Plant name Disease Images

1

Apple

Scab 630 20 Pepper Healthy 1478

2 Black rot 622 21

Potato

Early blight 1000

3 Cedar rust 275 22 Healthy 152

4 Healthy 1645 23 Late blight 1000

5 Blueberry Healthy 1502 24 Raspberry Healthy 371

6
Cherry

Healthy 854 25 Soybean Healthy 5090

7 Powdery mildew 1052 26 Squash Powdery mildew 1835

8

Corn

Cercospora 513 27
Strawberry

Healthy 456

9 Rust 1192 28 Leaf scorch 1109

10 Healthy 1162 29

Tomato

Bacterial spot 2127

11 Northern leaf blight 985 30 Early blight 1000

12

Grape

Black rot 1180 31 Healthy 1591

13 Black measles 1383 32 Late blight 1909

14 Healthy 423 33 Leaf mold 952

15 Isariopsis leaf spot 1076 34 Septoria leaf spot 1771

16 Orange Citrus greening 5507 35 Spider mites 1676

17
Peach

Bacterial spot 2297 36 Target spot 1404

18 Healthy 360 37 Mosaic virus 373

19 Pepper Bacterial spot 997 38 Yellow leaf curl 5357
fro
FIGURE 3

The nearest-centroid classification network structure diagram.
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domain of each task, with K samples per class, and then the entire

task has only N × K samples, with K generally not exceeding 20. In

Scenario B, each task is constructed in a similar way to Scenario A.
2.5 Evaluation methodology

In order to evaluate the performance of SC-FSL, we use top-1

accuracy as the evaluation index. Top-1 accuracy is the most

commonly used performance evaluation index for image

recognition models. The plant disease recognition in this study is

a single-label multi-classification problem, and in the experimental

design of few-shot learning, the number of samples in each class is

consistent, so the number of each class is well balanced. Therefore,

top-1 accuracy is a good overall evaluation criterion. The formula is

shown in Equation 8:

j =
1
mo

m
i=11(f (xi) = yi) (8)

Where 1( · ) is output is 1 (condition is true) or 0 (condition is

false). m is the number of query set samples in a task. f(xi) is the

predicted value of the query set sample xi, and yi is the true label of

xi. j denotes top-1 accuracy.

In order to describe the uncertainty of accuracy in repeated

experiments, we use standard deviation to measure it. Generally, the
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Bessel formula is used to estimate the standard deviation as shown

in Equation 9:

s =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

i=1(j − �j)2

n − 1

s
(9)

where s denotes the standard deviation. n denotes the number

of repetitions. �j denotes the average value of top-1 accuracy.

Finally, the final experimental results are evaluated using

criteria consistent with classical few-shot learning algorithms such

as MAML (Finn et al., 2017), and the style of the results in all the

tables in this paper is shown as Equation 10:

�j ± 1:96 * s=
ffiffiffi
n

p
(10)

The second half of the formula is a measure of the 95%

confidence interval. Unless otherwise stated, the accuracy

mentioned later in this paper refers to �j.
3 Results and discussion

3.1 Experimental setup

The experiment is completed by using the IW4211-8G

(SITONHOLY) rack server. The hardware configuration is as
FIGURE 4

Some examples of disease samples from PlantVillage and PDD.
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follows: Intel® Xeon(R) Gold 6240 CPU @2.60GHz * 72, GPUs are

NVIDIA GeForce RTX 3070 * 4, and running memory is 128GB.

The software platform is Ubuntu 18.04.6 LTS 64-bit operating

system, CUDA Toolkit 11.3 and CUDNN v8.2.0. The

programming language is Python 3.7, and the deep learning

framework is Pytorch 1.10.2.

The main training parameters of the study are as follows: in the

first phase of contrastive learning, SGD with momentum parameter

of 0.9 and weight decay rate of 5×10-4 is used as the optimizer, and

the Warming up strategy is used for warm-up training. Then the

Cosine annealing algorithm is used for three times of decay. The

initial learning rate is 0.05 and the decay rate is 0.1. All models are

trained with 500 epochs. In the second phase, following the N-way

K-shot sampling strategy in few-shot classification task, the average

accuracy of 600 episodes and their 95% confidence intervals are

evaluated and reported.
3.2 Impact of different combinations of
data augmentation

In contrastive learning, the model constructs positive sample

pairs and negative sample pairs by data augmentation. Therefore,

we investigate the impact that different data augmentation methods

have on recognition accuracy. The benchmark network chosen in

the experiment is ResNet 18. It is worth noting that, unless

otherwise specified, the encoding network used in the next

experiments is ResNet 18, and dataset configuration is Scenario A

described in Section 2.4, that is, the source and target dataset are

both PlantVillage. For simplicity, we denote A, B, C and D to

represent 4 kinds of data augmentations. A is the random length-

width ratio cropping, and the random cropping area ratio is 0.2-1.0.

B denotes the random horizontal flipping of the images according to

the probability, and the flipping probability is 0.5. C is the image

color distortion operation that modifies brightness, contrast, and

saturation, and for which a probability of 0.8 is applied. D denotes

the random conversion of images to grayscale images. Table 3
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shows the evaluation results of few-shot recognition under the

conditions of different combinations of data augmentations.

As can be seen from Table 3, for single data augmentation, the

highest recognition accuracy is obtained using random color

distortion with the probability of 0.8, followed by image random

length-width ratio cropping operation. In the case of the combination

of two kinds of data augmentations, the combination of random

length-width ratio cropping and random color distortion achieves the

highest accuracy. As for the combination of three kinds of data

augmentations, the highest recognition accuracy is obtained by the

combination of random length-width ratio cropping, random

horizontal flipping and random color distortion. It can be observed

that it seems that the highest accuracy increases as the number of data

augmentations increases. However, inappropriate combinations of

data augmentation can also reduce the accuracy of disease

recognition. For example, if random grayscale appears in a given

combination. In fact, when all four data augmentations are present,

the accuracy of disease recognition decreases instead. As can be seen

from Table 3, the accuracy of random grayscale is also the lowest for

all scenarios.

The above results show that for the appropriate combination of

data augmentations may make the model learn better feature

representations, but for plant disease recognition, random grayscale

plays a negative role in various combinations. This operation causes the

disease image to lose its color. Therefore, it is reasonable to speculate

that in the supervised contrastive learning, the color information of the

disease enables the encoding network to pull samples of other

categories further apart. If the color information is lost, the encoding

network cannot effectively cluster the samples of the same disease.
3.3 Impact of batch size and epoch

In the proposed algorithm, we implement the training of

encoding network by supervised contrastive learning in the first

phase. The traditional contrastive learning methods suggest larger

batch size and more epochs during model training to ensure the

generalization performance of the encoding network. However,
TABLE 3 Effect of data augmentations of SC-FSL on accuracy of plant disease recognition.

Data Aug
Accuracy (%)

Data Aug
Accuracy (%)

5-way 1-shot 5-way 5-shot 5-way 1-shot 5-way 5-shot

A 64.16 ± 0.86 79.55 ± 0.65 B+C 67.53 ± 0.87 81.28 ± 0.61

B 54.19 ± 0.85 69.07 ± 0.81 B+D 46.89 ± 0.86 62.49 ± 0.77

C 65.43 ± 0.87 82.65 ± 0.60 C+D 56.54 ± 0.92 73.88 ± 0.70

D 45.35 ± 0.86 57.88 ± 0.88 A+B+C 78.55 ± 0.81 92.90 ± 0.47

A+B 62.26 ± 0.87 78.01 ± 0.64 A+B+D 49.47 ± 0.92 61.72 ± 0.79

A+C 75.36 ± 0.80 91.55 ± 0.46 B+C+D 57.11 ± 0.90 74.87 ± 0.75

A+D 48.46 ± 0.89 59.39 ± 0.84 A+B+C+D 77.78 ± 0.81 91.78 ± 0.45
Underline indicates the highest recognition accuracy in a single data augmentation; double underline indicates the highest recognition accuracy in a combination of two kinds of data
augmentations; bold indicates the highest recognition accuracy in a combination of three kinds of data augmentations.
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large batch size and more epochs are extremely demanding on

computational resources. In contrast, the supervised training

paradigm can be performed in smaller batch size settings. At the

same time, the encoding network learned in the first phase directly

affects the generalization performance of the classifier in the second

phase. Therefore, we study the effects of different batch sizes and

epochs on the performance of the model. Two encoding networks

with different depths are used in our experiments. One is ResNet 18

which is a shallow residual convolutional neural network, and the

other is ResNet 50 which is a deeper residual convolutional neural

network. As in Section 3.2, the database configuration for this

experiment is also Scenario A. Figure 5 shows the impact of

different batch size settings on the model performance.

As can be seen in Figure 5A, at the first, the accuracy of the

model gradually increases with respect to the batch size. However,

when the batch size exceeds 192, the recognition accuracy tends to

be saturated, and the accuracy even decreases slightly when the

batch size continues to increase. It can be seen from Figure 5B that

for ResNet 50, it shows the same trend as ResNet 18. For the deeper

encoding network, the model can achieve the highest recognition

accuracy when a smaller batch size (64-96). Obviously, the more

samples in the support set, the higher the recognition accuracy.

Therefore, the accuracy of 5-way 5-shot is higher than 5-way 1-shot

for both cases.

The above results exhibit that SC-FSL can bring good

performance with smaller batch size. This is in contrast to

unsupervised contrastive learning which requires a large batch

size (Chen et al., 2020a; He et al., 2020). The results establish that

supervised training with label information enables the contrastive

learning to perform efficient knowledge transfer for few-shot

disease recognition tasks without a large batch size, which greatly

reduces the computational requirements.

In order to observe the effect of training epochs on the

performance, we conduct the few-shot recognition evaluation of

the model for various epochs. The results of ResNet 18 are shown

in Figure 6.

From Figure 6, one can observe that the recognition accuracy

increases with the increase of training epochs. When 350 epochs are

trained, the accuracy tends to be saturated.
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3.4 Impact of temperature coefficient

According to the Equation 3 of the loss function, the

temperature coefficient t is a hyperparameter used to adjust the

contrastive representation learning. Therefore, we study the effect of

t on the performance of few-shot diseases classification. In the

experiment, we set the value range from 0.02 to 0.2. The

experimental results are shown in Figure 7.

It can be seen from Figure 7, there are slight fluctuations in the

recognition accuracy over the range of t involved in the experiment.

This indicates that the learning effect of the encoding network is

relatively stable and the training algorithm is robust over the

considered range of t. The highest recognition accuracy is obtained

when t is set to 0.1 for both 5-way 1-shot and 5-way 5-shot.

Furthermore, in order to observe the convergence of the model

under different temperature coefficients, we plot the loss curves for

500 epochs of model training under different t, as shown in Figure 8.

As can be seen from Figure 8, the supervised contrastive

training losses converge well at different t. Also, the smaller the t,
the smaller the final convergence value of the loss.
3.5 Comparison with common
FSL algorithms

We compare the disease recognition accuracy of SC-FSL

algorithm with nine popular FSL algorithms, including ProtoNet

(Snell et al., 2017), MatchingNet (Vinyals et al., 2016), RelationNet

(Sung et al., 2018), NegMargin (Liu et al., 2020), MetaBaseline (Chen

Y. et al., 2021), MAML (Finn et al., 2017), FEAT (Ye et al., 2020),

MELR (Fei et al., 2020) and DeepEMD (Zhang et al., 2020). The

various hyperparameters of the proposed method are set to the best

value resulted from the aforementioned sections. ResNet 18 is used as

a feature extractor in SC-FSL. The few-shot dataset is constructed

following the Scenario A. Table 4 gives the experimental results.

It can be seen from Table 4 that among all the algorithms, the

SC-FSL achieves the highest recognition accuracy in both 5-way 1-

shot and 5-way 5-shot. The recognition accuracy of 5-way 1-shot is

1.75% higher than that of the second-ranked MatchingNet
FIGURE 5

Effect of batch size on accuracy.
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algorithm, and the accuracy of 5-way 5-shot is 2.12% higher than

that of the second-ranked NegMargin. The above results show that

SC-FSL is a highly competitive method for FSL.
3.6 Impact of different encoding networks

The benchmark encoding network selected in the above

experiments basically is ResNet 18 which is a relatively shallow

residual convolutional neural network. In this section, we will

investigate whether the deeper encoding network learn better

feature representation by supervised contrastive learning. We

implement the training of the shallower encoding networks ResNet

18 and ResNet 34, as well as the deep encoding networks ResNet 50,

ResNet 101 and ResNet 152 under the supervised contrastive learning

framework, and conduct few-shot disease recognition evaluation. The

experimental results are shown in Figure 9.

From Figure 9, we observe that the recognition accuracies of

both 5-way 1-shot and 5-way 5-shot increase with respect to the

depth of the encoding networks. It can be concluded that, in the

proposed method, the deeper encoding network can learn better

representation with rich semantic information. This result is quite
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different from conventional FSL, where the common perception is

that very deep networks cannot be adequately trained under few-

shot training conditions, and thus can easily fall into overfitting,

resulting in degraded accuracy. We believe the reason about this is

that the first phase of our method is actually large-sample training,

rather than small-sample task training as in conventional FSLs. And

according to the general conclusion of large-sample training, deeper

networks tend to learn better performance.
3.7 Recognizing potato leaf diseases in
natural scenes

We explore the effectiveness of SC-FSL in the task of recognizing

plant leaf diseases in natural scenes, a setting with more complex

background and lighting variations. Here, the test dataset is PDD

collected by us. We follow the data construction scheme of Scenario

B, with PlantVillage as the source domain and PDD as the target

domain. In the first phase, ResNet 18 and ResNet 50 as encoding

networks are trained to learn capacity of extracting feature from the

images in PlantVillage, respectively. In the second phase, the few-shot

learning sampling mode is adopted on PDD, and five modes are

evaluated in the form of 5-way M-shot, where M value is 1,5,10,20

and 30 respectively. The experimental results are shown in Table 5.

From Table 5, for ResNet 18 and ResNet 50, the recognition

accuracy increases from 43.7% to 69.31%, and 49.12% to 79.51%

when the training samples are increased from 1 to 30, respectively.

The number of training samples has an apparent impact on the

recognition accuracy. Thus, in order to obtain better performance,

as many training samples as possible should be used, even under

few samples condition. In addition, with the same number of

training samples, the recognition effect of ResNet 50 is

significantly higher than that of ResNet 18. In practice, deeper

networks should be used as feature extractors.

We further analyze the classification performance of SC-FSL for

each disease class in PDD. When the number of training sample is

30-shot, the cumulative confusion matrix of SC-FSL of 20 episodes is
FIGURE 6

Training epochs vs. accuracy.
FIGURE 7

Effect of temperature parameters on accuracy.
FIGURE 8

Training loss curve with respect to t.
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shown in Figure 10. In this figure, the potato disease types are

denoted as follows: 0 healthy, 1 early blight, 2 late blight, 3 leaf curl,

and 4 anthracnose.

As can be seen from Figure 10, SC-FSL has the highest

recognition accuracy of 91.5% for potato early blight, followed by

82% for healthy leaves. The model has the lowest recognition

accuracy of 70.5% for anthracnose. The confusion matrix shows

that SC-FSL is most likely to misclassify anthracnose as healthy

leaves and early blight. Looking at the potato anthracnose images in

PDD, we notice brown circular spots with lighter color in the lesions

of a leaf. Some images of early blight also showed circular spots with

lighter colors. Therefore, for these images with very similar disease

characteristics, the model can easily confuse them, leading to

misidentification of anthracnose as early blight. In addition, some

of the anthracnose images have a small number of spots, which the

model tends to confuse with healthy leaves.

The above results show that our proposed model can also achieve

good results in the PDD recognition task under different data

distribution conditions in the target domain and source domain.
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4 Conclusion

Learning through a large number of samples is the key to the

success of popular disease recognition based on deep learning.

However, in agricultural production, the time and place of disease

occurrence are random, which makes it difficult to collect large-scale

disease samples. How to obtain a high performance of disease

recognition under the condition of only few-shot samples is an

open question. At present, the main paradigm is to train an initial

model by few-shot samples but multiple tasks in the pre-training

stage, and then fine-tune the model with few-shot samples on the

specific recognition task. We notice that there are a lot of disease

samples that can be used in the pre-training phase, although they do

not belong to the classes of the specific task. However, they should

share some similar characteristics with the diseases of the specific

task. In view of the good generalization performance of contrastive

learning, we propose a new few-shot disease recognition paradigm

called SC-FSL, that is, big data and contrastive learning in the pre-

training stage is used in pre-training phase, and few-shot learning is

used in the specific disease recognition stage. Specially, supervised

contrastive learning is introduced into the pre-training phase, which

allows the utilization of the other disease category information in the

training process. It can extend the number of positive samples and
TABLE 5 Results of potato disease recognition.

M-shot
Accuracy (%)

Resnet18 Resnet50

30-shot 69.31 ± 0.50 79.51 ± 0.39

20-shot 68.07 ± 0.51 77.16 ± 0.43

10-shot 64.87 ± 0.52 73.31 ± 0.46

5-shot 60.48 ± 0.54 68.29 ± 0.53

1-shot 43.70 ± 0.63 49.12 ± 0.73
FIGURE 10

Cumulative confusion matrix of SC-FSL.
TABLE 4 SC-FSL vs. some state-of-the-art FSL.

Algorithms
Accuracy (%)

5-way 1-shot 5-way 5-shot

ProtoNet 75.32 ± 0.80 89.70 ± 0.51

MatchingNet 76.80 ± 0.81 87.85 ± 0.56

RelationNet 74.71 ± 0.83 88.90 ± 0.40

NegMargin 72.40 ± 0.80 90.78 ± 0.47

MetaBaseline 70.07 ± 0.81 87.02 ± 0.51

MAML 69.97 ± 0.96 86.04 ± 0.56

FEAT 74.23 ± 0.03 88.01 ± 0.03

MELR 74.90 ± 0.75 89.02 ± 0.13

DeepEMD 73.87 ± 0.07 88.56 ± 0.06

SC-FSL(ours) 78.55 ± 0.81 92.90 ± 0.47
The boldface is the best result and the underline the second-ranked result.
FIGURE 9

Effect of different encoding networks on accuracy.
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force the encoding network to bring samples of the same category

closer together in the feature space, which helps to improve the

classification of small samples at the later phase. An additional benefit

of SC-FSL is the ability to reduce the size of the batch at training time,

thus greatly reducing the requirement for training hardware. We

conduct a number of experiments to evaluate the factors affecting the

effectiveness of the proposed method. Experimental results indicate

that the appropriate combination of data augmentations is crucial for

learning good representations. The combination of random length-

width ratio clipping, random horizontal flipping and color distortion

is the best for plant disease recognition. For ResNet 18 as feature

extractor, the accuracy of 5-way 1-shot and 5-way 5-shot is 78.55%

and 92.90% on PlantVillage, respectively. Label information helps the

training of contrastive learning to achieve good learning results with

only a small batch size, e.g., for ResNet 18, the optimal batch size is

192, which is much smaller than the batch size for normal contrastive

learning methods. In comparative experiments, the recognition

accuracy of SC-FSL over PlantVillage outperforms the other nine

FSL algorithms in all scenarios. Furthermore, the encoder learned on

PlantVillage still achieves high accuracy as a feature extractor on

PDD that is completely different from PlantVillage, without any fine-

tuning. This result indicates that SC-FSL has good generalization

performance in cross-domain recognition tasks. We believe that this

high performance essentially comes from the fact that the encoder is

learnt through large samples in the contrastive learning process.

When the encoder acts as a feature extractor in the few-shot

recognition task, it has a good clustering effect on samples of the

same category in the feature space, which improves recognition

accuracy of the disease.
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