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Introduction: Asian soybean rust is a highly aggressive leaf-based disease

triggered by the obligate biotrophic fungus Phakopsora pachyrhizi which can

cause up to 80% yield loss in soybean. The precise image segmentation of fungus

can characterize fungal phenotype transitions during growth and help to

discover new medicines and agricultural biocides using large-scale

phenotypic screens.

Methods: The improved Mask R-CNN method is proposed to accomplish the

segmentation of densely distributed, overlapping and intersecting microimages.

First, Res2net is utilized to layer the residual connections in a single residual block

to replace the backbone of the original Mask R-CNN, which is then combined

with FPG to enhance the feature extraction capability of the network model.

Secondly, the loss function is optimized and the CIoU loss function is adopted as

the loss function for boundary box regression prediction, which accelerates the

convergence speed of the model and meets the accurate classification of high-

density spore images.

Results: The experimental results show that the mAP for detection and

segmentation, accuracy of the improved algorithm is improved by 6.4%, 12.3%

and 2.2% respectively over the original Mask R-CNN algorithm.

Discussion: This method is more suitable for the segmentation of fungi images

and provide an effective tool for large-scale phenotypic screens of plant

fungal pathogens.
KEYWORDS

Asian soybean rust, Phakopsora pachyrhizi, deep learning, instance segmentation, mask
R-CNN
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1 Introduction

Soybean (Glycine max) is one of the most economically efficient

crops since it is an important source of food, protein, and vegetable

oil. Asian Soybean Rust (ASR) is a globally aggressive foliar disease

of soybean plants that can cause up to 80% losses and have a

significant impact on production costs in various geographical areas

invaded by the pathogen (Lorrain et al., 2019). Fungus Phakopsora

pachyrhizi is the causal agent of ASR. Infection begins with the

deposition of uredospores on soybean leaves, where the rust fungus

invades the epidermal cells of the host through the appressorium

formed during spore germination and extracts nutrients from the

host body (Goellner et al., 2010; Loehrer and Schaffrath, 2011). This

fungus can defoliate soybean fields and accelerate maturation with a

reduction of seed size and weight and may lead to complete crop

failure within a few days (Hartman et al., 2015). Currently, timely

fungicide application is the only means of controlling ASR (Saito

et al., 2021).

It is important to analyze the characterization of fungi

germinating in vitro for ASR disease control and research.

Researchers have found that automated microscopy-based

phenotyping is typically used under genetically or environmentally

sensitive conditions to probe the relationship between cell structure

and function by unbiased quantification of phenotypic changes in

response to perturbations of interest (Liberali et al., 2015; Usaj et al.,

2016). Some studies have applied fungal images to the field of drug

discovery and development (Calderone et al., 2014; Carolus et al.,

2020). By analyzing the morphology and characteristics of fungi,

researchers are able to better understand the structure and function of

fungi. Statistical information on fungal spores can reveal the degree of

resistance and activity of spores to discover new drug candidates and

therapeutic options. Large-scale phenotypic screening of multiple

compounds acting on fungal spores can identify suitable fungicides

and drugs for ASR. However, these drugs usually have to be screened

from hundreds of compounds by expert labor, which requires huge
Frontiers in Plant Science 02
processing time. These image-based methods have found their

greatest application in the pharmaceutical industry, where they

have been used to primary screening stages of drug discovery, drug

target validation, early evaluation of toxicity properties and complex

multivariate drug profiling (Zanella et al., 2010; Reisen et al., 2015).

For example, haploid yeast was treated with drugs that perturb cell

wall and the dose-dependent changes in morphology were analyzed

to identify drugs that interfere with cell wall synthesis (Okada

et al., 2014).

As show in Figure 1, Segmentation is one of the significant steps

of phenotypic screening (Cabre et al., 2021). Accurate image

segmentation of fungal spores can characterize phenotypic changes

during fungal growth, and accurate segmentation significantly

determines the efficiency and effectiveness of drug screening,

contributing to the discovery of drugs and agricultural fungicides

using large-scale phenotypic screening, as well as to the development

of strategies for the control of ASR using biotechnological

approaches. Manual segmentation of images is cost-ineffective and

time-consuming for expert annotation, and thus is impractical for

large data segmentation. More importantly, due to the variability of

individuals, manual segmentation can introduce large segmentation

errors and biases, so there is a need to find an accurate and efficient

automatic segmentation method. Due to the different degree of

response of the fungi to different drugs, it appears that the spore

morphology of fungi in the process of reproduction appears to have a

large morphological variability. Moreover, the interaction between

fungi, many fungi overlap, distort and adhere to each other, which

can make accurate segmentation difficult. Finally, the collected

microscope images have low contrast, and the fungal edges are very

blurred and difficult to identify accurately, while some of the images

have impurities.

Some microscopy applications use machine learning

algorithms, such as those for range thresholding, simple filters,

and edge detection based on intensity changes are now widely used

(Melo et al., 2019). Traditional image segmentation methods
FIGURE 1

Large-scale phenotypic screening of multiple drugs based on automated fungal segmentation.
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include Otsu’s thresholding (Otsu, 1979), watershed algorithm

(Beucher, 1992) and clustering (Coleman and Andrews, 1979).

For instance, a Gaussian Separate Degree is used for Otsu

method, called as G-Otsu, is proposed to segment anthrax spore

images (Zhao et al., 2020). Korsnes et al. (2016) used methods such

as mean gradient and morphological processing to detect spore

boundaries for spore segmentation, followed by egg shape-fitting

techniques to fit spore perimeter. Using K-means method to

segment spores of Puccinia striiformis f. sp. tritici (Pst) by

clustering pixel values, and isolate touching spores based on the

shape and area factors (Lei et al., 2018). However, these classical

machine vision methods are sensitive to noise and lack robustness,

and usually cannot realize the segmentation of complex shapes.

Deep learning can learn how to extract the features from a large

number of samples. Zhao et al. took anthrax spores as the research

objects and applied CFL (Constrained Focal Loss) Loss function to

DeeplabV3+. Experimentally, this proposed CFLNet* can achieve

better performance than original DeepLabv3+ (Zhao et al., 2019).

Yang et al. (2020) proposed a Nuclear Segmentation Tool (NuSeT),

which assimilates the advantages of semantic segmentation (U-Net)

and instance segmentation (Mask R-CNN) and can work with both

fluorescent and histopathology image samples. Xie et al. (2021) used

Mask Scoring R-CNN network to detect mango disease spores to

control and prevent mango disease. Li et al. (2023) proposed an MG-

YOLO detection algorithm that introduces Multi-head self-attention in

the YOLO backbone and optimizes the network neck and pyramid

structure for fast and accurate gray mold spores detection, with a

detection accuracy of 0.983 for the improvedmodel and a time spent of

0.009 seconds per image. Zhang et al. (2023) introduced the attention

mechanism module (ECA-Net) and adaptive feature fusion

mechanism (ASFF) into the feature pyramid structure of YOLO to

detect Fusarium germinate spores of small targets, and the average

recognition accuracy of this model was 98.57%.

Image segmentation includes semantic and instance

segmentation. The task of semantic segmentation is to classify

each pixel in the image without separating the objects (Long

et al., 2015), but this does not apply to our fungal segmentation

task because there are a large number of Phakopsora pachyrhizi

adhering or overlapping in the image, which can cause the touching

fungus to not be segmented from each other and cause under-

segmentation problems. Instance segmentation is a combination of

the object detection and the semantic segmentation, where the

object is detected in the image and then each pixel is labeled.

Identifying Phakopsora pachyrhizi in an image is best viewed as an

instance segmentation task (Hariharan et al., 2014). In this paper,

we propose an improved Mask R-CNN spore segmentation method

to solve these problems and improve the accuracy of spore

segmentation. The main objectives include:

Optimization of backbone using Res2net block. by hierarchizing

the residual connections in a single residual block, it is possible to

achieve a multi-scale characterization of the fine-grained layers and,

at the same time, increase the size of the sensory field at each level of

the network. The use of Feature Pyramid Grids (FPGs) highlights

the importance of deep pyramid representations by improving

single-path feature pyramid networks by significantly improving
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their performance at a similar computational cost. Use CIOU as a

bounding box regression loss function to reduce the error.

A newmethod for fungal spore segmentation is proposed; extensive

experiments show that this method achieves better segmentation

performance under high density and overlapping conditions.
2 Materials and methods

In this section, we first summarize the problems and challenges

faced in segmenting target images. Then, the segmentation model is

designed and optimized, including the optimization of backbone

and the optimization of mask branch.
2.1 Data source

In this paper, a spore image dataset was established to

characterize the phenotypic transformation of fungi during in

vitro growth in the presence of different fungicides. We used

PerkinElmer’s Opera QEHS high content rotary confocal system

to observe fungal spores at different stages of growth and extract

high quality images. The rotary disk confocal microscope can scan

multi-channel fluorescence signals in a short time, and reduces the

influence of detection environment on cells through extremely

sensitive confocal imaging and synchronous acquisition.

Fresh leaves with rust organelles that had broken through the leaf

epidermis and yellow rust spores were collected from the

experimental field and brought back to the laboratory. Firstly, the

surface of the diseased leaves was rinsed with running water, and then

the leaf surface around the rust organelles was wiped with 75%

ethanol, and then the diseased leaves were put into a petri dish with a

wet filter paper at the bottom to keep humidity, and then fresh spores

scattered around the rust organelles were collected after 1 d. Fresh

spores collected were put into a 2 mL EP tube with appropriate

amount of sterile water containing 0.3% Tween 80, and shaken well to

make a spore suspension. The collected fresh rust spores were put

into 2 mL EP tubes, and the spore suspension was made by adding

appropriate amount of sterile water containing 0.3% Tween 80 and

shaking well. 100μl of the sample was inoculated into the wells of a

96-well plate, and the spores from the 96-well plate were mixed in

batches with six solvents: Carbendazim (1 ppm), DMSO (0.1%), PIK-

75 (3.3 ppm), Solatenol (0.041 ppm), Solatenol (10 ppm) and TOU-

951 (1.1 ppm). After 90 minutes, spores were stained using Calcofluor

White solution with KOH and imaging of spores was recorded every

15 minutes one the Opera QEHS at a magnification of 10x to track

spore growth status, with a total of 9 time-state data recorded.

Hundreds of images of fungal spores at different stages of growth

were collected under each time period for each chemical treatment.

Each image has a size of 685 × 503 pixels and a pixel range of

8bit, saved in TIF format. We randomly selected 300 images as our

dataset which fully contains the various morphology of fungal

spores under the action of fungicides, as is show in Figure 2. (Due

to the different efficacy of drugs acting on fungi, fungal spores vary

greatly in phenotype, such as size, length, and number.) The
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diversity of fungi images collected improves the generalization

ability and robustness of algorithm.

Each image in the dataset was manually annotated for network

training by the open-source software Labelme (Russell et al., 2008)

which labels the pixels of each class. Specifically, to instance

segmentation, each single fungus segmentation served as an

instance. As is shown in Figure 3.

The Phakopsora pachyrhizi dataset was divided into training and

test sets in a ratio of 80:20, where 240 images were used as the training

set (containing 5526 spores) and 60 images were used as the training

set (containing 1621 spores). Thereafter, the labeled image instance

information is stored in test set and training set json files respectively.

The dataset is shown in Table 1.
Frontiers in Plant Science 04
2.2 Instance segmentation methods
for spores

Microscopic image segmentation is an intricate task, with the

target spores in Phakopsora pachyrhizi images encompass fungal

spores with variable shapes and the same image mixed with

multiple different growth states. An integral fungus consists of 2

parts, the germ tube and the spore. Due to the defects of light and

the different sensitivity of different parts of the spore to light, the

image of the stained spore has a low contrast, and it is difficult for

the naked eye to detect its edges, which improves the difficulty of

accurate segmentation. Additionally, growth phenotypes, such as

fungal germination count, germ tube length, and growth direction,
A B

FIGURE 3

Marking process: (A) Data annotation. (B) Visualization of the mask image.
A B

DC

FIGURE 2

(A–D) Respectively represent spores in different growth states.
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exhibited significant variations under distinct medicinal treatments.

Furthermore, fungi within the same image often appear densely

populated, particularly during the later growth stages when exposed

to certain solutions. Germ tubes tend to spread across a wide area,

resulting in increased instances of crossing, overlapping, and

clumping. These challenges have posed difficulties in achieving

precise segmentation of Phakopsora pachyrhizi.

Image segmentation entails the meticulous classification of

pixels into specific categories within an image. In contrast to

semantic segmentation, instance segmentation not only segregates

diverse objects within an image but also goes a step further by

assigning a distinct classification to each individual pixel within the

identified instances. This approach facilitates precise localization

and differentiation of individual entities within the input image,

leading to heightened accuracy in the process.

In the context of microscopic image spore segmentation, the

application of instance segmentation techniques offers multifaceted

benefits. Beyond effectively addressing challenges arising from spore

intersections, overlaps, and adhesions, instance segmentation

ensures the isolation of each spore as an autonomous entity,

thereby averting any potential information ambiguities. Moreover,

this approach excels at precisely determining the spatial coordinates

of each spore, encompassing crucial details such as spore

boundaries and internal structures. Such precision assumes

paramount significance in comprehending the spatial

arrangement and density distribution of spores within the image.

Through instance segmentation, a nuanced understanding of the

spore layout and distribution emerges, thereby enabling more

informed analyses and interpretations. Instance segmentation

offers the capability to establish distinct units of analysis for each

spore, enabling segmentation at an individual level. This approach

facilitates the quantification of various attributes like size, shape,

color, and additional characteristics inherent to each spore.

Consequently, this yields a more comprehensive dataset, enabling

a deeper exploration into the intricate nuances of spore variation,

interactions, and other pertinent traits. The detailed data acquired

through instance segmentation serves as a foundation for

conducting exhaustive investigations into the diverse aspects of

spore behavior, facilitating enhanced insights and understanding.

Mask R-CNN is a classical top-down two-stage instance

segmentation network, which can be considered as the extension

of the Faster R-CNN architecture. This network builds upon the

original network structure, incorporating additional branches to

facilitate the prediction of segmentation masks for each ROI, all the

while concurrently performing classification and bounding box

regression. The process begins with the input image being fed

through the backbone network, resulting in a feature map. This

map is then utilized in the Region Proposal Network (RPN) to

generate the corresponding anchor boxes. Subsequently, the feature

maps linked to each anchor box are homogenized to a consistent

size through RoIAlign, ensuring compatibility for further

processing. Eventually, this standardized feature map is

introduced to a fully connected layer, followed by anchor position

refinement executed through regression layers, and class

probabilities estimation performed through classification layers.

The combination of these processes yields accurate instance
Frontiers in Plant Science 05
segmentation results, with the model generating both precise

boundaries and segmentation masks for identified objects.

Researchers are constantly exploring new ways to combine

Mask R-CNN with other techniques to improve the performance

of segmentation tasks. For example, Seki and Toda (2022) utilized

Mask R-CNN to segment lettuce seeds and extract their

morphological parameters. Jia et al. (2022) Optimizing Mask R-

CNN using the lightweight backbone network MobileNetv3 speeds

up the model and meets the storage resource requirements of

mobile robots. Chen et al. (2023) incorporated the attention

mechanism into the backbone network of Mask R-CNN, which

can better detect and segment the tapping area of natural rubber

trees under different shooting conditions. Although Mask R-CNN

has demonstrated excellent performance in the field of instance

segmentation, it still faces great challenges when dealing with

data such as spore images, which are characterized by a high

degree of overlap and adhesion. In view of this, it is particularly

crucial to develop an efficient segmentation strategy for spore

image characteristics.

In order to enhancing the precision of spore segmentation, this

research introduces an enhanced methodology for spore

segmentation using Mask R-CNN. This approach integrates a

variant of the Mask R-CNN architecture by incorporating Feature

Pyramid Grids (FPG). The single-path feature pyramid network is

improved by using FPG, where the feature scale space is represented

as a regular lattice of parallel pathways and the pathways are fused

together through multidirectional transversal links, which

significantly improves the performance of the network with

similar computational cost. The backbone network was optimized

using an improved backbone, and using Res2Net module by

layering residual connections in a single residual block allows for

multiscale features at fine-grained layers while increasing the size of

the perceptual field at each level of the network.

2.2.1 Feature pyramid grids
Feature Pyramid Grid (FPG) is an FPN-derived deep multi

pathway network as shown in Figure 4. The feature scale space of

this deep multi pathway feature pyramid network is a fusion of

multidirectional lateral connections between parallel paths for

information exchange at all levels to build a robust network with

high discriminatory power and fine resolution across spatial

dimensions. The single pyramid path back-propagates semantic

information into the network by successively up-sampling the

feature maps. FPG is a parallel extension of the single pyramid,

which enriches the multidirectional (semantic) information in the

scale space through the lateral connections between feature maps,

allowing complex hierarchical features to be learned across scales.

Lateral connection has 4 categories. Among them, AcrossSame is

the fusion of features of the same level with those in the neighboring

paths after using 1*1 convolution. AcossUp uses a convolution of

3*3 stride of 2 to fuse the low-level features of the previous pathway

with the high-level features of the next neighboring pathway.

AcrossDown fuses the high-level features of the previous pathway

to the low-level features of the next neighboring pathway by nearest

interpolation convolution with a scaling factor of 2. AcrossSkip uses

1*1 convolutional skip connections between same-level features.
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Each convolutional block consists of a ReLU, a convolutional layer

and a BatchNorm layer, and the fusion function uses element-

wise Sum.

2.2.2 Composite backbone
The backbone network in instance segmentation is used to

extract features from the input image and determines the feature

representation capability of the model. For densely distributed fungi

in the image, the large appearance of spores especially at the late

stage of chemical treatments processing elevates the segmentation

difficulty. In order to obtain better segmentation performance

under high density and overlapping conditions, we optimize the

backbone network based on FPN using Res2Net (Gao et al., 2019)

fusion FPG as a composite backbone. Compared with ResNet,

Res2Net adds small residual blocks to extract features with

different receptive fields and multiple scales, so that the network

can learn multiple features with different scales, in order to promote

the communication of multi-scale features.
Frontiers in Plant Science 06
The Res2Net structure is shown in Figure 5. In the Res2net

module, the input features are categorized into s subset, denoted as

xi, i∈{1,2,…,s}; the number of channels of the feature map in each

group is 1/s of the number of channels of the input feature map.

Then, each set of feature maps undergoes a 3×3 convolution

(denoted as Ki), except for x1. Starting from x3, the feature map

xi of the ith group is first summed with the Ki-1 output of the

previous group, and the result of the sum is subjected to the Ki

operation. The whole process is represented in Formula (1).

yi =

xi i = 1

Ki(xi) i = 2

Ki(xi + yi−1) 2 < i ≤ s

8>><
>>:

(1)

where yi is the output of the module that is fed into the next

convolutional layer. s is scal, which serves as the number of

parameters controlling the dimensionality of the dimensions, and

the larger s is, the better the multidimensional characterization. In
FIGURE 4

A Feature Pyramid Grid (FPG).
A B

FIGURE 5

(A) Res2Net module (scale=4); (B) Res2Net block.
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this study, the s value size of 26 is used as the Res2Net block, which

is used to modify the ResNet structure in the FPN.

Meanwhile, drawing on the idea of FPG, the improved

backbone is combined with FPG to represent the feature scale

space as a regular lattice of parallel pathways, and the pathways are

fused together by multidirectional transverse links, improving the

single-path feature pyramid network, which significantly improves

the performance of the network with similar computational cost.

The design of Backbone is shown in Figure 6. The bottom-up

C2, C3, C4 and C5 are Res2Net module layers, and the stride of each

layer is 2. The number of channels of the structural layers output

from C2 to C4 are adjusted using 1*1 convolution, which produces

P21, P31, P41 and P51, respectively, with P61 being derived from

P51. To enhance computational efficiency, some simplifications

were made in the lateral connections of FPG. Specifically, the

AcrossSkip connection was removed, and a subset of the

AcrossSkip, SameUp, and AcrossDown connections were omitted.

We retained half of the triangular structure in the lateral

connections, and in our experiments, we opted for P=9 paths to

enrich the network’s capabilities.
2.2.3 Loss function
In the whole improved network structure, the corresponding

loss function consists of five parts, which are: the RPN’s

classification result prediction LR-cls, its bounding box regression

prediction LR-box, alongside the final classification result prediction

Lcls, final bounding box regression prediction Lbox, and the final

mask image prediction Lmask. Loss function is calculated by

Formula (2).

L = LR−cls + LR−box + Lcls + Lbox + Lmask (2)

Classification loss Lcls computes the loss of class probability

using Cross Entropy.

Lmask uses the Binary crossentropy loss function, calculated by

the Formula (3).
Frontiers in Plant Science 07
Lmask = −oyy log (1 − ŷ ) + (1 − y) log (1 − ŷ ) (3)

where y denotes the binarized ground truth, ŷ denotes the

predicted segmentation result after binarization.

Edge information is very important for instance segmentation,

and they can characterize the instance well. Mask R-CNN begins by

utilizing the smoothL1 function for calculating edge loss in target

detection. Within this approach, losses for the four coordinate

points are computed separately and aggregated to derive the

ultimate edge loss. Despite assuming independence among the

four points, there exists a certain degree of correlation among

them in reality. The process of assessing box detection involves

employing Intersection over Union (IoU), which differs from the

regression coordinate box derived from the four points. Multiple

detection boxes might yield identical smoothL1 Loss values despite

differing IoU values. To address this disparity, IoU Loss was

introduced as a solution.

However, researchers and scholars soon found that IoU Loss

has a drawback: when the prediction box does not intersect the

target box, the loss function is not derivable. This problem makes

the boundary information ignored in the prediction, and inaccurate

edge detection occurs in the experiment, which affects the accuracy

of segmentation. In order to meet the accurate segmentation of

high-density spore images and improve the sensitivity of boundary

segmentation, this paper optimizes the loss function and adopts the

LCIoU loss function as the loss function of the bounding box

regression prediction, which accelerates the convergence speed of

the model and makes the results of boundary segmentation

more accurate.

The LCIoU calculates the discrepancy between the predicted

bounding box and the ground truth. Its definition is outlined in

Formula (4).

LCIoU = 1 − IoU + r2(b,bgt )
e2 + v2

(1−IoU)+v

IoU = b∩bgtj j
b∪bstj j

8<
: (4)
FIGURE 6

The overall framework of the improved Mask R-CNN.
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Here, v signifies the alignment of the two frame aspect ratios,

while b and bgt denote the center coordinates of the prediction and

actual boxes respectively. r represents the Euclidean distance between
their center points, indicative of the diagonal span of the smallest

enclosed area containing both boxes. IoU stands for the Intersection

over Union, representing the ratio between the shared area and the

combined area of the predicted and actual bounding boxes.

In summary, the loss function used in this paper takes into

account the error factor between the predicted value and the true

value, which improves the convergence rate of the model, and the

optimized network is more accurate in terms of error, and more

flexible and feasible.
3 Results and discussion

3.1 Evaluation metrics

In this section, we present the key metrics used to measure the

performance of spore instance segmentation. By leveraging these

metrics, we can objectively analyze and showcase the strengths of

our method, while also enabling a comprehensive comparison with

existing instance segmentation techniques.

Average precision (AP) and average recall (AR) are the main

evaluation metrics currently used in the field of object detection and

instance segmentation. These metrics depend on two different

segmentation masks: a ground truth segmentation mask labelled by

experts and an output segmentation mask predicted by the network.

Calculating AP and AR requires first calculating Precision, Recall,

and IoU (Intersection over Union), as shown in Formulas (5–7).

Precision =
TP

TP + FP
� 100% (5)

Recall =
TP

TP + FN
� 100 (6)

TP is true positive which means the number of correctly detect

fungal areas, FP as false positive means the number of incorrectly

detect fungi areas and FN is false negative which means the number

of fugal areas incorrectly detected as background. Precision

represents the proportion of TP in the predicted fugal areas and

Recall means the proportion of TP in the true fungal areas.

IOU =
 target  ∩  prediction 
 target  ∪  prediction 

� 100% (7)
Frontiers in Plant Science 08
IoU is the metrics to evaluate segmentation accuracy in one

category, which calculate the intersection over union between

predicted object and ground truth object.

Since the spore image is a small object, we select four metrics,

AP, AP50, AP75, and AR, for network performance evaluation.

Where AP is io ranging from 0.5 to 0.95 with a step rate of 0.05,

AP50 is an iou threshold of 0.50, and AP75 is an iou threshold of

0.75. The higher these values are, the more desirable the instance

segmentation model is (Tong et al., 2020).

AR calculates the average recall at different thresholds, how

many real objects are correctly detected by the model. AR is the

maximum recall of a given fixed number of detections per image,

averaged over all IoU and all categories. Since there is only one type

of spore, the category is 1. In this study, AR was calculated and

averaged over 10 IoU thresholds between 0.5 and 0.95, as shown in

Formula (8).

pinterp(r) = max
~r :~r≥r

p(~r) (8)

where p(~r) is the measured precision at recall ~r.

AP is calculated by the Formula (9).

AP =
1
11or∈ 0,0:1,…1f gpinterp(r) (9)
3.2 Implementation details

The computational environment for this study utilizes Python

3.7.3 and Ubuntu 18.04 LTS, employing Jupyter Notebook as the

editor. The integrated model outlined above was constructed on an

Intel(R) Core (TM) i7-12700H (20 CPU) with a 2.30GHz processor,

16 GB of DDR4 RAM, and three graphics cards: two discrete

graphics cards (NVIDIA GeForce RTX 3060 laptop GPU with

6023 MB, NVIDIA GeForce RTX 3080 Ti with 12108 MB) along

with one integrated graphics card (Intel(R) Iris(R) Xe graphics card

with 128 MB), which were utilized for training and testing.

The instance segmentation model was trained with stochastic

gradient descent (SGD) method, batch size was set to 4, momentum

factor was 0. 9, the initial learning rate was 0.08, and for each epoch,

the learning rate changed to 0.9 times of the previous one. The total

number of epochs for model training is 100, and when training for

the first 60 epochs, the pre-feature extraction network is frozen, and

only the neck network and the detection head network are trained

in order to improve the training speed of the network model.
TABLE 1 Number of images and spores in the training and test sets in the dataset under different solution treatments, respectively.

Dataset Carbendazim DMSO
Solatenol

(0.041 ppm)
Solatenol
(10 ppm)

TOU-951

Training set
Images 240 48 48 48 48 48

Spore instance 5526 1023 1130 970 1112 1291

Test set
Images 60 12 12 12 12 12

Spore instance 1621 306 312 289 302 412
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3.3 Performance comparison with
state-of-the art methods and
visualization analysis

In order to verify the effectiveness and accuracy of the model in

spore instance segmentation, we use the same spore dataset under

the same training environment and experimental configuration,

and analyze them in comparison with Mask R-CNN, Mask Scoring

R-CNN (Huang et al., 2019), YOLACT (Bolya et al., 2019) and

Cascade Mask R-CNN (Cai and Vasconcelos, 2019) models. The

parameters introduced in 3.2 are used as evaluation indexes to

compare the performance with several other methods, and the

experimental results are shown in Table 2. All algorithms are

trained for 100 epochs, and after each epoch is completed, the

mAP values for mask segmentation and box detection are

calculated, as shown in Figures 7 and 8.

In this application, detection accuracy refers to the detection of

spore individuals from complex environments, detection accuracy

refers to the model correctly identifying and localizing spore

instances in complex environments, and segmentation accuracy is

concerned with the model correctly segmenting each spore at the

pixel level, and segmentation accuracy is as important as detection

accuracy. As can be seen from the table, our improved algorithm

outperforms these classical instance segmentation algorithms in

both segmentation accuracy and detection accuracy. From the

parameter comparison, the detection accuracy of the model is

0.712 and the segmentation accuracy is 0.618, which are 3.5% and

5% better than the existing optimal methods, respectively. As can be

seen in Figures 7 and 8, when the training epoch is less than 20, the

advantage of the method is not obvious. However, as the training

epoch increases, the detection mAP of our proposed method clearly

outperforms these state-of-the-art methods. Our model is more

powerful because we not only optimize the backbone network to

efficiently extract global and local features; we also introduce a deep

multipath feature pyramid network to construct fine-resolution

features with strong semantic information; all of these

improvements greatly improve the robustness of the CNN to

geometric transformations of the target. Our model is able to

explore the complex nuances of spore variants, interactions and

other related features in greater depth, understand the spatial

arrangement and density distribution of spores in an image,

effectively resolve spore crossings, overlaps and adhesions, and

ensure that each spore is separated as an independent entity.

In order to highlight the superiority of the proposed

architecture more intuitively, a visual comparative analysis
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between the current networks and ours is carried out. As shown

in Figures 9A–C, in the figure, are three different growth patterns of

spores, where I is the original spore images, and II to VI are Cascade

Mask R-CNN, Mask R-CNN, Mask Scoring R-CNN, YOLACT, and

ours, respectively.

As can be seen from the confidence level of the anchor box and

the box in the figure, the example segmentation results of these

advanced networks for a single scattered distribution of spore
TABLE 2 Evaluation results of serious models.

Models box_mAP box_mAP_50 box_mAP_75 mask_mAP mask_mAP_50 mask_mAP_75

Cascade Mask R-CNN(ResNet-101) 0.688 0.911 0.802 0.646 0.796 0.696

Mask R-CNN(ResNet-101) 0.669 0.938 0.754 0.604 0.757 0.619

Mask Scoring R-CNN(ResNet-101) 0.681 0.929 0.787 0.645 0.785 0.695

YOLACT(ResNet-101) 0.458 0.836 0.49 0.298 0.442 0.036

Ours 0.712 0.936 0.809 0.678 0.828 0.724
FIGURE 7

Mask segmentation mAP of the model.
FIGURE 8

Box detection mAP of the model.
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images are more general. As can be seen from the red circles in the

figure, under-segmentation and over-segmentation occur for spore

cross, adhesion and overlapping part segmentation with low

confidence and lack of refinement and edge processing. In sharp

contrast, our network model generated finer detection segmentation

images. To further demonstrate the visual analysis results of this

network, we performed a zoom-in comparison, as shown

in Figure 10.
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We chose two images with sparse and tight spore distribution,

and both images contain cross overlapping spore features. As can be

seen from the figure, the model uses CIoU loss optimization to

obtain the optimal prediction box, so that the box detection part can

quickly and accurately find the differences between spore

individuals with high confidence. At the same time, the model

effectively solves the problem of poor robustness of fuzzy pixel

segmentation, and the mask segmentation part not only refines the
A B C

FIGURE 9

I is the original image of spores, II to VI are Cascade Mask R-CNN, Mask R-CNN, Mask Scoring R-CNN, YOLACT, ours network model visualization
and analysis images respectively. (A–C) are the segmentation results of three randomly selected spore images under different networks.
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overall segmentation, but also greatly improves the edge

segmentation accuracy, so that the cross-overlapping spore

images are separated as separate individuals.
3.4 Ablation study of improved models

Based on the improved Mask R-CNN model proposed in this

paper, ablation experiments were conducted to compare the

experimental results of the original model with the improved

ResNet-101, ResNet-101+FPG, Res2Net-101+FPG, and Res2Net

+FPGs, as shown in Table 3. Table 3 shows the experimental

results of different backbone networks: after adding FPG to the

original network, the detection accuracy of the model decreases

significantly and the instance segmentation accuracy decreases, but

the segmentation accuracy is greatly improved; after replacing

ResNet-101, the detection accuracy, segmentation accuracy and

accuracy are significantly improved and exceed the original model,

which indicates that each module of the improvement has a positive

effect on instance segmentation. Finally, the best performing model

was found to come from the combined effect of the two improved

modules, which improved the detection accuracy, segmentation

accuracy, and instance segmentation accuracy by 6.4%, 12.3%, and

2.2%, respectively, compared to the Mask R-CNN model, proving

that these improvement strategies of the model are effective.
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4 Conclusion

In this study, an improved Mask R-CNNmethod is proposed to

accomplish the task of segmentation of densely distributed and

overlapping crossed Phakopsora pachyrhizi micro-images. The

method is optimized and improved from the original MaskR-

CNN. Firstly, the res2net was used to replace the backbone

network of the original Mask R-CNN by layering the residual

connections in a single residual block and then combining it with

FPG in order to improve the fine resolution and high-resolution

capability, strengthen the feature extraction capability of the

network model, and enhance the detection accuracy. Secondly, for

the problem of inaccurate edge detection of the original model, the

loss function is optimized, and the CIoU loss function is adopted as

the loss function of the boundary box regression prediction, which

accelerates the convergence speed of the model, meets the accurate

segmentation of high-density spore images, and improves the

sensitivity of boundary segmentation. Compared with the original

model, it is more robust and further improves the accuracy of

instance segmentation. In summary, the proposed model can better

detect and segment spores under various conditions.

However, this study suffers from an insufficient number of

samples in the dataset, and the accuracy of detection and

segmentation in the case of spore stacking with a large number of

anomalies needs to be further improved. In the follow-up work,
FIGURE 10

Visualization results of the target network.
TABLE 3 Evaluation results of ablation experiments.

Models box_mAP mask_mAP acc #param. GFLOPs

Original Mask R-CNN(ResNet-101) 0.669 0.604 95.99 63.388M 302

Mask R-CNN(ResNet-101+FPG) 0.621 0.67 94.72 63.274M 147

Mask R-CNN(Res2Net-101+FPG) 0.69 0.678 96.77 63.951M 152

Ours 0.712 0.678 98.144 63.951M 154
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collecting and labeling more spore clusters with complex shapes

should be considered to expand the spore dataset under different

overlap types. Meanwhile, in order to improve the performance of

the network, the effect of spore morphology such as length, width

and area on segmentation can be deeply investigated, and its

features can be fused with image information and input into the

segmentation network. Finally, in future research, the scheme

proposed in this paper needs to be installed and applied in

real scenarios to validate the performance of the model and

algorithm. The technique can be applied to perform automatic

segmentation of images on microscopes to facilitate the

discovery of new drug candidates and the discovery of therapeutic

options. Simultaneously, it offers valuable insights to the fields of

agriculture, ecology, and medicine, enhancing our understanding

and management of fungal-related issues, including disease

transmission and ecological balance.
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Sébastien (2019). Advances in understanding obligate biotrophy in rust fungi. New
Phytol. 222, 1190–1206. doi: 10.1111/nph.15641

Melo, C. A. D., Lopes, J. G., Andrade, A. O., Trindade, R. M., and Magalhaes, R. S.
(2019). Semi-automated counting model for arbuscular mycorrhizal fungi spores using
the Circle Hough Transform and an artificial neural network. Anais da Academia Bras.
Ciências 91, e20180165. doi: 10.1590/0001-3765201920180165

Okada, H., Ohnuki, S., Roncero, C., Konopka, J. B., and Ohya, Y. (2014). Distinct
roles of cell wall biogenesis in yeast morphogenesis as revealed by multivariate analysis
of high-dimensional morphometric data. Mol. Biol. Cell 25, 222–233. doi: 10.1091/
mbc.e13-07-0396

Otsu, N. (1979). A threshold selection method from gray-level histograms. IEEE
Trans. systems man cybernetics 9, 62–66. doi: 10.1109/TSMC.1979.4310076

Reisen, F., De Chalon, A. S., Pfeifer, M., Zhang, X., Gabriel, D., and Selzer, P. (2015).
Linking phenotypes and modes of action through high-content screen fingerprints.
Assay Drug Dev. Technol. 13, 415–427. doi: 10.1089/adt.2015.656

Russell, B. C., Torralba, A., Murphy, K. P., and Freeman, W. T. (2008). LabelMe: a
database and web-based tool for image annotation. Int. J. Comput. Vision 77, 157–173.
doi: 10.1007/s11263-007-0090-8

Saito, H., Yamashita, Y., Sakata, N., Ishiga, T., Shiraishi, N., Usuki, G., et al. (2021).
Covering soybean leaves with cellulose nanofiber changes leaf surface hydrophobicity
Frontiers in Plant Science 13
and confers resistance against Phakopsora pachyrhizi. Front. Plant Sci. 111, 146–147.
doi: 10.3389/fpls.2021.726565

Seki, K., and Toda, Y. (2022). QTL mapping for seed morphology using the instance
segmentation neural network in Lactuca spp. Front. Plant Sci. 13, 949470. doi: 10.3389/
fpls.2022.949470

Tong, K., Wu, Y., and Zhou, F. (2020). Recent advances in small object detection
based on deep learning: A review. Image Vision Computing 97, 103910. doi: 10.1016/
j.imavis.2020.103910

Usaj, M. M., Styles, E. B., Verster, A. J., Friesen, H., Boone, C., and Andrews, B. J.
(2016). High-content screening for quantitative cell biology. Trends Cell Biol. 26, 598–
611. doi: 10.1016/j.tcb.2016.03.008

Xie, X., Wang, J., Hu, Z., and Zhao, Y. (2021). “Intelligent detection of mango disease
spores based on mask scoring R-CNN,” in 2021 5th Asian Conference on Artificial
Intelligence Technology (ACAIT). 768–774 (IEEE), October. Available at: http://dx.doi.
org/10.1109/acait53529.2021.9731325

Yang, L., Ghosh, R. P., Franklin, J. M., Chen, S., You, C., Narayan, R. R., et al. (2020).
NuSeT: A deep learning tool for reliably separating and analyzing crowded cells. PloS
Comput. Biol. 16, e1008193. doi: 10.1371/journal.pcbi.1008193

Zanella, F., Lorens, J. B., and Link, W. (2010). High content screening: seeing is
believing. Trends Biotechnol. 28, 237–245. doi: 10.1016/j.tibtech.2010.02.005

Zhang, D. Y., Zhang, W., Cheng, T., Zhou, X. G., Yan, Z., Wu, Y., et al. (2023).
Detection of wheat scab fungus spores utilizing the Yolov5-ECA-ASFF network
structure. Comput. Electron. Agric. 210, 107953. doi: 10.1016/j.compag.2023.107953

Zhao, Y., Lin, F., Liu, S., Hu, Z., Li, H., and Bai, Y. (2019). Constrained-focal-loss
based deep learning for segmentation of spores. IEEE Access 7, 165029–165038.
doi: 10.1109/Access.6287639

Zhao, Y., Liu, S., Hu, Z., Bai, Y., Shen, C., and Shi, X. (2020). Separate degree based
Otsu and signed similarity driven level set for segmenting and counting anthrax spores.
Comput. Electron. Agric. 169, 105230. doi: 10.1016/j.compag.2020.105230
frontiersin.org

https://doi.org/10.1038/nrg3768
https://doi.org/10.5772/15651
https://doi.org/10.1109/cvpr.2015.7298965
https://doi.org/10.1111/nph.15641
https://doi.org/10.1590/0001-3765201920180165
https://doi.org/10.1091/mbc.e13-07-0396
https://doi.org/10.1091/mbc.e13-07-0396
https://doi.org/10.1109/TSMC.1979.4310076
https://doi.org/10.1089/adt.2015.656
https://doi.org/10.1007/s11263-007-0090-8
https://doi.org/10.3389/fpls.2021.726565
https://doi.org/10.3389/fpls.2022.949470
https://doi.org/10.3389/fpls.2022.949470
https://doi.org/10.1016/j.imavis.2020.103910
https://doi.org/10.1016/j.imavis.2020.103910
https://doi.org/10.1016/j.tcb.2016.03.008
http://dx.doi.org/10.1109/acait53529.2021.9731325
http://dx.doi.org/10.1109/acait53529.2021.9731325
https://doi.org/10.1371/journal.pcbi.1008193
https://doi.org/10.1016/j.tibtech.2010.02.005
https://doi.org/10.1016/j.compag.2023.107953
https://doi.org/10.1109/Access.6287639
https://doi.org/10.1016/j.compag.2020.105230
https://doi.org/10.3389/fpls.2024.1340584
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

	A deep semantic network-based image segmentation of soybean rust pathogens
	1 Introduction
	2 Materials and methods
	2.1 Data source
	2.2 Instance segmentation methods for spores
	2.2.1 Feature pyramid grids
	2.2.2 Composite backbone
	2.2.3 Loss function


	3 Results and discussion
	3.1 Evaluation metrics
	3.2 Implementation details
	3.3 Performance comparison with state-of-the art methods and visualization analysis
	3.4 Ablation study of improved models

	4 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


