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Plant functional traits reflect the capacity of plants to adapt to their environment and

the underlying optimization mechanisms. However, few studies have investigated

trade-off strategies for functional traits in desert-wetland ecosystems, the

mechanisms by which surface water disturbance and groundwater depth drive

functional trait variation at the community scale, and the roles of intraspecific and

interspecific variation. Therefore, this study analyzed specific differences in

community-weighted mean traits among habitat types and obtained the relative

contribution of intraspecific and interspecific variation by decomposing community-

weighted mean traits, focusing on the Daliyabuyi Oasis in the hinterland of the

Taklamakan Desert. We also explored the mechanisms by which surface water and

groundwater influence different sources of variability specifically. The results showed

that plant height, relative chlorophyll content, leaf thickness, leaf nitrogen content,

and nitrogen-phosphorus ratio were the key traits reflecting habitat differences. As

the groundwater depth becomes shallower and surface water disturbance

intensifies, plant communities tend to have higher leaf nitrogen content, nitrogen-

phosphorus ratio, and relative chlorophyll content and lower height. Surface water,

groundwater, soil water content, and total soil nitrogen can influence interspecific

and intraspecific variation in these traits through direct and indirect effects. As arid to

wet habitats change, plant trade-off strategies for resources will shift from

conservative to acquisitive. The study concluded that community functional traits

are mainly contributed by interspecific variation, but consideration of intraspecific

variation and the covariation effects that exist between it and interspecific variation

can help to further enhance the understanding of the response of community traits

in desert-wetland ecosystems to environmental change. Surface water disturbance

has a non-negligible contribution to this adaptation process and plays a higher role

than groundwater depth.
KEYWORDS

surface water disturbance, groundwater depth, functional traits, interspecific variability,
intraspecific variability
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1 Introduction

Plant functional traits are core attributes that reflect the

response of vegetation to environmental change and strongly

influence ecosystem function (Huxley et al., 2023; Jiang et al.,

2023). Studies aimed at elucidating the formation mechanisms of

functional traits enable the exploration of community ecology-

related issues. Functional traits can be studied on multiple scales,

and research results have been accumulated at individual as well as

ecosystem levels (Roscher et al., 2018; Li et al., 2021; Ouyang et al.,

2023). Since the introduction of the leaf economics spectrum

concept in 2004, research focused on single traits or groups of

traits has gradually shifted to strategies involving trade-offs among

traits (Wright et al., 2004). The two ends of the leaf economics

spectrum represent the conservative strategy (typically a longer leaf

longevity and a lower specific leaf area, leaf nitrogen content, and

photosynthetic rate) and the acquisitive strategy (typically a shorter

leaf longevity and a higher specific leaf area, leaf nitrogen content,

and photosynthetic rate) (Pan et al., 2020). Gathering information

on the trade-off characteristics of traits enables researchers to

interpret the adaptive strategies of plants under different

environmental conditions and helps understanding the

mechanisms underlying coexistence between species.

The response-effect trait theory suggests that species’ responses

to the environment and their impacts on ecosystem functions are

mediated by functional traits (Suding et al., 2008). The community-

weighted mean (CWM) trait allows the mean value of traits to be

calculated at the community scale using the values of community

characteristics as weights (Garnier et al., 2004). The method takes

the growth statuses of dominant and non-dominant species in the

community into consideration and effectively identifies trait

differences between communities. The trade-off strategies of traits

illustrate the process of variation that exists in their response to

environmental change. This variation can be categorized as inter- or

intraspecific. In general, interspecific variability refers to changes in

environmental conditions that cause changes in community species

composition, known as species turnover (Hogan et al., 2023). In

contrast, intraspecific variability refers to environmental effects on

phenotypic plasticity in the same species that lead to changes in

traits (Siefert et al., 2015).

The degree of intraspecific variation varies by species and trait

but is associated with spatial and temporal heterogeneity in

environmental conditions (Westerband et al., 2021; Wu et al.,

2021). Researchers have begun to gradually focus on intraspecific

variation in functional traits over the last decade and have launched

a series of studies based on environmental gradients. Kichenin et al.

(2013) quantified interspecific versus intraspecific variation in

community functional traits across an altitudinal gradient and

concluded that positive versus negative covariation between the

two reveals plant responses to environmental change; Tusifujiang

et al. (2021) concluded that desert plant adaptation decreases

gradually when the environment changes from saline to drought

stress based on the decrease in intraspecific variation due to

increased drought stress. Many previous studies have tended to

focus only on the effects exerted by interspecific variability on

CWM traits, thereby unconsciously weakening the understanding
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Therefore, quantifying the relative contributions made by

interspecific and intraspecific variability and analyzing their

formation process may lead to a better understanding of the

driving mechanisms of traits at the community scale (Paź-

Dyderska et al., 2020; Xu et al., 2020).

Desert-wetland ecosystems are common in inland river basins

in arid regions. Affected by drought and seasonal floods, there are

significant differences in the habitats within the ecosystem. Desert-

wetland ecosystems sustain a wider range of species and are

important sites for understanding local biogeographic history and

ecological adaptations of plants (Fensham et al., 2011; Galal et al.,

2021). With the intensification of global warming, many regions,

including Northwest China, are experiencing dramatic fluctuations

in severe droughts and destructive flood events, resulting in huge

impacts on the ecological environment (Qing et al., 2023). For

Northwest China, increased glacier melt and flooding events have

led to a “warming and humidification” trend, especially in the

inland river basins of the arid zone (Yang et al., 2021; Chen et al.,

2023). Desert-wetland ecosystems are areas of high incidence of

these hydrological events. However, the mechanisms driving plant

functional trait differences and intraspecific and interspecific

variation in this ecosystem are still unknown, which is extremely

detrimental to the understanding of plant response patterns and

trade-off strategies for future extreme hydrological events.

This study selected the natural oasis at the end of the Keriya

River, which is a typical desert-wetland ecosystem, for study. We

divided functional traits at the community scale into two

components, interspecific and intraspecific variation, and assessed

the characteristics of functional traits in response to environmental

factors such as surface water disturbance and groundwater depth.

We hypothesized that (i) surface water and groundwater will

influence intraspecific and interspecific variation in community

functional traits and shape existing functional trait characteristics

through covariation effects; (ii) The contribution of interspecific

variation will be higher than intraspecific variation because species

turnover is widespread among habitats; (iii) As habitat types

change, trade-off strategies for functional traits will shift.
2 Materials and methods

2.1 Study area

The study area was located in the Daliyabuyi Oasis at the end of

the Keriya River in Xinjiang, China (38°16′–38°37′ N, 81°41′–82°
20′ E). The oasis is in the hinterland of the Taklimakan Desert, with

an altitude of 1,100 to 1,300 m and total area of about 342 km2. The

oasis has a warm-temperate arid desert climate, with an average

annual precipitation of less than 20 mm, a potential evaporation of

more than 2,000 mm, and a large diurnal temperature range (Peng

et al., 2022). Due to scouring by the Keriya River, the internal river

channels of the oasis have become complex and depositional

characteristics of anastomosing river. However, except for the

summer floods, the seasons and timing of flood events are not

fixed. During the flood period, some areas experience different
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degrees of surface water overflow, leading to surface water

disturbances on a certain scale (Shi et al., 2022). The plant

community of the oasis consists mainly of Populus euphratica,

Tamarix chinensis, Phragmites australis, and others. The research

team laid several vegetation monitoring transects in the oasis at the

end of 2018 and constructed 19 groundwater monitoring wells

within these transects, thus acquiring groundwater depth data and

establishing a good facility basis for community ecology

research (Figure 1).
2.2 Vegetation survey and functional trait
data collection

In the summer of 2021, the research team set up a 50 × 50 m

plot near each groundwater monitoring well at the Daliyabuyi

Oasis. Each plot was divided into four 25 × 25 m subplots (Zhao

and Xu, 2019; Zhang et al., 2022), totaling 76 subplots. As this study

focused on the community scale rather than the population scale,

subplots with only one species were removed, leaving 71 subplots

for the subsequent analyses (Zhao et al., 2022). The plant

composition within the subplots was recorded and the number of

individuals, height, crown length, and width data were determined

separately for all plants (crown length and width data can be used to

calculate vegetation coverage for different species). When height

(H) is used as a functional trait, it refers to the average height of all

individuals of each species within the subplot. A handheld GPS

(G120BD, UniStrong, China) was used to locate plots and record

information pertaining to geographic coordinates.

First, 8–10 plants of each species at different age stages were

selected within each subplot (25 × 25 m) and young and old leaves

were evenly collected on each plant. A total of 20–40 leaves were

collected for each species within the subplot (Chen et al., 2021).

Relative chlorophyll content (SPAD) was determined using a
Frontiers in Plant Science 03
chlorophyll detector (SPAD-502, Konica Minolta Sensing Inc.,

Japan) as early as possible following leaf collection (Maharjan

et al., 2021). Since the measurement of chlorophyll content was

shown as SPAD value, the abbreviation of this trait was named as

SPAD. Leaves were brought to the laboratory and placed in water

for one hour for rehydration. The leaf thickness (LT) was measured

using vernier calipers with an accuracy of 0.01 mm. The SPAD and

LT of each species in the subplot are the average values calculated

after measuring each leaf. Leaves of the same species within each

subplot were pooled together and the fresh weight of the leaves was

measured using an electronic balance with an accuracy of 0.001 g.

Subsequently, the leaves were placed on a square mesh paper and

covered with a transparent glass plate. The cleaned leaves were

scanned at a resolution of 300 dpi using a portable scanner (Epson,

V19, Japan) and the leaf area was extracted using Adobe Photoshop

CS6 software. After drying in an oven at 75°C for 48 hours, the dry

weight, specific leaf area (SLA), and leaf dry matter content

(LDMC) were determined. Next, the dried leaves of the same

species from each subplot were thoroughly mixed, crushed and

sieved (0.15 mm) and the carbon (LCC), nitrogen (LNC), and

phosphorus (LPC) contents of the leaves were measured. LCC and

LNC were determined using an elemental analyzer (Vario EL cube,

Elementar, Germany) and LPC was determined using the

molybdenum antimony anti-colorimetric method (Ling-Ling

et al., 2023). The ratios between LCC, LNC, and LPC were

calculated to obtain C/N, C/P, and N/P.
2.3 Quantification of environmental factors

Three 100 cm deep soil profiles were randomly set up within

each plot, and each profile was divided into six layers (0–5, 5–20,

20–40, 40–60, 60–80, and 80–100 cm) for sample collection

purposes. The same layer of soil from three locations was
FIGURE 1

Overview of the study area. (A) China map; (B) satellite image of the Taklimakan Desert; (C) groundwater monitoring wells and plot locations.
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thoroughly mixed after collection, at which point the six mixed soil

samples represented soil conditions at different depths at the

community level. The mixed soil samples were brought back to

the laboratory in aluminum boxes and plastic bags, respectively, and

soil water content, total dissolved solids, pH, organic matter, total

nitrogen, and total phosphorus were determined. Soil water content

was measured using the drying method; total dissolved solids and

pH were determined using a conductivity meter (DDSJ-319L, Rex,

China) and pH meter (PHSJ-5T, Rex, China), respectively; organic

matter was determined using the potassium dichromate external

heating method (Yuan et al., 2023); and total nitrogen and total

phosphorus were determined in the same way as for leaves. Mean

values of full profiles were used for each soil variable for

subsequent analysis.

We obtained groundwater depth data recorded by groundwater

monitoring wells for the plant growing season (April to October)

from 2019 to 2021 and calculated the average value for subsequent

analysis. Flood-related damage to the monitoring well in plot 16

resulted in missing data, due to which groundwater depth in this

plot was calculated using data from 2019 and 2020 only. Selected

Landsat 8 remote sensing images from 2017 to 2021 were used to

obtain the frequency characteristics of surface water distribution via

extraction of the water index and threshold segmentation

techniques, which were validated via several field observations

(Figure 2A). The extent of surface water disturbance to the

community was quantified using the following formula:

  SWD = lnoS
i=1wi

where S represents the number of surface water raster cells

within 1 ha of the positioning point and wi represents the frequency

of the ith raster cell in the monitoring time frame. SWD represents
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the degree of surface water interference at the community scale after

considering the frequency and total amount of overflow. The

obtained surface water disturbance and groundwater depth of

data were standardized, and the habitat types were classified using

the K-means clustering method.
2.4 Data analysis

Species importance values were used as weights to calculate

CWM traits (H, SPAD, LT, SLA, LDMC, LCC, LNC, LPC, C/N, C/

P, N/P) via the following method:

CWM trait =on
j=1(IVj � traitj)

IVj = (Arj + Hrj + Crj)=3

where IVj and traitj represent the importance value and average

trait value of species j in each subplot, respectively, Arj denotes

relative number of individuals, Hrj denotes relative height, and Crj
denotes relative coverage. The calculation process involved the use

of “FDiversity” software developed in R language (Casanoves

et al., 2011).

Normality and homogeneity of variance tests were performed

for each CWM trait in the study area. Data satisfying both normal

distribution and homogeneity of variance were analyzed using the

least significance difference (LSD) method to compare differences

between habitat types; data that satisfied the normal distribution but

did not pass the homogeneity of variance test were analyzed using

Tamhane’s T2 method; data that did not satisfy the normal

distribution were compared using the Kruskal-Wallis test. The

surface water disturbance and groundwater depth were used as
FIGURE 2

K-mean clustering results of surface water disturbance and groundwater depth. (A) frequency of surface water distribution; (B) K-mean clustering;
(C, D) examples of surface water disturbance.
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independent variables and CWM traits, which differed significantly

among habitat types, were used as the dependent variables. The

relationships between the independent and dependent variables

were analyzed using simple linear regression. The above data were

standardized before linear regression. To determine the trade-offs

between functional traits, we also performed factor analyses on the

trait data after standardization. The Varimax rotation method was

used to reduce the correlation between factors to obtain a factor

structure that is easy to interpret.

Leps’ method was used to calculate inter- and intraspecific

variability in community traits as follows:

  interspecific variability =on
j=1(IVj � traitj _mean)

intraspecific variability  =  CWM trait – interspecific variability

where traitj_mean refers to the fixed average trait value of species

j, that is, the average of traits of species j in all subplots. Differences

in fixed mean trait values between communities are generally

considered to be caused by species turnover, whereas differences

between CWM trait values and fixed mean trait values are

considered to be due to intraspecific trait variation only. Thus, we

obtained two new parameters of interspecific and intraspecific

variability via this method. In addition to being able to use them

as new response variables, it is also possible to obtain the relative

contribution of these two parameters to the CWM traits based on

the sum-of-squares decomposition (Leps ̌ et al., 2011).
The study also used systematic clustering and two-way analysis

of variance (ANOVA) to analyze the relative contribution and

significance of surface water and groundwater to interspecific and

intraspecific variability. Systematic clustering can categorize surface

water disturbance and groundwater depth into different levels each,

and both become categorical variables. The above analyses were

conducted using the “cluster” package (Maechler et al., 2022) and

the “trait.flex.nova” function in R 4.2.3. Finally, the mediating

effects of soil physicochemical properties were analyzed using

structural equation modeling (SEM) to clarify the direct and

indirect effects of surface water disturbance and groundwater

depth on the two components of CWM traits. The model

construction process screened the soil factors according to the

multicollinearity and selected the appropriate model according to

the Akaike Information Criterion. This process used the

“piecewiseSEM” package (Lefcheck, 2016).
3 Results

3.1 Differences in CWM traits among
habitat types

K-means clustering can divide the study area’s habitats into

three types (Figure 2B), namely low surface water disturbance and

deep groundwater depth (habitat type A), low surface water

disturbance and shallow groundwater depth (habitat type B), and

high surface water disturbance and shallow groundwater depth
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(habitat type C). The results showed that five CWM traits, including

the SPAD, N/P, LT, H, and LNC, showed significant differences

among different habitat types. The highest SPAD was observed for

habitat type C, which was significantly higher than those observed

for the other two habitat types (Figure 3A). N/P was lowest in

habitat type A, with a mean value of 15.49, significantly lower than

those observed for the other two habitat types (Figure 3C). LT was

highest in habitat type B, which was significantly higher than that of

habitat type C (Figure 3F). H was lowest for habitat type C (median

value of 92.07), which was significantly lower than those observed

for habitat types A and B (Figure 3H). In habitat type C, the median

LNC (18.78) was significantly higher than those of the other two

habitat types (Figure 3J).
3.2 Response of CWM traits to surface
water and groundwater

Linear regression results showed a significant negative

correlation between H and surface water disturbance and

significant positive correlations between SPAD, LNC, N/P, and

surface water disturbance (Figure 4A). There was a significant

positive correlation between H and groundwater depth and

significant negative correlations between SPAD, LNC, N/P, and

groundwater depth (Figure 4B). LT did not show a clear pattern of

response to either surface water disturbance or groundwater depth

(P>0.05). It is noteworthy that despite the general linear

relationship observed between surface water disturbance,

groundwater depth, and CWM traits, the goodness of fit for all

linear regressions remains low.
3.3 Trade-off strategies for community
functional traits

Factor analysis was performed on the five functional traits, and

two factors were extracted. The variance explained by the factors,

which were 48.0% and 20.7%, respectively, represented 68.7% of the

information content of the original data (Figure 5). The use of factor

loading coefficients derived from factor rotations as classification

criteria resulted in H, N/P, and LNC being included in Factor 1, and

SPAD, LT in Factor 2 (Supplementary Table 4). The traits in Factor

1 represented plant growth and nutrient storage status, while the

traits in Factor 2 were closely related to the photosynthetic capacity

of the plant. There were negative correlations between H and LNC

and N/P and positive correlations between LNC and N/P (Factor 1).

There was a negative correlation between SPAD and LT (Factor 2).

According to Figures 3 and 4 and the leaf economics spectrum

theory, as groundwater becomes shallower and the degree of surface

water disturbance increases, functional traits at the community

scale would change from a conservative strategy of “slow

investment-return” to an acquisitive strategy of “quick

investment-return”. This result accepts the third hypothesis that

trade-off strategies for functional traits change as habitat

type changes.
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3.4 Sources of variation in functional traits

The contribution of interspecific versus intraspecific variation

(Figure 6) revealed that the total variation in LNC was mainly

derived from interspecific variability, which was 3.62 times higher

than intraspecific variability. The proportions of interspecific and

intraspecific variability for H were nearly identical, at 58.3% and

45.1%, respectively. The variation in SPAD, which was mainly

derived from interspecific variability, accounted for 83.5% of the

total variation. The proportion of interspecific variability (59.9%) in

N/P was higher than that of intraspecific variability (32.0%). Of the

total variation in LT, the proportion of interspecific variability

(37.9%) was lower than that of intraspecific variability (56.7%).
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Interspecific and intraspecific variability showed positive

covariation in the effects on LT, N/P, and SPAD and negative

covariation in the effects on LNC and H. Combined with the linear

regression results in Figure 4, this indicated that as community H

gradually decreased, the H of dominant species showed a weak

increasing trend, and as community LNC gradually increased, the

LNC of the dominant species decreased.

Two-way ANOVA indicated that surface water disturbance

exerted a significant effect on the variation in community traits

due to interspecific variability, with explanatory rates of 21.6%

(SPAD), 11.8% (N/P), 5.7% (H), 14.5% (LT), and 29.0% (LNC),

respectively. Surface water disturbance also exerted a significant

effect on the intraspecific variability of the two traits, SPAD and
A B

D E F

G IH

J K

C

FIGURE 3

Characteristics of CWM trait changes under different habitat types. Different letters indicate significant differences (P<0.05) between habitat types;
The circles in the box plots represent the average value and the horizontal lines in the middle represent the median; Habitat type A, Low surface
water disturbance and deep groundwater depth; Habitat type B, Low surface water disturbance and shallow groundwater depth; Habitat type C,
High surface water disturbance and shallow groundwater depth; (A) SPAD, Relative chlorophyll content; (B) LCC, Leaf carbon content; (C) N/P,
Nitrogen to phosphorus ratio; (D) C/N, Carbon to nitrogen ratio; (E) C/P, Carbon to phosphorus ratio; (F) LT, Leaf thickness; (G) SLA, Specific leaf
area; (H) H, Height; (I) LDMC, Leaf dry matter content; (J) LNC, Leaf nitrogen content; (K) LPC, Leaf phosphorus content.
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LNC, which showed explanatory rates of 2.8% and 5.0%,

respectively. Groundwater depth exerted a significant effect on the

interspecific variability components, N/P, H, and LNC, explaining

5.0%, 6.6%, and 7.3%, respectively. Groundwater depth also had a

significant effect on intraspecific variability in LT and LNC, with

explanatory rates of 26.2% and 2.5%, respectively. The interaction

between surface water and groundwater exerted a significant effect

on the intraspecific variability of SPAD and LT, with explanation

rates of 1.1% and 6.5%, respectively (Figure 7).
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3.5 Effects of surface water, groundwater,
and soil factors on CWM traits

We analyzed the driving mechanisms of interspecific and

intraspecific variability by constructing SEMs that incorporated soil

factors as an intermediate medium. Surface water disturbance exerted a

significantly positive effect on soil water content. The SEM results for

Factor 1 showed that interspecific variability of H was directly and

positively influenced by groundwater depth and an indirect negative
FIGURE 5

Factor analysis of community weighted mean traits. The light blue circle represents Factor 1 and the light yellow circle represents Factor 2. The
abbreviations for functional traits are the same as in Figure 3.
A B

FIGURE 4

Characterization of the linear response of community functional traits to surface water disturbance (A) and groundwater depth (B). The abbreviations
for functional traits are the same as in Figure 3.
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effect on it by surface water acting on soil water content (Figure 8A).

Surface water disturbance exerted a direct positive effect on the

intraspecific variability of H and an indirect negative effect on it by

acting on soil water content (Figure 8B). The interspecific variability

component in LNC was directly negatively influenced by groundwater

depth and indirectly positively influenced by surface water via soil

water content (Figure 8C). The intraspecific variability component of
Frontiers in Plant Science 08
LNC was directly positively and negatively influenced by surface water

disturbance and soil total nitrogen, respectively (Figure 8D). The

interspecific variability component of N/P was directly and

negatively influenced by the groundwater depth and indirectly

positively influenced by surface water via soil water content. In

addition, soil total nitrogen exerted a direct positive effect on the

interspecific variability of N/P (Figure 8E). For the intraspecific
A

B

C

FIGURE 7

Two-way ANOVA and variance decomposition results for surface water disturbance and groundwater depth. **: P<0.01; *: P<0.05; (A, B) results of
systematic clustering of surface water disturbance and groundwater depth; (C) two-way ANOVA. The abbreviations for functional traits are the same
as in Figure 3.
FIGURE 6

Source decomposition of CWM trait variation. The abbreviations for functional traits are the same as in Figure 3. All traits are community-weighted
mean traits.
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variability component of N/P, no direct or indirect effects of surface

water and groundwater were found (Figure 7; Figure 8F).

The SEM results for Factor 2 showed that both interspecific and

intraspecific variability components of SPAD were directly and

positively affected by surface water disturbance and that no other

effects were present (Figure 9A; Figure 9B). Surface water

disturbance exerted a direct negative effect on the interspecific

variability of LT, as well as an indirect negative effect via the

regulation of soil water content. Soil total nitrogen also exerted a

direct negative effect on interspecific variability in LT (Figure 9C).

The intraspecific variability of LT was only directly and positively

influenced by groundwater depth (Figure 9D).
4 Discussion

4.1 Effects of habitat heterogeneity on
functional traits

The habitat type shifted from A to B as the groundwater depth

shifted from deep to shallow. Considering the strong dependence of
Frontiers in Plant Science 09
desert plants on groundwater, such shifting enables most species to

fulfill their water needs (Glanville et al., 2023). At this time, both

traits of SPAD and LNC showed a weak upward trend at the

community level, indicating that the photosynthetic rate was also

slightly increased (Mu and Chen, 2021; Wang et al., 2021), even

though the above trends did not constitute a significant difference.

N/P showed a significant increase after groundwater depth became

shallower, with the community showing some degree of

phosphorus limitation (Koerselman and Meuleman, 1996; Cao

and Chen, 2017). Zhang et al. (2018) concluded that shallower

groundwater depths reduce soil phosphorus levels, a trend also

found in this study (Supplementary Figure 1), which may be the

underlying cause of phosphorus limitation. Thicker leaves imply

longer leaf longevity (Pérez-Harguindeguy et al., 2016), and this

study suggests that relying on differences in groundwater depth

alone is not sufficient to change the leaf longevity profile of the

community. Chen et al. (2021) found that groundwater depth

resulted in changes in the LT of trees and shrubs, but there was

no clear pattern of effect on the LT of herbaceous plants. Thus, the

response of LT to groundwater depth may depend on plant

life form.
A B

D

E F

C

FIGURE 8

Structural equation modeling of surface water and groundwater effects on Factor 1. **: P<0.01; *: P<0.05; The blue solid line in the figure represents
positive impact, and the red dotted line represents negative impact; The abbreviations for functional traits are the same as in Figure 3; (A, B)
interspecific variability and intraspecific variability of height; (C, D) interspecific variability and intraspecific variability of leaf nitrogen content; (E, F)
interspecific variability and intraspecific variability of nitrogen to phosphorus ratio.
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SPAD was significantly enhanced after surface water

disturbance increased (habitat type C). The significant decrease in

LT enhanced the ability of leaves to intercept light, indicating a

decline in leaf longevity in the community. The significant decrease

in H caused by shallower groundwater depth and increased surface

water disturbance may be attributed to the improved water

environment which allows more herbaceous species to emerge,

while the overlapping ecological niches may have also caused

species, such as P. euphratica, to respond to resource competition

by reducing their dominance (Shi et al., 2021). It has been noted

that excessive surface water disturbance may cause waterlogging

that increases soil salinity, thereby severely inhibiting the

photosynthesis and growth of P. euphratica (Ma et al., 1997).

Previous studies have suggested a positive correlation between

LNC and photosynthetic- as well as respiration- rates (Evans,

1989; Dalke et al., 2018). The significant positive correlation

between LNC and SPAD in this study verified the above

statement (Supplementary Figure 2), while the lack of significant

differences in LCC between habitat types also side-stepped the

existence of a positive correlation between photosynthetic and

respiration rates (Faber et al., 2022).
4.2 Role of environmental factors in the
formation of CWM traits

Although the linear regressions between surface water,

groundwater, and CWM traits in this study had statistical

significance, the R2 values were low, indicating that other factors

were involved in influencing functional traits. On the one hand, this
Frontiers in Plant Science 10
study only considered the aboveground traits of plants, but the

belowground traits are likely to have a more pronounced response

pattern to water resource differences (Klimesǒvá et al., 2023). On

the other hand, competition between species may also be an

important factor affecting trait plasticity, especially in regions

with scarce resources (Berg and Ellers, 2010). Govaert et al.

(2021) pointed out in their study that the traits of species depend

not only on the degree of environmental change, but also on

interspecies interactions.

The effects of soil moisture and salinity on the functional traits

of communities in arid zones have been revealed by several studies

(Gong et al., 2019; Luo et al., 2021). However, in the present study,

soil factors were observed to assume a more mediatory role. During

the screening of variables for structural equation model

construction, it was found that the Akaike Information Criterion

values were much higher than those of the current model when soil

water content and salinity were included in the model, although the

null hypothesis was not rejected (P>0.05). This may be due to both

LNC and N/P being correlated with nitrogen content, indicating

that the role of soil total nitrogen on interspecific and intraspecific

variability may be closer to the theoretical model than soil salinity.

The model showed that total soil nitrogen did not show a significant

response pattern to surface water disturbance and groundwater

depth, which is consistent with the findings of some studies (Zhang

et al., 2018; Chen et al., 2020). However, the conclusion should

consider the differences in time scales with other studies. When it is

difficult to precisely capture the timing of the occurrence of surface

runoff and underground leaching during the study process, their

specific contribution to soil total nitrogen cannot be denied (Zhang

et al., 2020; Bao et al., 2023) but can only indicate the existence of
A B

DC

FIGURE 9

Structural equation modeling of surface water and groundwater effects on Factor 2. **: P<0.01; *: P<0.05; The blue solid line in the figure represents positive
impact, and the red dotted line represents negative impact; The abbreviations for functional traits are the same as in Figure 3; (A, B) interspecific variability
and intraspecific variability of relative chlorophyll content; (C, D) interspecific variability and intraspecific variability of leaf thickness.
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stability of soil total nitrogen under a given ecosystem. Due to the

complexity of the spatial variation of environmental factors, the

adaptive mechanism of plant communities to the environment is

still uncertain and it is necessary to use fixed sample plots and

continuous monitoring methods to conduct in-depth research.
4.3 Interspecific and intraspecific variability
combine to drive changes in functional
traits in oasis communities

In this study, the proportions of interspecific variability of

SPAD, H, LNC, and N/P were higher than those of intraspecific

variability. Changes in water environmental conditions in desert-

wetland complex ecosystems may introduce new trait values that

improve the adaptive capacity of the whole community. If the

distance within the environmental gradient is too large, it may lead

to an increase in the importance of species turnover (Siefert et al.,

2014). However, the results of the study showed that the proportion

of intraspecific variability was not much lower than that of

interspecific variability, which could be due to both surface water

and groundwater gradients being set appropriately and the capacity

for potential phenotypic plasticity of the species being depleted by

environmental changes (Auger and Shipley, 2013). Regardless of the

cause, the importance of intraspecific variability in community trait

variation cannot be ignored. There were positive covariation effects

of intra- and interspecific variation in LT, SPAD, and N/P. LT has

been used as an example to demonstrate that in communities where

species with thin leaves are dominant, species will generally grow

thinner leaves than expected. There was a negative covariation effect

of intra- and interspecific variation of H and LNC, which is

generally considered to be a weakening effect (Luo et al., 2023)

and a negative compensatory mechanism (Xiang et al., 2021).

Taking H as an example, in communities where taller species

dominate, the weighted mean height of the community is lower

than would otherwise be expected. The negative covariation

elaborates the following mechanism: During the transition from

arid to wet habitats, the dominance of dwarf plants with higher

LNC gradually increases but the intraspecific LNC and H will

decrease and increase, respectively. Past studies have also

observed this phenomenon (Kichenin et al., 2013; Luo et al.,

2016). Overall, this result accepts the first two hypotheses

presented in the introduction as the contribution of intraspecific

variation was lower than that of interspecific variation. However, in

the process of environmental change, intraspecific variation

influenced the pattern of community traits.
5 Conclusions

As the groundwater depth decreased and surface water

disturbance increased, plant communities in desert wetland

ecosystems tended to have higher LNC, N/P, and SPAD but
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lower H. Interspecific and intraspecific variations in traits can be

affected directly or indirectly by surface water disturbance,

groundwater depth, soil water content, and soil total nitrogen.

Although changes in community functional traits are mainly

caused by interspecific variation, intraspecific variation also has a

non-negligible contribution. In addition, the covariation effect

between interspecific and intraspecific variations can explain the

formation of existing functional trait characteristics. With the shift

from arid to wet habitats, the trade-off strategies of plant traits for

resources shifted from conservative to acquisitive. It was concluded

that intraspecific variation has been instrumental in enhancing the

understanding of functional traits in response to environmental

change. Interspecific variation, intraspecific variation, and

covariation effects combine to influence community trait

characteristics in desert-wetland ecosystems driven by surface

water disturbance and groundwater depth, and the role of surface

water is higher than that of groundwater in this process. Our study

is an important step in unraveling the mechanisms through which

surface water and groundwater influence functional traits.
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