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10 years: assessing the potential
of converting monoculture
plantations into mixed stands
Yuan Gao1,2, Zhidong Zhang1, Deliang Lu2,3*, Ying Zhou1

and Qiang Liu1*

1Hebei Agricultural University, College of Forestry, Baoding, China, 2Qingyuan Forest CERN, National
Observation and Research Station, Shenyang, Liaoning, China, 3CAS Key Laboratory of Forest Ecology
and Management, Institute of Applied Ecology, Shenyang, China
Under-canopy afforestation using different tree species is a key approach in

close-to-nature management to improve the structural and functional stability of

plantation forests. However, current research on understory afforestation mainly

focuses on the seedling stage, with limited attention to saplings or young trees. In

this study, we evaluated the growth characteristics and leaf traits of 14-year-old

Pinus sylvestris var. Mongolica trees under four different upper forest density

(UFD) treatments: 0 trees/hm2 (canopy openness 100%, CK), 150 trees/hm2

(canopy openness 51.9%, T1), 225 trees/hm2 (canopy openness 43.2%, T2), and

300 trees/hm2 (canopy openness 28.4%, T3). We found that the survival rate of P.

sylvestris in the T3 was significantly lower than in the other treatments, with a

decrease of 30.2%, 18.3%, and 19.5% compared to CK, T1, and T2, respectively.

The growth of P. sylvestris in the T1 treatment exhibited superior performance.

Specifically, T1 showed a significant increase of 18.8%, 5.5%, and 24.1% in tree

height, diameter at breast height, and crownwidth, respectively, compared to the

CK. The mean trunk biomass ratio in the understory was significantly higher than

that in full light by 15.4%, whereas the mean leaf biomass ratio was significantly

lower by 12.3%. Understory P. sylvestris trees tended to allocate more biomass to

the trunk at the expense of decreasing leaf biomass, which would facilitate height

growth to escape the shading environment, although the promotion was

relatively limited. Leaf length, leaf width, leaf area, leaf thickness, mesophyll

tissue thickness, epidermis thickness, and leaf carbon content were the highest in

the CK and tended to decrease with increasing UFD, indicating that a high-light

environment favored leaf growth and enhanced carbon accumulation. In

summary, young P. sylvestris trees adapted to moderate shading conditions

created by the upper canopy, and the T1 treatment was optimal for the growth of

understory P. sylvestris. This study provides insights into different adaptive

strategies of young P. sylvestris trees to changes in light environment,

providing practical evidence for under-canopy afforestation using light-

demanding trees during pure plantation transformation.
KEYWORDS

Pinus sylvestris var. Mongolica, under-canopy afforestation, variable retention
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1 Introduction

Chinese plantation area (80 million hm2) ranks first in the

world, with pure plantations accounting for 85% (Chen et al., 2014).

However, the simple forest structure of these plantations leads to

potential problems such as low biodiversity, unstable ecosystems,

and weak resilience. Furthermore, studies have shown that pure

forests are more susceptible to large-scale pest and disease disasters,

resulting in significant losses than mixed forests (Jactel et al., 2017;

MacLean and Clark, 2021). Therefore, there is an urgent need to

improve the stability and ecological functions of planted forests.

Close-to-nature management is a cultivation strategy that aims

to convert pure plantation forests into near-natural forest

ecosystems through various management measures, including the

introduction of tree species, structural adjustment, promotion of

natural regeneration, and protection of understory plant diversity

(O’Hara, 2016; Schütz et al., 2016). These approaches have been

shown to improve species diversity (Stokes et al., 2021), stand

structure (Fang et al., 2021; Feng et al., 2022), carbon storage (Deng

et al., 2023), and community succession (Chai and Tan, 2020).

Under-canopy afforestation, which combines thinning and

understory replanting of seedlings or saplings, is an effective

method for transforming pure plantations into uneven-aged

mixed forests. Compared to natural regeneration, under-canopy

afforestation significantly shortens the time required for the

conversion process (Paquette et al., 2006). Replanting seedlings

under different light environments plays a crucial role in promoting

forest succession. Therefore, it is necessary to study the growth and

development of replanting seedlings under different light

environments resulting from management interventions.

Light environment is an important factor in the growth and

development of understory plants. The response to different light

intensities can be observed at the plant level in individual

development and biomass allocation. Generally, moderate light

intensity favors the growth of woody plant seedlings, while

excessive light intensity inhibits their growth. For example, Ma

et al. (2015) found that seedlings of Camptotheca acuminata grown

at 75% irradiance had significantly higher total biomass, height, and

diameter than those grown under 100%, 25%, and 50% irradiance.

In addition to height and diameter, biomass allocation reflects a

plant’s strategy for efficiently acquiring resources and improving its

competitive ability in response to its environment (Mediavilla and

Escudero, 2010; Chmura et al., 2017). Some plants preferentially

allocate biomass to stems under low-light conditions, such as in the

understory or small forest gaps, to promote plant growth and escape

from shaded environments (Van Hees and Clerkx, 2003; Poorter

et al., 2012). Others allocate biomass to leaves to increase their

ability to absorb and utilize photosynthetically active radiation

(Nishimura et al., 2010; Boonman et al., 2020). On the one hand,

the relative growth rates of different plant tissues and organs vary at

different growth stages, resulting in alterations in the pattern of

photosynthetic product allocation (Van De Vijver et al., 1993). On

the other hand, the allocation of plant photosynthetic products is

influenced by external environmental factors only when the

nutrients obtained by the various plant organs are in a state of

equilibrium (McConnaughay and Coleman, 1999). Evidently, the
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pattern of biomass allocation by plants under light-limiting

conditions is not uniform, and the strategies of individual

development and biomass allocation of different species in

response to different light environments still need to be explored.

Leaves are the most sensitive organs of plants to changes in the

external environment, and their external morphology, anatomical

structure, and physiological characteristics can reflect the species’

response to environmental changes and resource competition

(Poorter and Bongers, 2006). The adaptation of plant leaves to

different light environments is diverse. Coble and Cavaleri (2015)

found that leaf mass per area (LMA), leaf nitrogen content, and the

carbon-to-nitrogen ratio (C/N) of Acer saccharum decreased

significantly with decreasing light intensity, highlighting the

significance of light availability on leaf morphology and

chemistry. Yang et al. (2014) found that leaves from shaded sites

had higher values for leaf size, specific leaf area, leaf nitrogen, and

chlorophyll concentration per unit area than those from open sites,

providing favorable conditions for species dominance in habitats

with heterogeneous light conditions. However, most studies on

plant adaptation to understory light environments have focused on

containerized seedlings (Paquette et al., 2006; Liu et al., 2018; Fan

et al., 2019), which may not fully reflect the adaptation of young

trees at later stages.

In this study, we conducted an under-canopy afforestation

experiment in 52-year-old Larix principis-rupprechtii plantations

with different upper forest density (UFD) treatments. The growth

and leaf characteristics of 14-year-old P. sylvestris trees were

monitored under different UFD treatments. The specific aims

were as follows: (1) to determine the feasibility of growth of P.

sylvestris under different UFD treatments in the understory

environment, and (2) to unveil the ecological adaptation

mechanism of young P. sylvestris trees to the dynamic light

conditions. We hypothesized that (1) young P. sylvestris trees

would exhibit strong responses to the low-light environment

resulting from shading in the upper stand. Specifically, we

anticipated that the height growth and biomass allocation

mechanisms of these trees would be closely linked, working

together to enhance light capture and compete for light resources.

(2) The UFD treatments would have varying effects on each

response variable of young P. sylvestris trees in the understory,

with the morphological structure of leaves being a significant factor

influencing the growth and development of P. sylvestris in response

to changes in light intensity. This study will offer insights into the

adaptive responses of P. sylvestris young trees to variations in

understory light conditions and provide scientific reference for

the transition from pure plantation forests to uneven-aged

mixed stands.
2 Materials and methods

2.1 Study site

The study was conducted in Saihanba Mechanized Forest Farm,

located in Hebei Province, northern China (42°02′ - 42°36′N, 116°
51′ - 117°39′E), at an altitude ranging from 1010.0 to 1939.9 m. The
frontiersin.org

https://doi.org/10.3389/fpls.2024.1340058
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Gao et al. 10.3389/fpls.2024.1340058
typical soils of the area are aeolian sandy soil, meadow soil, brown

soil and gray forest soil. The climate is a typical temperate

continental monsoon climate. It has an average annual

temperature of -1.3°C, with extreme minimum and maximum

temperatures of -43.3°C and 33.4°C, respectively. The area

experiences an average snow cover for seven months, with an

annual precipitation of 460 mm. The frost-free period lasts an

average of 64 days. The total operating area of the forest farm is

94,000 hm2, with 73,000 hm2 designated as forest land, including

57,000 hm2 of planted forests and 16,000 hm2 of natural forests. The

forest coverage rate is 80%, the total forest volume is 5.025 million

m3, and the average annual growth rate is 9.7% (Xu et al., 2022). The

main tree species include L. principis-rupprechtii, Picea asperata,

Betula platyphylla, and P. sylvestris (Wu et al., 2023). The soil

organic carbon content of the near-mature forests of L. principis-

rupprechtii in this region is about 43.7 g/kg, total nitrogen 2.4 g/kg,

total phosphorus 0.3 g/kg and total potassium 19.4 g/kg.
2.2 Experiment design

In 1970, an initial density of 5000 trees/hm2 of L. principis-

rupprechtii was planted in the Saihanba Mechanized Forest Farm.

To enhance the microenvironment of the forest and facilitate the

establishment and growth of the replanted saplings, thinning was

conducted on the upper layer of larch and retaining different tree

densities. The retention densities for the upper layer of L. principis-

rupprechtii consisted of four levels: control (clear-cut, providing a

full-light environment without upper larch trees, CK), 150 trees/

hm2 (Treatment 1, T1), 225 trees/hm2 (Treatment 2, T2), and 300

trees/hm2 (Treatment 3, T3).

In 2012, 4-year-old P. sylvestris saplings were planted under the

L. principis-rupprechtii plantation (42 years old). The P. sylvestris

saplings in the understory were spaced at 3 × 3 m, resulting in

approximately 70-75 P. sylvestris per acre. All saplings were

container-grown and planted using the “pit planting” method,

ensuring consistent afforestation practices. In 2022, standard plots

measuring 30 m × 20 m were established for each UFD treatment of

L. principis-rupprechtii. The average height of the upper larch trees

was 20.8 m, and the mean diameter at breast height (DBH) was 28.6

cm. Three replicates were set up for each treatment and control,

resulting in 12 sample plots (i.e., 4 treatments × 3 replicates).

To demonstrate that there were differences in understory

environments due to different UFD treatments between

experimental gradients, canopy images were used to calculate

canopy openness to better account for the effects of canopy

structure on understory environments. Canopy images were

captured using a wide-angle lens at a height of 2 m in different

UFD treatments. The photographs were taken under overcast

conditions to minimize glare from direct sunlight, following the

method described by Beaudet and Messier (Beaudet and Messier,

2002). The canopy light environment data were obtained by

analyzing the images using Hemiview software (Li et al., 2014).

The results revealed canopy openness values of 51.9%, 43.2%,

28.4%, and 100% for T1, T2, T3, and CK, respectively.
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2.3 Data collection

2.3.1 Monitoring of young tree survival, growth,
and biomass accumulation

At the end of the 2022 growing season, dead young trees within

each standard plot were observed and recorded. The survival rate of

young trees in each plot was estimated as the percentage of living

individuals to the total number of individuals initially planted in

each plot. Measurements were taken for all individual trees in each

plot, including diameter at breast height (DBH, defined as 1.3 m

above ground level in China), crown width, and tree height.

Diameter tape, steel tape, and ultrasonic hypsometer (Vertex IV,

Haglöf Sweden) were used for these measurements.

Based on the average DBH and height in each plot, one healthy

tree was selected near each standard plot and then separated into

different organs, including trunk, branch, leaf, and root, and their

fresh weights were measured. Samples from each organ were

collected and brought back to the laboratory, weighed, and dried

in an oven at 85°C for at least 72 hours until a constant weight was

achieved. The dry weight of each sample was measured, and the

biomass of each tree organ was calculated based on the ratio of dry

weight to fresh weight. The above-ground biomass was calculated as

the sum of trunk, branch, and leaf biomass; the below-ground

biomass represented the root biomass.

2.3.2 Measurement of leaf morphology, nutrients,
and anatomy

Following the principle of even sampling (Cornelissen et al.,

2003), six individual P. sylvestris trees were selected from each plot

to represent the average characteristics of the plot. These young

trees were used for the determination of leaf indexes.

To account for the effects of light and other factors on branch

and leaf growth in different orientations and crown positions, we

collected current-year branches from the middle position of the

crown on the south side of each selected tree. From each collected

branch, leaf samples were randomly chosen. The fresh weight (FW)

of the leaf samples was measured using an electronic balance with

an accuracy of 0.001g. The leaf samples were then scanned using a

leaf image analyzer (EP-leaf1000, China). Each leaf sample was

scanned for the following characteristics: leaf length, leaf width, leaf

length-to-width ratio, and leaf area. After the measurements were

completed, each leaf sample was grouped together. The group was

then dried in an oven at 85°C until a constant weight was achieved.

The dried cluster was weighed to determine the leaf dry weight

(LDW), leaf dry matter content (LDMC), and leaf mass per area

(LMA) according to the method described by Cornelissen et al.

(2003):

LDMCi = LDWi=FWi (1)

LMAi = LDWi=LAi (2)

In Equations (1, 2), i represents the ith leaf samples. LDMC

means leaf dry matter content; LDW means leaf dry weight; FW

means fresh weight; LMA means leaf mass per area; LA means

leaf area.
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The remaining leaves from the collected branches were

extracted and stored in labeled envelopes. They were then dried

in an oven at 85°C until a constant weight was achieved. The dried

leaf samples were subsequently ground and crushed. The samples

were sent to the laboratory for analysis after passing through a 0.3

mm (60 mesh) sieve. The content of carbon (C), nitrogen (N), and

phosphorus (P) in the leaf was determined using methods described

by Jones and Case (1990). The ratios of carbon to nitrogen (C/N),

carbon to phosphorus (C/P), and nitrogen to phosphorus (N/P) in

the leaf were expressed as mass ratios.

The current-year branches from the middle of the canopy on

the south side of each tree were sampled. To avoid positional effects

at the tip and base of the twigs, we only collected leaf samples from

the middle part of the twigs (Zhao et al., 2008). Three fresh leaves of

moderate thickness were carefully selected and immediately placed

into FAA solution (38% formaldehyde, glacial acetic acid, 70%

alcohol, 5:5:90, v/v/v). The leaves were left in the solution for at least

48 hours to ensure proper fixation. After fixation, the field-fixed

leaves were sectioned using the paraffin sectioning method. The

sections obtained were 8-10 mm thick and were double-stained with

senna red and solid green. They were then sealed with neutral gum.

Leaf thickness, mesophyll tissue thickness, and epidermis thickness

were observed and measured using an upright microscope

(OLYMPUS BX41) and an image analysis system (Toupview)

after sectioning.
2.4 Data analysis

One-way ANOVA and Duncan’s multiple comparisons were

employed to assess the differences in survival, growth, and biomass

of young P. sylvestris trees, leaf morphology, nutrient content, and

anatomical characteristics across different UFD treatments.

Principal component analysis (PCA) was utilized to visualize the

overall coordination and correlation between tree growth and leaf

traits in the various canopy treatments. The experimental data were

analyzed using ANOVA in SPSS 25.0 statistical software, followed

by Duncan’s test (p< 0.05) for post-hoc comparisons. PCA and all

figures were generated using R statistical software. The FactoMineR

and factoextra packages were employed for the PCA analysis. All

data are presented as mean ± standard error.
3 Results

3.1 Effects of UFD treatments on tree
survival, growth and biomass allocation

The results of the ANOVA indicated a significant effect

(P<0.05) of the UFD treatments on the survival, growth, leaf

morphology, leaf anatomy, and leaf nutrients of young P.

sylvestris trees (Table 1). The survival rate of P. sylvestris in the

T3 was only 67.5%, 30.2%, 18.3%, and 19.5% lower than the CK, T1,

and T2, respectively (Figure 1A). As the UFD increased, the growth

of under-canopy P. sylvestris initially increased and then decreased.

The maximum values of tree height, DBH, and crown width were
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observed in the T1, significantly higher than in the other treatments

(Figures 1B–D).

The total and above-ground biomass followed a similar trend

with different UFD treatments. There were no significant differences

between the CK and T1, but both were significantly higher than the

T2 and T3 (Figures 2A, C). The proportion of trunk biomass to total

biomass in the CK was 10.4%, 15.3%, and 20.4% lower than T1, T2,

and T3, respectively (Figure 2B). However, the leaf biomass ratio in

the CK was significantly higher than in the other treatments. There

were no significant differences in the above-ground and below-

ground biomass ratios among the treatments (p>0.05,

Figures 2E, F).
3.2 Effects of UFD treatments on leaf
morphology, anatomy, and nutrients

Mean leaf length, leaf width, and leaf area all decreased with

increasing UFD (Figure 3A, B, D). The leaf area of CK was 13.2%,

32.8%, and 48.9% higher than that of T1, T2, and T3, respectively.

However, LMA showed the opposite trend, increasing with

increasing UFD (Figure 3E). Leaf length-to-width ratio did not

differ significantly among treatments (p>0.05, Figure 3C).

Anatomical profiles showed that P. sylvestris leaves were

semicircular in cross-section, with undifferentiated mesophyll

tissue consisting of irregularly arranged but tightly packed cells.

Multiple resin ducts were between the leaf tissue cells (Figure 4A).

As the UFD increased, the thickness of the leaf, mesophyll tissue,

and epidermis showed an overall decreasing trend (Figures 4B–D).

The pattern of variation for leaf nutrient indicators with UFD

treatments was inconsistent. Leaf C content decreased with

increasing UFD (Figure 5C), whereas leaf P content of the T3 was

significantly higher than that of the other treatments (Figure 5B).

Leaf nutrient stoichiometric ratios indicated that N/P was not

significantly different between CK and T1, but both were

significantly higher than T2 and T3 (Figure 5D). The C/N was

significantly higher in CK, T1, and T2 than in T3 (Figure 5E).
3.3 Relationships among young tree
characteristics in different UFD treatments

The principal component analysis based on 18 variables of P.

sylvestris under different UFD treatments showed that the first two

principal components explained 51.8% of the total phenotypic

variance (Figure 6). The first dimension (Dim 1) explained 32.2%

of the total variance. Leaf thickness, mesophyll tissue thickness, leaf

width, and leaf area had significant positive correlations with the

first dimension, all of which are leaf morphology and anatomy

indicators, suggesting that the first principal component mainly

reflects the variation of leaf structure. The second dimension (Dim

2) explained 19.6% of the total variance. LMA, leaf length-to-width

ratio, and leaf C/N ratio had significant correlations with the second

dimension, all of which are leaf functional traits (Figure 6A). The P.

sylvestris samples of the CK differed significantly from those of the

T3, of which CK had positive coordinates, and T3 had negative
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coordinates on the first dimension (Figure 6B). However, there was

no significant separation from the T1 and T2, and there was a

degree of clustering.
4 Discussion

4.1 Response of growth characteristics to
different UFD treatments

P. sylvestris young trees exhibited the highest survival rate under

full light conditions. However, under the T3, characterized by

extreme low light conditions, there was a significant decrease in

the survival of P. sylvestris. This finding aligns with the results of

Zhang et al. (2013) on Pinus koraiensis and Quercus mongolica,
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where reduced light intensity resulted in decreased survival of light-

demanding species. However, the growth of P. sylvestris young trees

in the understory did not follow the same pattern as survival. In our

study, tree height, DBH, and crown width were significantly higher

in the T1 compared to the other treatments. This suggests that the

mild shading resulting from a lower UFD was conducive to

promoting the growth of P. sylvestris young trees in the

understory. This phenomenon, known as the shade-avoidance

response (Fiorucci and Fankhauser, 2017), indicates that the

species adapts to a low-light environment by altering its

morphology. However, when the UFD exceeded 150 plants/hm2,

the growth of young trees in the understory began to exhibit a

decreasing trend. It has been confirmed that weak light resulted in

low photosynthesis, reducing the plant’s carbon assimilation

potential (Sharkey et al., 2007; Dai et al., 2009). Consequently, the
TABLE 1 The ANOVA results for the effects of upper forest density on tree growth, biomass, leaf morphology, anatomy, and nutrients.

Category Measure variable df F-value P-value

Growth

Survival rate 3 11.42 <0.01**

Height 3 76.49 <0.01**

DBH 3 666.72 <0.01**

Crown width 3 163.82 <0.01**

Biomass

Total biomass 3 12.92 <0.01**

Above-ground biomass 3 11.30 <0.01**

Below-ground biomass 3 2.00 0.19

Trunk biomass ratio 3 8.05 <0.01**

Branch biomass ratio 3 1.33 0.33

Leaf biomass ratio 3 4.39 <0.05*

Root biomass ratio 3 0.43 0.74

Above-ground biomass ratio 3 0.43 0.74

Leaf morphology

Leaf length 3 4.61 <0.01**

Leaf width 3 13.73 <0.01**

Leaf length-to-width ratio 3 0.90 0.44

Leaf area 3 12.96 <0.01**

LMA 3 5.58 <0.01**

LDMC 3 13.10 <0.01**

Leaf anatomy

Leaf thickness 3 30.33 <0.01**

Leaf tissue thickness 3 28.43 <0.01**

Epidermis thickness 3 19.33 <0.01**

Leaf nutrients

Leaf N content 3 19.15 <0.01**

Leaf P content 3 13.13 <0.01**

Leaf C content 3 16.74 <0.01**

Leaf N/P ratio 3 5.29 <0.01**

Leaf C/N ratio 3 27.75 <0.01**

Leaf C/P ratio 3 18.23 <0.01**
**: P<0.01; *: P<0.05.
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photosynthetic carbon assimilation products could not meet the

plant’s normal growth requirements, leading to growth suppression.

This finding is consistent with previous studies on Torreya grandis

seedlings (Tang et al., 2015).

The total biomass was significantly higher in the CK and T1

(strong light environment) compared to T2 and T3 (weak light

environment). This finding confirms previous studies showing a

positive correlation between strong light conditions and dry matter
Frontiers in Plant Science 06
accumulation (Toledo-Aceves and Swaine, 2008; Lu et al., 2018).

The proportion of trunk biomass to total biomass gradually

increased with increasing UFD. This suggests that P. sylvestris

young trees preferentially allocate biomass to the trunk to

enhance tree height growth and improve their ability to compete

for light resources in the presence of shading from the upper

canopy. This finding aligns with our initial hypothesis and

supports the acclimation strategy, which suggests that plants
B

C D

A

FIGURE 1

Survival (A) and growth (B-D) under different upper forest density (UFD) treatments. Different lowercase letters indicate significant differences among
UFD treatments (P< 0.05). Each value is the mean ± stand error. CK: under full-light conditions; T1: UFD was 150 trees/hm2; T2: UFD was 225 trees/
hm2; T3: UFD was 300 trees/hm2.
B

C D E F

A

FIGURE 2

Biomass accumulation (A, C, D) and allocation (B, E, F) under different upper forest density (UFD) treatments. Different lowercase letters indicate the
significant differences among UFD treatments (P< 0.05). Each value is the mean ± stand error. CK: under full-light conditions; T1: UFD was 150
trees/hm2; T2: UFD was 225 trees/hm2; T3: UFD was 300 trees/hm2.
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B C

D E F

A

FIGURE 3

Differences in leaf morphology (A–F) under different upper forest density (UFD) treatments. Different letters indicate significant differences (P< 0.05)
among treatments. Each value is the mean ± stand error. CK: under full-light conditions; T1: UFD was 150 trees/hm2; T2: UFD was 225 trees/hm2;
T3: UFD was 300 trees/hm2.
B C D

A

FIGURE 4

Anatomical structures of P. sylvestris leaves (A) and statistical analyses on the thickness of leaf tissue (B-D) under different upper forest density (UFD)
treatments. Different letters indicate significant differences (P< 0.05) among treatments. Each value is the mean ± stand error. CK: under full-light
conditions; T1: UFD was 150 trees/hm2; T2: UFD was 225 trees/hm2; T3: UFD was 300 trees/hm2.
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preferentially allocate biomass to organs that most efficiently

acquire light, water, and nutrients. It also suggests that biomass

allocation within a plant may involve an optimization process in

response to stress (Garnier, 1991). However, there were no

significant differences in above- and below-ground biomass ratios

among the UFD treatments. This indicates that the response of

biomass allocation in young P. sylvestris trees to the light

environment is limited. Additionally, biomass allocation is not
Frontiers in Plant Science 08
fixed and varies with time, environment, and species (Poorter

et al., 2012). Therefore, long-term monitoring may be necessary

to further understand the treatment effects.

Considering the observed differences in morphology among

young P. sylvestris trees under different light conditions, it is

evident that the variation in biomass allocation is relatively smaller

than in plant morphology, but tree morphology exhibits greater

plasticity than biomass allocation in response to the light
B C

D E F

A

FIGURE 5

Differences in leaf nutrients (A–F) under different upper forest density (UFD) treatments. Different letters indicate significant differences (P< 0.05)
among treatments. Each value is the mean ± stand error. CK: under full-light conditions; T1: UFD was 150 trees/hm2; T2: UFD was 225 trees/hm2;
T3: UFD was 300 trees/hm2.
BA

FIGURE 6

Principal component analysis (PCA) of different variables of P. sylvestris under different upper forest density (UFD) treatments. Tree and leaf trait
values are loaded on the first two PC axes. (A) Contributions of variables to PCs. (B) Grouping of samples with different treatments. The “contrib”
value represents the contribution to the principal components. H, height; DBH, diameter at breast height; CW, crown width; LL, leaf length; LW, leaf
width; LWR, LL/LW ratio; LA, leaf area; LMA, leaf mass per area; LDMC, leaf dry matter content; N, leaf N content; P, leaf P content; C, leaf C
content; N/P, leaf N/P ratio; C/N, leaf C/N ratio; C/P, leaf C/P ratio; LT, leaf thickness; MTT, mesophyll tissue thickness; ET, epidermis thickness; CK,
under full-light condition; T1, UFD was 150 trees/hm2; T2, UFD was 225 trees/hm2; T3, UFD was 300 trees/hm2.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1340058
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Gao et al. 10.3389/fpls.2024.1340058
environment. This finding is consistent with previous studies on

species such as Fagus sylvatica seedlings (Curt et al., 2005) and

Camellia oleifera (Zhang et al., 2022b).
4.2 Response of leaf characteristics to
different UFD treatments

In this study, mean leaf length, leaf width, and leaf area

decreased, but LMA increased with increasing UFD. However,

previous studies on Acer saccharum (Coble and Cavaleri, 2015),

Camellia oleifera (Zhang et al., 2022b), and Medicago sativa (Tang

et al., 2022) found that plants typically increase leaf area to capture

more light resources by expanding the light-receiving surface,

decreasing LMA in shaded environments. This may be a

difference caused by different life types of trees. Structural

diversification in response to different light availability was

smaller in leaves of evergreen conifers, as noted in previous

studies on conifers (Youngblood and Ferguson, 2003; Wyka et al.,

2007, 2012) and other evergreen species (Valladares et al., 2000). In

contrast, deciduous broadleaf species, with their shorter leaf

lifespan, typically invest more dry matter into plant growth and

leaf area expansion. Therefore, inferring the light-trapping capacity

of conifers based solely on their morphological size is limited.

Furthermore, there were no significant differences in the leaf

length and width ratio among the different upper stand density

treatments. This indicates that the leaves of P. sylvestris young trees

adapt to low-light environments by altering their size rather than

their shape.

Previous studies on leaf structure have mainly focused on

broadleaf species, revealing that plants tend to reduce leaf

thickness, particularly the thickness of palisade tissues, in

response to decreased light intensity as an adaptation to low-light

environments (Kong et al., 2016; Zhang et al., 2022a, b). In our

study, which focused on a coniferous species, the mesophyll tissue

did not differentiate into palisade and spongy tissue. However, our

findings also demonstrated that P. sylvestris, similar to other

broadleaf species, exhibited a gradual decrease in leaf thickness,

mesophyll tissue thickness, and epidermis thickness with decreasing

light intensity. The thickening of the epidermis under high light

intensity may reduce stomatal conductance, enhancing water use

efficiency. These changes can protect photosynthetic tissues under

conditions of high light intensity and drought (Hanba et al., 2002;

Ivancich et al., 2012). Conversely, leaf thickness and mesophyll

tissue thickness are reduced under low light conditions. Previous

studies have indicated that thinner leaves have a higher likelihood of

light interception, but this structural adaptation can be detrimental

to CO2 fixation and transport (Terashima et al., 2011).

The average leaf C content increased with increasing light

intensity, which supports the findings of Coble and Cavaleri (2015)

that higher light levels lead to increased carbon investment in leaf

structures during adaptation. The leaf N/P ratio can indicate the

nutrient limitation status of plants in their environment (Güsewell,

2004). Generally, plant growth is limited by P when the N/P ratio is

greater than 16, N when it is less than 14, and both elements when it

falls in between (Koerselman and Meuleman, 1996). In our study,
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under the CK and T1 treatments, which experienced higher light

intensity, the N/P ratio of young P. sylvestris leaves was significantly

higher than that of P. sylvestris under low light conditions. On the

other hand, the average N/P ratio of the four treatments was about 14.

It indicated that the growth of P. sylvestris was more limited by N in

our study environment. Further investigation reveals that the

variation in N and P contents under the canopy is influenced by

both the plant’s inherent supply-demand dynamics and the ability of

the mixed forest to modify soil conditions (Wang et al., 2013; Chen

et al., 2022). A previous study reported a total soil nitrogen content of

0.60 ± 0.02 g/kg in this area (Niu et al., 2019), indicating a nutrient-

poor state according to the nutrient classification standard of the

second national soil census. Therefore, the observed nitrogen

limitation in this region may be attributed to the depletion of

nitrogen nutrients in the soil. In this study, although the C/N of

CK, T1, and T2 under better light conditions was significantly higher

than that of T3 under low light conditions, the values of C/N did not

have a significant trend with decreasing light intensity. Furthermore,

it has been demonstrated that the variation in leaf C/N was primarily

influenced by soil water content (Lu et al., 2023). Therefore, the

changes in leaf nutrient and stoichiometric ratios may be more closely

associated with soil physicochemical properties.
4.3 Relationships among various
characteristics in different UFD treatments

Different UFD treatments were distributed in different regions

of the PCA score plot, with significant differences observed

between CK and T3 along the first principal component axis.

Leaf anatomy and morphology exhibited higher loading

coefficients in the first principal component. This finding

emphasizes the importance of leaf structure, which includes

both external morphological features and internal anatomical

structures, as a key indicator for the adaptation of young P.

sylvestris trees to diverse understory environments and resource

utilization. This observation aligns with our initial hypothesis.

However, T1 and T2 showed considerable overlap in the PCA

score plot. This finding suggests that understory P. sylvestris

young trees are well adapted to moderate shade environments

without much variability.

Previous studies on Tetrastigma hemsleyanum (Dai et al., 2009)

have found that photosynthetic activity and growth are depressed

under light intensities greater than 50% shade. Carbon assimilation

is limited and plant growth decreases under irradiance levels lower

than 75% shade. As can be seen, optimal light intensity varies from

species to species. In this study, when UFD is less than 225 trees/

hm2, the inhibitory effect of upper canopy shading on the growth

and development of understory P. sylvestris young trees decreases.

Therefore, it is not advisable to maintain a high UFD when planting

P. sylvestris young trees under the forest canopy. Furthermore, the

light requirements of plants vary at different developmental stages.

Thus, conducting long-term monitoring of the growth status of

understory seedlings is necessary to optimize forest stand structure.

These results provide a reference for regulating interspecific

relationships and promoting the growth and development of P.
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sylvestris young trees in mixed forests under the forest canopy.<5.

Conclusion and management implication.

This experiment investigated the effects of UFD treatments on the

individual development, biomass allocation, leaf morphology,

nutrients, and anatomical structure of young P. sylvestris trees. We

found that P. sylvestris young trees exhibited better growth under the

T1, with higher tree height, DBH, crown width, and total biomass,

which supported that it would be practicable for under-canopy

afforestation using P. sylvestris as long as sufficient light

transmittance could be ensured. Under shading conditions, P.

sylvestris young trees allocated more photosynthetic products to the

main trunk area, improving their light competition and survival ability.

Light availability had greater impacts on tree morphology than biomass

allocation. However, long-term monitoring is necessary during the

young tree stage to identify potential trends in response changes. The

introduction of P. sylvestris into pure larch forests can optimize stand

structure, including species composition and vertical layering, and

promote near-natural succession in these monoculture forests.
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