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Yield prediction in a peanut
breeding program using remote
sensing data and machine
learning algorithms
N. Ace Pugh1*, Andrew Young1, Manisha Ojha2,
Yves Emendack1, Jacobo Sanchez1, Zhanguo Xin1

and Naveen Puppala2

1United States Department of Agriculture, Crop Stress Research Laboratory, Lubbock,
TX, United States, 2Agricultural Science Center at Clovis, New Mexico State University, Clovis,
NM, United States
Peanut is a critical food crop worldwide, and the development of high-throughput

phenotyping techniques is essential for enhancing the crop’s genetic gain rate.

Given the obvious challenges of directly estimating peanut yields through remote

sensing, an approach that utilizes above-ground phenotypes to estimate

underground yield is necessary. To that end, this study leveraged unmanned

aerial vehicles (UAVs) for high-throughput phenotyping of surface traits in

peanut. Using a diverse set of peanut germplasm planted in 2021 and 2022, UAV

flightmissions were repeatedly conducted to capture image data that were used to

construct high-resolution multitemporal sigmoidal growth curves based on

apparent characteristics, such as canopy cover and canopy height. Latent

phenotypes extracted from these growth curves and their first derivatives

informed the development of advanced machine learning models, specifically

random forest and eXtreme Gradient Boosting (XGBoost), to estimate yield in the

peanut plots. The random forest model exhibited exceptional predictive accuracy

(R2 = 0.93), while XGBoost was also reasonably effective (R2 = 0.88). When using

confusion matrices to evaluate the classification abilities of each model, the two

models proved valuable in a breeding pipeline, particularly for filtering out

underperforming genotypes. In addition, the random forest model excelled in

identifying top-performing material while minimizing Type I and Type II errors.

Overall, these findings underscore the potential of machine learning models,

especially random forests and XGBoost, in predicting peanut yield and improving

the efficiency of peanut breeding programs.
KEYWORDS

artificial intelligence, crop yield, growth curves, machine learning, peanut, plant
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1 Introduction

Peanuts (Arachis hypogaea) are a legume crop of immense

economic and nutritional importance worldwide (Fletcher and Shi,

2016; Variath and Janila, 2017). They are a crucial component of the

agri-food system, contributing significantly to global food security

due to their rich nutritional composition (Valentine, 2016).

Primarily, peanuts are renowned for their high protein content,

providing about 25.8 grams of protein per 100 grams, which

contributes substantially to dietary protein intake (Davis and

Dean, 2016). Additionally, they are a rich source of healthy fats,

particularly monounsaturated fats, which are associated with

cardiovascular health benefits (Kris-Etherton et al., 1999; Settaluri

et al., 2012). Peanut agroecosystems have been shown to likely

increase the below ground metabolic activity in semi-arid systems

(Laza et al., 2023) and show high levels of physiological adjustments

under elevated CO2 conditions, which may increase drought

resilience in future climates (Laza et al., 2021). Despite the

substantial value of peanuts and their significance in global food

security, there are considerable challenges associated with their

genetic improvement. Although reliable, traditional peanut

breeding methods are time-intensive processes that often require

multiple selection cycles to develop improved cultivars

(Chamberlin, 2019). This slow rate of progress in peanut breeding

is a hurdle for the industry, particularly in the face of evolving

challenges such as changing climate conditions and emerging pests

and diseases (Faye et al., 2018; Obasa and Haynes, 2022; Haerani

et al., 2023; Puppala et al., 2023). Peanuts have seen great

improvements over the past decades; however, as is the case in

other crop species, phenotyping remains a considerable bottleneck

in peanut breeding pipelines and a chief limiting factor for overall

rates of genetic gain in the crop (Furbank and Tester, 2011; Yang

et al., 2020).

It is particularly difficult to directly estimate yield in peanuts

using proximal and remote sensing methodologies. This difficulty

stems from the unique growth characteristic of the peanut plant,

wherein the gynophores, or “pegs,” grow downward into the soil

after pollination (Boote, 1982; Moctezuma and Feldman, 1999).

This subterranean growth, while advantageous for the plant in

terms of accessing vital soil nutrients, makes non-invasive yield

estimation incredibly challenging. Traditional methods for

estimating yield typically require destructive sampling, which may

not be efficient or desirable in many cases (Marshall and

Thenkabail, 2015). Thus, developing feasible, non-destructive

methods to model and predict potential yield in peanuts is a

pressing need in the context of modernizing and streamlining

peanut improvement systems.

In recent years, high-throughput phenotyping (HTP) via

remote and proximal sensing has emerged as an important field

for modern plant breeding, enabling crop improvement scientists to

screen vast populations of plants rapidly and efficiently (Huang

et al., 2019; Virnodkar et al., 2020; Tao et al., 2022). Traditional

field-based phenotyping methods often involve manual

measurements, which can be time-consuming, expensive, labor-

intensive, and subject to human error (Pauli et al., 2016). Remote

sensing, in contrast, utilizes state-of-the-art imaging technology to
Frontiers in Plant Science 02
collect plant data in a non-destructive and automated manner,

significantly reducing the time and cost associated with phenotypic

data collection (Lobos et al., 2017; Araus et al., 2018; Janni and

Pieruschka, 2022). Unmanned Aerial Vehicles (UAVs), or “drones”

equipped with Red-Green-Blue (RGB) and multispectral cameras,

can capture a wide array of data at both the individual plant and

crop canopy levels (Thorp et al., 2018). Red-Green-Blue imagery

can be processed using structure-from-motion (SfM) to estimate

structural traits such as plant height and canopy width or leaf area

index (Shi et al., 2016; Qi et al., 2020; Sarkar et al., 2020). The data

obtained from remote sensing technologies can also be processed to

derive a plethora of vegetation indices, which serve as critical tools

in crop phenotyping and stress detection. Vegetation indices such as

Excess Green Index (EG or ExG) and Normalized Difference

Vegetation Index (NDVI) are often used to assess plant vigor,

photosynthetic activity, and stress responses in a variety of crops,

including peanuts (Rouse et al., 1974; Nijland et al., 2014; Zerbato

et al., 2016). Perhaps most importantly, UAVs and other remote

sensing technologies allow for efficient, repeated collection of data

for the traits they measure, allowing researchers to produce

multitemporal growth curves.

Multitemporal growth curves are derived from repeated, high-

resolution remote sensing measurements taken throughout the crop

growing season, enabling researchers to track the temporal

progression of plant development and health with detail (Pugh

et al., 2018; Bustos-Korts et al., 2019; Shammi andMeng, 2021). The

high temporal resolution of repeated measurements allows the

capture of physiological transitions such as the onset of flowering

or maturity, which are critical growth stages that strongly correlate

with final yield (Awal and Ikeda, 2003; Carneiro et al., 2019). The

successful application of growth curves in yield modeling and

prediction has been demonstrated in a variety of crops. For

example, multitemporal measurements have been used to

establish growth curves in tomatoes, employing these curves to

predict yield prior to harvest (Chang et al., 2021). In Ashapure et al.

(2020), multitemporal UAV data were used to develop a yield

estimation framework in cotton. The successful application of this

approach in these and other crops suggests a promising future for

the application of similar methodologies in peanut yield prediction.

The immense power of these growth curves lies in their ability to

reveal latent phenotypes, which refer to traits or characteristics that

are not directly observable but can be derived or inferred from the

data (Ubbens et al., 2020; Lane and Murray, 2021). This concept

stems from the premise that plant development is a dynamic

process influenced by a multitude of factors, many of which may

not be readily apparent in a singular, static snapshot of a crop field.

Latent phenotypes could include characteristics derived from

growth-rate trends, onset of key phenological stages, response to

environmental stressors, and countless others (Gage et al., 2019;

Feldmann et al., 2021). Once latent phenotypes are extracted,

artificial intelligence (AI) can be used to predict traits of interest

in peanuts, such as yield.

The integration of Artificial Intelligence (AI) in crop

improvement programs has shown promising advancements in

recent years. Machine learning (ML) models, such as Random

Forest (RF) and eXtreme Gradient Boosting (XGBoost), have
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emerged as powerful tools in predicting various crop attributes

(Thilakarathne et al., 2022; Zheng et al., 2022; Nazari et al., 2023).

Both models are decision tree-based models that are commonly

applied toward regression tasks, particularly for the prediction or

modeling of key quantitative traits. Random Forest is an ensemble

method that uses multiple decision trees during the training process

where each “tree” makes its own prediction, and the final output is

usually the mean of these predicted values (Breiman, 2001; Belgiu

and Drăgut,̧ 2016). EXtreme Gradient Boosting is an advanced

implementation of gradient boosting algorithms that builds trees

sequentially, so that each new tree can correct the errors made by

each previous tree, resulting in reduced error (Chen and Guestrin,

2016). Recent research in peanuts has shown that ML models can

potentially be used to estimate various important traits via the use of

the values of visual bands in RGB and multispectral imagery

(Bagherian et al., 2023; Shahi et al., 2023). However, AI powered

by remote sensing data has not yet been used across multiple years

and a diverse set of material to assess models for their robustness in

peanut (Bagherian et al., 2023; Shahi et al., 2023). Therefore, it is

imperative that ML models to predict yield in peanut are built that

are highly robust and remain applicable to unseen data; that is, data

that have not yet been encountered by the models (Yoosefzadeh

Najafabadi et al., 2023). To that end, the inclusion of multiple,

varied environments and a population that has a large degree of

heterogeneity is critical to ensure that ML models perform

acceptably in this role.

Guided by the recent advancements in HTP and AI and an

increasing need to accelerate the rate of genetic gain in peanut, the

primary focus of this study revolves around harnessing the power of

overt and latent phenotypes as well as ML methodologies for the

accurate prediction of peanut yield. We hypothesize that ML

models, incorporating an array of carefully extracted and selected

traits in the form of latent phenotypes, will offer a robust prediction

of yield in peanuts that plant breeders can implement into their

programs. Therefore, the first objective of this study was i) to create

high-resolution sigmoidal growth curves for important phenotypes,

a mathematical representation of the peanut plant’s life cycle.

Furthermore, we intended to derive growth-rate curves from

these sigmoidal growth curves. Growth-rate curves, representing

the first derivative of the sigmoidal curve and a visualization of the

rate of change of growth over time, will offer valuable insights into

the growth dynamics and vigor of the crop. As such, the second

objective of this study was ii) to delve into the realm of hidden

growth parameters by analyzing the generated growth curves and

growth-rate curves to identify and extract latent phenotypes. The

third and final objective of this study was iii) to select and use latent

phenotypes in RF and XGBoost ML models to predict yield in

peanuts and compare model performance.
2 Materials and methods

2.1 Germplasm and experimental design

The germplasm used for this experiment consisted of variable

material from four different experiments that shared a field location.
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There were 16 genotypes in an advanced breeding trial, 12

genotypes in a commercial variety trial, 12 genotypes from a

population intended to study drought tolerance, and 40 top

selections from a Recombinant Inbred Lines (RIL) population.

However, because several genotypes were represented within

multiple trials, the actual number of unique genotypes in the

study was 73 rather than 80. Nonetheless, this population was

quite diverse and was suitable for a yield prediction study due to

how variable the material was. Each genotype within a test was

represented across three replications in a randomized complete

block design (RCBD), for a total of ~202 - 240 field plots each year.

All phenotype extractions and yield predictions were conducted at

the individual plot-level rather than across genotypes, with the

exception of confusion matrices, which used the means for each

genotype. The planted area for each plot measured approximately

~4.0m long by ~1.0m wide, and each plot consisted of two adjacent

rows. The experiment was planted in a center pivot-irrigated field at

the USDA-ARS Crop Stress Research Laboratory in Lubbock, TX

(33°34′40′′ N, 101°53′24′′ W) in the summer of 2021 and 2022

(Figure 1). Standard agronomic practices for peanut were used

while managing the plots as per the farm’s guidelines. Planting was

done in May, and harvesting occurred approximately 130 days after

sowing. Each entry in the trial was individually dug when it was

considered to be at optimum maturity, determined using the hull-

scrape method (referenced from Williams and Drexler, 1981).

Peanut pods from each plot were dried using forced warm air to

achieve a moisture level of around 10%. Subsequently, pod samples

were cleaned before being weighed to determine yield.
2.2 Unmanned aerial vehicle flight missions
and georeferencing

A standard photogrammetry and machine learning workflow

was used to produce the data used in this study (Figure 2). First, a

series of unmanned aerial vehicle (UAV) flight missions were

conducted throughout the summer of 2021 and 2022. The flight

missions were conducted using a DJI Mavic 2 Pro equipped with the

original payload, a (OEM) 20-megapixel RGB camera (DJI

Industries, Shenzhen, China). At the 20-megapixel resolution, the

ground sample distance (GSD) at 50m above ground level (AGL)

was approximately 1.37 cm/pixel.

Flight missions were conducted at numerous time points

throughout the season to generate high-resolution multitemporal

growth curves. The 2021 season consisted of 12 UAV flights

conducted over research plots that were made at an altitude of

50m AGL with 75% front image overlap and 65% - 70% side image

overlap. The flight missions conducted in the 2022 season consisted

of 18 UAV flights at a height of 50m with 75% front image overlap

and 70% side image overlap. Unmanned aerial vehicle flights were

conducted at or near solar noon (10AM-2PM CST). Flights were

conducted on either cloudy or sunny days, and partly cloudy days

were avoided since that could result in inconsistent cloud cover

throughout a flight. Flights were corrected for brightness to account

for differences between the cloudy and sunny days. After flight

missions were conducted, raw image tiles were imported into
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Agisoft Metashape Professional for orthographic map image

composition. Ground control points (GCPs) were collected using

two paired Emlid Reach RS2+ (Emlid Tech Korlátolt, Budapest,

Hungary) devices, where one device was placed on a fixed,

permanent base location and the other was used as a rover to

collect the GPS data for each GCP. Because prior research has

demonstrated that four accurate and precise GCPs near the corners

of each fl ight miss ion are sufficient to georeference
Frontiers in Plant Science 04
photogrammetry projects, that is the number that was used in

this study (Pugh et al., 2021).
2.3 Flight processing and feature extraction

Prior to processing and extraction, raw image tiles from each

flight were examined to ensure that tiles erroneously collected

before or after the flight mission(s) were removed. The imagery

was processed in Agisoft Metashape Professional v. 2.0.1 (Agisoft,

St. Petersburg, Russia). To estimate plant heights and derive 3-

dimensional canopy volume, SfM was used to reconstruct the field.

First, photograph alignment was conducted at the Highest quality

setting, with a key point limit of 50,000 and a tie point limit of

25,000. The four GCPs were then added to each flight and cameras

were optimized to ensure that projects were georeferenced. Point

clouds were then constructed on the High-quality setting, which

were used to produce the digital elevation maps (DEMs). Once

High-quality DEMs were generated, high-resolution orthomosaics

were constructed and exported for downstream feature extraction

alongside the DEMs.

High-resolution orthomosaics and DEMs were imported into

QGIS v. 3.22.4 software (QGIS Development Team, 2023), an open-

source geographic information system (GIS) software package, for

further plot-level analysis and extraction. The orthomosaics were

aligned using a series of GCPs in the imagery that anchored them

geographically, reducing the marginal error between scenes to ±5

cm. This precision allows for sequential time series-based image

extractions using areas of measurement (AOMs) over plot-level

image data (Young et al., 2020). These AOMs covered the plot area

of the peanuts planted and had some slight border between the

plots. The AOMs were rectangular, and their dimensions were

approximately ~5m x 1m (~5m2) in 2021 and ~4m x 1m (~4m2) in

2022. After AOMs were placed over the orthomosaic layer, plot-
FIGURE 2

Flowchart for Peanut Yield Estimation Pipeline. This flowchart shows
the general methodology used to derive yield estimates in this
study. Steps have been simplified so that they can be visually
presented, but detailed descriptions of each step are included in the
text of this study.
FIGURE 1

Maps of Experiment Area. These maps show an overview of the area of the experiments in Lubbock, TX in 2021 and 2022. The experiments were
planted on the eastern and western sides of the same pivot-irrigated field. The red and purple regions indicate the 2021 and 2022 trials, respectively.
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level imagery was extracted from the final orthomosaic image for

each plot and flight. This was accomplished using an iterative

extraction process within QGIS. This was accomplished using the

“Clip Raster by Mask Layer” tool. This brings up a selection menu

for an “Input layer” encompassing the orthomosaic from each UAV

flight and a “Mask layer” consisting of the plot-level AOMs. This

iterative process then produced image extractions based on the plots

that were placed over the orthomosaic images. This extraction

workflow was used for each flight mission in 2021 and 2022.
2.4 Photogrammetric image processing

Plot-level imagery was extracted from 12 UAV flights in the

2021 season, resulting in approximately 6,000 plot-level images,

while 18 UAV flights from the 2022 season resulted in

approximately 14,000. These images consisted of RGB image data

and ranged from ~100-400 kb in size each. The processing of this

image data was done with Python (Python ver. 3.8.16) and the

‘OpenCV’ (OpenCV ver. 4.7.0) library (Bradski, 2000). Prior to any

image analysis and extraction of the images, a method known as

Contrast Limited Adaptive Histogram Equalization (CLAHE) was

applied to the imagery (Reza, 2004). The flights were conducted

under different lighting conditions, and the CLAHE method helped

to correct the white balance in the images, particularly if the

brightness varied across a single image. The imagery was then

analyzed using the binary image masking threshold described by

Young et al. (2020) and was used to separate the plants from the soil

background. The binary image masking method was combined with

the HSV (Hue, Saturation, Value) image threshold method to

improve peanut plant masking. Hue, Saturation, and Value image

thresholding takes the RGB image and converts it into the HSV

color space, where Hue is the color, Saturation is the intensity of

color, and Value is the brightness of the color. The next step in this

process was to set an upper and lower HSV boundary representing

the material in the imagery. The lower and upper boundaries used

for the peanut plots in this study were (20, 0, 0) and (170, 255, 255),

respectively; these values were determined on the range that the

peanut plots reside in based on observation of the imagery and

comparison of hue values with canopy pixels. This technique was

combined with the binary image threshold to make an image mask

that set any plant material in this range to 255 (white) and 0 (black)

for the soil background. After the binary image mask was made, the

relevant material in the image that was set to 255 was extracted from

the original image and saved for further analysis. The resulting

image from this operation was visible, segmented objects (peanut

plants), and the rest was left blank (soil). The primary focus of this

image extraction technique was to use the sequential plot imagery to

develop plant canopy cover estimates (CC), canopy height estimates

(CH), canopy volume estimates (CV), and to calculate an excess

green index (ExG) (Chang et al., 2021). Canopy cover refers to the

amount of each field plot taken up by the plant material, which has

been shown to be valuable in prior studies (Lu et al., 2021). Plant

height, or CH, has been shown to have excellent repeatability when

estimated using UAV as compared to ground-based, conventional

measurements using meter sticks (Pugh et al., 2018). Canopy
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volume is another parameter that has been shown to be valuable

when estimated via UAV data, as it is simply the CH multiplied by

the CC (Chang et al., 2021). Excess green index (ExG) is a

vegetation index that has been demonstrated to work particularly

well in the absence of multispectral data (Soontranon et al., 2014;

Chang et al., 2021).
2.5 Calculation of crop phenotypes from
processed photogrammetry products

The calculation of the plant-based features from the processed

UAV imagery was accomplished using image analysis features

provided in Python and the ‘OpenCV’ library. The Canopy Cover

(CC) estimates were calculated using the methodology described in

Chang et al. (2021). Canopy height (CH) estimates were produced

using data that were extracted from the DEM map files processed

from the UAV imagery data. This was accomplished by taking the

modified images and applying the plant-level threshold to the DEM

maps. Digital elevation map data were sequentially extracted using

the plot-level extraction method described previously for each plot

within each flight mission. After DEM data were extracted and the

images were processed, the DEM data were segmented into deciles

to be processed. Ultimately, the mean (CH) and 90th percentile

(CH90) of the DEM data were used for the CH estimates to

determine which was most effective to use when including CH in

a model.

Canopy volume (CV) estimates were calculated using the CC

and CH estimates. The calculation was performed by simply

multiplying the CC by the CH for each field plot. The CV was

not indicative of a solid mass, due to the realities of canopy

architecture, which mostly consists of open space. Nonetheless,

CV estimates provided a usable metric for downstream analyses of

crop growth. Because the mean and 90th percentile data were

extracted for CH, CH and CH90 were used to calculate CV,

resulting in CV and CV90 metrics. The image data were RGB in

this study due to a lack of multispectral sensors, thus a vegetation

index was calculated with just the red and green spectral bands as an

indicator of overall plant health. Excess Green Index (ExG) was

calculated using the segmented image data for the image

calculations as described in Chang et al. (2021). The ExG

estimates were extracted from the images and then normalized to

fit them to a simplified scale ranging from 0 to 1. The normalized

mean ExG calculated from the image was extracted and used for

subsequent analyses.
2.6 Data analysis, machine learning,
and statistics

The photogrammetric data were systematically categorized

based on the corresponding flight mission dates. Subsequent

analyses were conducted to identify statistical anomalies, such as

outliers; however, there was no obvious reason to remove the rare

outlier cases and they were ultimately left in the dataset. Upon

completion of this data structuring and cleaning process, Pearson’s
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correlation coefficients (r) were employed to determine the

interrelationships between the four principal parameters (CC,

CH, CV, and ExG) and the ultimate yield. These operations were

executed using the ‘pandas’ library in Python (Van Rossum and

Drake, 1995; McKinney, 2011).

Once Pearson’s correlations within each flight mission date

were complete, high-resolution multitemporal growth curves as a

function of each of the parameters vs DAP were generated for each

field plot using the ‘SciPy’ and ‘matplotlib’ Python libraries (Barrett
Frontiers in Plant Science 06
et al., 2005; Virtanen et al., 2020) (Figure 3A). Where necessary, due

to rare situations where there were a few occluded plots on certain

flight dates, imputations were made using the respective parameter

means. This procedural step was imperative to ensure that each field

plot possessed measurements corresponding to every flight mission

date, thereby enabling the generation of congruent growth curves.

Logistic and Gompertz sigmoidal functions were constructed so

that they could be tested for their effectiveness in yield prediction; in

addition, the first derivative of the sigmoidal curves, the growth rate
B

A

FIGURE 3

Growth Curves and Latent Phenotype Extraction. Demonstration of a representative sigmoidal growth curve (A) and a representative growth rate
curve (B) as measures of traits vs. days after planting (DAP). The numbers denote latent phenotypes that were extracted from the curves. The array
of features, in order, are: 1. Value of the Inflection Point, 2. DAP at 50% of Inflection Point, 3. DAP at 80% of Inflection Point, 4. DAP at Inflection
Point, 5. Maximum Value, 6. DAP at Maximum Growth Rate, 7. Maximum Growth Rate, 8. DAP at First Half-maximum Growth Rate, 9. DAP at Last
Half-maximum Growth Rate, 10. DAP Between Half-maximum Growth Rate, 11. Area under the Growth Rate Curve, 12. Mean Growth Rate, 13. Rate
of Growth Rate Increase, and 14. Rate of Growth Rate Decrease.
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curves, were also produced (Figure 3B) (Zwietering et al., 1990; Van

Impe et al., 1992; Kucharavy and De Guio, 2015). Once these

growth curves were generated and latent phenotypes could be

extracted from them, the ML models could subsequently be

executed with the extracted phenotypes. The equation for the

logistic growth curve was:

N(t) =  
K

1 +   K−N0
N0

e−rt

where N(t) is the value of a metric at time t, K is the maximum

value of the metric the plant(s) can sustain, N0 is the initial value of

the metric at t = 0, r is the intrinsic growth rate, and e is the base of

natural logarithm. Gompertz sigmoidal growth curves were

generated using the equation:

N(t) = N0exp½−be−at �
whereN(t) is the value of a metric at time t,N0 is the initial value

of the metric at t = 0, a is the growth rate parameter, b is related to

the initial displacement of the growth curve, and e is the base of the

natural logarithm. From the entire array of sigmoidal curves and

their derivatives, a set of 14 latent phenotypes were extracted that

were to be tested for their use in a yield prediction model. These

latent phenotypes had either been used in previous, similar studies

or were new features that we hypothesized could potentially be

useful in a machine learning model (Chang et al., 2021).

Following latent phenotype extraction from the growth curves,

an analysis using variance inflation factor (VIF) was conducted on

the data using the ‘statsmodels’ library in Python (Seabold and

Perktold, 2010; Akinwande et al., 2015). This is a commonly used

metric which is calculated using the equation:

VIF =  
1

1 −  R2

where R2 is the coefficient of determination when a linear

regression is performed between one variable upon all the other

variables. Variance inflation factor can be included in regression

analyses to determine if there is multicollinearity present in the data

(Kim, 2019). Any latent phenotypes that had VIF scores greater

than 5 were removed from the data before downstream analyses

were conducted, to ensure that features with high multicollinearity

would not fruitlessly be included in ML models (Kim, 2019).

After feature extraction using the growth models and feature

exclusion via VIF, the remaining latent phenotypes were used to

perform recursive feature elimination (RFE) using the ‘Scikit-learn’

library in Python (Pedregosa et al., 2011; Hao and Ho, 2019). This is

a feature selection method which functions by recursively removing

the least important features based upon a relative ranking of their

importance. Through this process, RFE identifies and retains the

most informative features for a given model. In this case, RFE was

used to select features that were potentially useful for estimating

final yield. To determine which configuration of latent phenotypes

could best predict final yields, various limits of maximum selected

features were specified from 1 – 30 and the various resulting feature

configurations were tested in the ML scripts (Tunca et al., 2023).
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This iterative process ensured that an effective model could be built

while minimizing complexity (Demir and Sahin, 2023).

Advanced machine learning techniques were employed to

predict yield based on features identified through RFE. The

Random Forest algorithm was the first ML method that was

utilized via the ‘Scikit-learn’ library in Python (Pedregosa et al.,

2011; Liu et al., 2012; Belgiu and Drăgut,̧ 2016). This algorithm

generates an ensemble of decision trees during its training phase

and subsequently predicts outcomes based on the average values

derived from these individual trees (Dang et al., 2021; Guan et al.,

2022). The unique characteristic of RF is its ability to train each

decision tree on a distinct subset of the data, while also considering

a randomized subset of features during each split. Such inherent

randomness enhances the model’s resilience and reduces its

susceptibility to overfitting (Liu et al., 2012). The collective

outputs from all trees within the Random Forest are aggregated

to yield the final prediction. The second ML algorithm that was

tested in this study was eXtreme Gradient Boosting, or XGBoost,

using the ‘Scikit-learn’ and ‘xgboost’ libraries in Python (Pedregosa

et al., 2011; Chen and Guestrin, 2016). EXtreme Gradient Boosting

is an advanced ensemble learning technique within a broader

ecosystem of machine learning methodologies. Central to

XGBoost is its iterative approach, wherein subsequent models are

incorporated into the ensemble with the intent of rectifying

inaccuracies present in prior models. This iterative refinement is

facilitated by gradient boosting, wherein new models are tailored to

the gradient of the loss function relative to the predictions of the

current ensemble. Extreme Gradient Boosting is distinguished by its

array of computational optimizations, encompassing regularization

to mitigate overfitting, adept handling of absent data, and

the capability for parallel tree construction, enhancing its

computational efficiency (Herdter Smith, 2019). The workstation

used to build these models was equipped with an Intel® Xeon®
Gold 5218R CPU with 64.0 GB of installed RAM and an NVIDIA®
RTX A5000 GPU.

Hyperparameter optimization was conducted for RF and

XGBoost using the grid search method via ‘Scikit-learn’

(Pedregosa et al., 2011; Belete and Huchaiah, 2022). This

systematic approach allows the user to examine model

performance when using various combinations of hyperparameter

settings via a specified “grid” of potential values, which allows users

to efficiently identify and optimize hyperparameter settings for their

data (Belete and Huchaiah, 2022). Once the grid search was

performed, the optimal hyperparameters to use for each model

were identified and used to execute the algorithms. For the RF

model, the maximum depth of the decision trees was set to 10 and

the number of estimators was set to 400. For the XGBoost model,

the optimal learning rate was determined to be 0.06, the maximum

depth was 3, and the minimum child weight was set to 5. Then, 1000

different random states, or iterations, were executed using Monte

Carlo Cross-Validation (MCCV) for each model. Monte Carlo

Cross-Validation was conducted to assess the models when using

varying sizes for training and test sets and avoid the use of a non-

robust model. As such, for each iteration, all the data were randomly
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separated into either the training set or the test set. To further assess

the models, K-Fold Cross-Validation was performed with 10 splits

so that multiple methods of cross-validation were tested. In

addition, 70% and 30% of the data were randomly chosen for the

training and test sets, respectively, and 1000 iterations were

executed again for the 30 configurations obtained from the RFE

processing described earlier. From these results, the best

configuration and overall random state according to the training

and test adjusted R2 scores was used for the predicted yield values

present in the rest of this study.

Upon discerning the most refined RF and XGBoost models—

characterized by their mean test and training adjusted R2 values—

the model from the random state that had the highest training and

test adjusted R2 values was used to algorithmically estimate yield for

each plot. These yield predictions were subjected to regression

analysis against the empirically measured yield from the field.

This analytical step was important to gauge the precision and

accuracy of the model’s predictions across the entirety of the

dataset, beyond the confines of merely the test and training

subsets, as demonstrated by Tunca et al. (2023). Consequently,

the regression R2 was anticipated to have a value intermediary to the

test and training metrics (Tunca et al., 2023). Regressions were also

performed within each year of the study to determine model

consistency, since years with vastly different mean yields and

levels of variance could lead to inflation of coefficients of

determination across years, i.e., two general “groupings” of the

data resulting from highly variable environments could serve to

anchor one another and artificially increase linear regression R2

values. To further evaluate the ability to increase the genetic gain

rate for peanut yield using ML, repeatability (R) estimates were

calculated within each year for each ML model. Because there was

no familial structure across the material used for this study, it was

not technically correct to calculate broad-sense heritability (H2) for

the traits; however, repeatability is calculated in a similar fashion

and can be used as a reasonable alternative metric for evaluation

purposes. Repeatability estimates were calculated using the same

all-random model and methodology as the one presented in Pugh

et al. (2018). Next, to further evaluate the practicality and relevance

of the predictions rendered by the machine learning algorithms,

confusion matrices were constructed for each model, both intra-

annually and inter-annually. This was accomplished using the

‘Scikit-learn’ and ‘matplotlib’ libraries within the Python

framework (Barrett et al., 2005; Pedregosa et al., 2011).

Confusion matrices serve as a statistical tool designed to assess

the efficacy of classification algorithms. These matrices facilitate the

discernment of accurate classifications and serve to identify and

estimate the degree of Type I and Type II errors, known colloquially

as “false positives” and “false negatives”, respectively (Ruuska et al.,

2018; Sharif et al., 2018). Notwithstanding its conventional

application to classification endeavors, specifically pertaining to

categorical variables, this method was employed to evaluate the

prospective utility of Random Forest (RF) and eXtreme Gradient

Boosting (XGBoost) within crop improvement programs. To

investigate this, a quartet of categorical yield data, or “bins”, were

devised, wherein “Excellent” encompassed the uppermost 10% of

genotypes, “Good” spanned the 11th to 25th percentile, “Mediocre”
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covered the 26th to 50th percentile, and “Poor” encapsulated

genotypes that did not achieve yields within the top half and

would be likely to be excluded from being advanced within a

breeding program. The mean yield for each genotype, aggregated

across its respective plots, was computed, and subsequently

allocated to one of the categories. These constructed yield

categories were used to ascertain the extent to which plant

breeders and other scientists might leverage RF and/or XGBoost

for selection within their programs.
3 Results

3.1 Pearson’s correlation coefficients for
yield vs. extracted phenotypes

In the analysis, the Pearson’s correlation coefficients (r)

delineating the relationship between directly procured phenotypes

and yield exhibited analogous trends across both observational

years (Figure 4). A notable increase in correlation magnitudes

was observed within the temporal window of 20 to 60 days after

planting (DAP). After this accelerated phase, the correlation

coefficients largely stabilized, albeit with a minor decrement as

the growing season approached its conclusion. Intriguingly, the

canopy height parameter manifested a comparatively subdued

correlation with yield relative to canopy cover, canopy volume, or

ExG across both years. Among the evaluated traits, canopy cover

consistently demonstrated the most robust correlation with yield

over the years, mirroring the canopy volume and ExG performance

in 2021, and surpassing both metrics in 2022.
3.2 Feature selection and correlations
between selected features and yield

The analysis systematically evaluated feature sets extracted from

multitemporal growth trajectories and corresponding growth rate

curves, encompassing a range of 1 to 30 features. Comparative

assessments of these feature sets, when integrated with both the

eXtreme Gradient Boosting (XGBoost) and Random Forest (RF)

algorithms, yielded analogous outcomes (Figure 5). An examination

of the models allowed for the identification of a threshold wherein

the apex of mean adjusted training and test R2 values was attained

with the least number of features. Interestingly, both algorithms

required nearly identical optimized feature counts: 15 for the RF

model and 14 for XGBoost. Furthermore, features extracted from

the Gompertz growth model were discerned to exhibit superior

predictive abilities compared to those extracted from the logistic

model, because the RFE process always chose Gompertz-derived

latent phenotypes over those derived from the logistic model. This

consistently led to the exclusion of features derived from logistic

growth curves in the finalized models. In addition, the RFE process

determined that mean plant height was not valuable in the models

and favored the use of the 90th percentile of plant height estimates,

instead. Consequently, these optimized feature configurations were

employed in comparing yields estimated in silico by machine
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learning algorithms with the empirically measured yields recorded

in situ.

The 15 chosen features showed varying levels of independent

correlation with the final yield (Figure 6). It is also important to note

that there were strong correlations between several of the latent

phenotypes with each other; indeed, in several cases Pearson’s

correlations were approaching r = 1.00. Nonetheless, the features

selected by RFE were used for this study due to potential

relationships that may exist even between highly correlated traits

that humans cannot feasibly anticipate or recognize. Since traits

previously identified by VIF as collinear were already removed prior

to these analyses, it was not determined that any remaining strongly

correlated features needed to be removed from the ML models. The

results of the MCCV analyses mirrored those seen when conducting

the refinement via RFE. For the RF model, the MCCV adj. training

and test R2 values were 0.96 and 0.72, respectively. For the XGBoost

model, the MCCV adj. training and test R2 values were 0.91 and

0.72, respectively. Similarly, the K-fold CV adj. test R2 was 0.63 for
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both models. The Last DAP at Half Maximum Canopy Volume

(CV) had the strongest relationship with yield on its own).

Although there were strong positive correlations between many of

the derived features with each other, the correlations between latent

phenotypes and yield were overwhelmingly negative. No solitary

latent phenotypes could be used to reliably predict yield on their

own when comparing the entirety of the data across both years, and

the data demonstrated that a model that incorporates multiple traits

to arrive at predictions was necessary, corroborating the need for

more complex ML models.
3.3 Regressions between estimated and
measured yield and repeatability scores

In an evaluation across all field plots and years, the Random

Forest algorithm exhibited an impressive training adjusted R2 of

0.95, complemented by a test adjusted R2 of 0.84, signifying an
B

A

FIGURE 4

Pearson’s Correlations for Basic Extracted Traits vs. Yield. Depiction of Pearson’s correlation coefficients in 2021 (A) and 2022 (B) between Canopy
Height, Canopy Cover, Canopy Volume, and Excess Green Index (ExG) with final yield at individual time points, shown as days after planting (DAP).
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optimal fit to the training dataset and alignment with the test data.

Upon scrutinizing the regression between the algorithmically

predicted yield values and the empirically measured yield in the

field, the estimated data showed a robust relationship with the

measured yield, evidenced by an R2 of 0.93 (Figure 7A). The

eXtreme Gradient Boosting algorithm, while delivering a

respectable performance in yield prediction, had a marginally

reduced training R2 of 0.89 (Figure 7B). Furthermore, the

relationship between its estimated and actual yield values, with an

R2 of 0.88, was somewhat reduced compared to the yield estimates

derived from the RF model.
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When analyzing the annual datasets independently, the RF

algorithm exhibited relatively consistent performance across the

two consecutive years under study, in contrast to the XGBoost

algorithm. Specifically, the RF algorithm yielded an R2 of 0.85 in

2021, slightly decreasing to 0.70 in 2022 (Figures 8A, B). While

these values were marginally reduced compared to the combined

annual analysis, they remained reasonably high, underscoring the

model’s robustness across diverse environmental conditions.

Similarly, the XGBoost algorithm’s predicted yield values showed

a strong performance in 2021 with an R2 of 0.78 (Figure 8C).

However, its effectiveness substantially diminished in 2022,

registering an R2 of only 0.47 (Figure 8D). Extreme Gradient

Boosting was less consistent in this study when compared to RF.

Repeatability (R) estimates were higher in 2021 when using both

models than in 2022 (Figure 8). Notably, predicted yield values

produced by XGBoost had higher R values and were closer to the R

scores for actual yield when compared to the R estimates for

predicted yields produced by the RF algorithm.
3.4 Confusion matrices for estimated and
measured yield

In 2021 and 2022, the RF model performed better than the

XGBoost model at separating the four different classes of yield data

(Figures 9A, B). EXtreme gradient boosting performed much worse

in 2022, with numerous strong misclassifications compared to RF

(Figure 9E). In 2021, the two models performed more similarly;

nonetheless, the Xgboost model still underperformed compared to

RF due to larger number and severity of misclassifications

(Figures 9A, D). This trend was slightly altered when examining

classifications across both years as the amount and degree of Type I

and II errors were reduced with both models. The RF model was

able to identify Excellent and Good yielding genotypes more

reliably than XGBoost, but both were reasonably effective at

identifying Poor-yielding genotypes (Figures 9C, F).
4 Discussion

4.1 Overview and comparison to
similar studies

For machine learning models to be useful in agricultural

research, they must be able to reliably provide robust estimates of

yield and other key parameters. Phenotypes extracted at an

elementary level from field plots in this study and others have

been directly correlated with yield, but none of these showed a

strong or consistent enough correlation to be reliably predictive on

their own, indicating the need for more sophisticated ML

methodologies (Manley et al., 2023). Across the entire dataset, the

performance of the RF and XGBoost models constructed in this

study was superior to those seen in previous studies in peanut

(Balota and Oakes, 2016; Bagherian et al., 2023; Shahi et al., 2023).

In Balota and Oakes (2016), the R2 for yield was significantly lower
FIGURE 5

Feature Selection Using Recursive Feature Elimination. This is a
visual depiction of feature selection using Recursive Feature
Elimination (RFE). The graph shows the mean training and test
adjusted Coefficient of Determination (R2) vs. the Number of
Features. The R2 values derive from running numerous random
states of the XGBoost (XGB) and Random Forest (RF) machine
learning models.
FIGURE 6

Correlation Heatmap for Latent Phenotypes. This is a visual
representation of the Pearson’s correlation coefficients for the latent
phenotypes selected via RFE vs yield. Values range from deep red
(-1.00) to deep blue (1.00).
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than in the present study, ranging from 0.26 – 0.39. In Bagherian

et al. (2023), the highest R2 achieved for estimating yield with Deep

Learning (DL) andMLmodels was 0.61. Shahi et al. (2023) achieved

similar R2 values to those reported in this study via RF; however,

that study only considered one environment and had fewer field

plots than the current study. Larger and more varied datasets have

previously been demonstrated to lead to more accurate and robust

ML predictions (Weitkamp and Karimi, 2023). Therefore, it is

difficult to ascertain if the model(s) reported in Shahi et al. (2023)

are as applicable to unseen data as the models presented here. In

addition, it is important to note that several of these previous
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studies had the advantage of having access to spectral bands beyond

the basic RGB. In contrast, this study only used an RGB camera

while still achieving excellent results, which could be an important

consideration for researchers and producers with limited access to

multispectral sensors or who lack the requisite knowledge of how to

use them (Sanches et al., 2018; Acorsi et al., 2019; Zeng et al., 2021).

Indeed, the workflow presented here is achievable with widely

accessible technology, as the latent phenotypes derived from

Gompertz growth models produced using RGB data are the only

variables used in the ML models (Borra-Serrano et al., 2020; Chang

et al., 2021; Varela et al., 2021).
B

A

FIGURE 7

Overall Regression for Estimated and Measured Peanut Yield. These are linear regressions between plot-level yield values (Tons ha-1) predicted by
machine learning models (Estimated Yield) and actual yield measured in the field (Measured Yield) when both years of the study were combined. The
machine learning models used include random forest (RF, A) and XGBoost (XGB, B). Blue points represent field plots belonging to the training set
and red dots represent plots that were used in the test set for each model. The adjusted training (blue) and test (red) adjusted R2 values for each
model are included.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1339864
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Pugh et al. 10.3389/fpls.2024.1339864
B
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FIGURE 8

Annual Regressions for Estimated and Measured Peanut Yield. These are linear regressions between plot-level yield values (Tons ha-1) predicted by
machine learning models (Estimated Yield) and actual yield measured in the field (Measured Yield) within the years 2021 2022. The machine learning
models used include random forest (RF) in 2021 (A) and 2022 (B), and XGBoost (XGB) in 2021 (C) and 2022 (D). Blue points represent field plots
belonging to the training set and red dots represent plots that were used in the test set for each model, and repeatability (R) scores are provided for
the measured yield (purple) and estimated yield (green).
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FIGURE 9

Confusion Matrices for Estimated and Measured Peanut Yield. These confusion matrices show the number of correct and incorrect categorizations
of yield using Random Forest (RF) and XGBoost (XGB) models within and across 2021 and 2022. Shown, in order from left to right, are RF in 2021 (A),
RF in 2022 (B), RF with the years combined (C), XGB in 2021 (D), XGB in 2022 (E), and XGB with the years combined (F). All genotypes were
separated into four yield categories: Poor = bottom 50%, Mediocre = top 51 – 26%, Good = Top 25 – 11%, and Excellent = top 10% of genotypes.
Genotypes were placed in each category using predictions from machine learning models (Estimated Yield) and estimates of yield collected in the
field (Measured Yield). The number and shade of each square represents how many genotypes were placed in each category by each method.
Genotypes placed in the exact same category by both methods will appear along the diagonal from lower left to upper right, and other squares
represent varying degrees of incorrect classification.
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4.2 Random forest vs eXtreme
gradient boosting

In this study, the Random Forest model was superior to

eXtreme Gradient Boosting when examining the regressions

between estimated and measured yield values, showing greater R2

values and more consistency across both years of the study.

However, it is important to note that there was a large

discrepancy in mean yields between 2021 and 2022; indeed, 2022

had much lower maximum yields and reduced variability between

the top and bottom-yielding genotypes, which could partially

explain the reduced effectiveness of the two models in that year.

It is also critical to acknowledge that XGBoost had higher

repeatability scores than RF in both years, which indicates that

XGBoost may be better for actually capturing variation between

genotypes and reducing the amount of unpartitioned error in the

data. Because crop improvement efforts depend on the ability for

the breeder to maximize genotypic variation and reduce error by

accounting for different sources of error in the model, XGBoost may

potentially be superior to RF when used as tool in a peanut breeding

program in practice. In addition, XGBoost was developed and

tailored to be computationally efficient to execute whereas RF

does not place as much focus upon efficiency (Chen et al., 2015).

In this study, the RF algorithm required a substantial amount of

time to execute compared to XGBoost, often taking up to ~1 – 1.5

hours to execute its 1000 iterations on a high-end workstation

intended for GIS and ML applications, whereas XGBoost could

generally be completed in a matter of minutes. Nonetheless, the

high degree of computational efficiency of XGBoost appears to have

come at a significant cost to its raw predictive capabilities in this

study, as demonstrated in the data. Therefore, it will be imperative

that peanut breeders test various models and determine which ones

will provide the best efficiency within their program; in the current

study, there are legitimate cases to be made for either RF or

XGBoost depending upon the situation.

It is also possible that XGBoost may improve at a faster rate

than RF as additional, variable environments are added, since the

performance of the two models was much more comparable when

combining both years of data together. Once more environments

and populations are added to the training data, it is likely that the

higher repeatability of XGBoost will begin to emerge as a clear

winner. However, this is speculation and would require additional

environments to be added to test this hypothesis. With the

presented data, RF is superior for producing consistently accurate

yield estimates that produce high adjusted R2 values when regressed

with yield collected in the field. These findings contrast with Tunca

et al. (2023), where XGBoost was shown to be slightly more effective

at predicting sorghum crop water content than RF. Perhaps more

relevantly, these results also dispute the findings of Shahi et al.

(2023), which showed that XGBoost was the ML model that

produced the best predictions in peanut on its own. These

discrepancies could be due to differences in the study population,

the environments, the hyperparameters used, or a host of other

potential factors. There are also studies where an RF algorithm

effectively predicted traits of interest, corroborating these findings.
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In Joshi et al. (2023), RF performed better than XGBoost and

Support Vector Machine (SVM) at predicting final wheat yields

regardless of the input variable used. In Khan et al. (2022), maize

yield prediction was most effective when using an RF model,

outperforming the other methods tested. The variability in results

across these studies indicates that the optimal model to use may be

dependent on the population being studied, the environments the

material is grown in, and the parameters being estimated (Bali and

Singla, 2022). It is illogical to assume that there is a single “optimal”

model across all conceivable situations. Testing a suite of different

ML models may be necessary when attempting to build phenomic

prediction algorithms to use within a peanut breeding program.

Familiarity with the subject material, often referred to in the ML

community as “domain knowledge,” will also be critical, and users

will need to be cautious so that they do not become entirely reliant

upon parameters estimated by ML algorithms without considering

their context (Lischeid et al., 2022).
4.3 Machine learning for performing
selection within a breeding program

One of the primary objectives of this study was to assess the

value of RF and XGBoost for use within a peanut breeding program.

While the regressions and repeatability scores demonstrate strong

relationships between predicted and actual plot yields and a strong

potential for improvement of yield using the ML outputs, the

confusion matrices reveal more about the power of AI to enhance

breeding programs. Perhaps one of the most important criteria for

these models is to ensure they do not result in catastrophic selection

errors, e.g., estimating Poor yield in an Excellent genotype, or vice

versa. In this study, the only model that produced these selection

errors was XGBoost, wherein one genotype was predicted to have

Excellent yield (top 10% of genotypes) but was Poor (bottom 50% of

genotypes) in actuality, and another genotype was identified as

Excellent but was Poor. If we set the Excellent category as material

that will be retained and the Poor category as material that will be

excluded from a competitive peanut improvement program, this

presents a clear problem. Effective rates of genetic gain require

accurate phenotyping and prediction, and it is unlikely that

repeated errors of this magnitude will be considered acceptable by

most plant breeders (Dwivedi et al., 2020; Chen et al., 2022). Of

course, such a prediction failure may be the result of damage to the

crop in the field, accidental incomplete harvests, mistakes during

data collection that lead to overestimated yields, and other errors.

This could lead to predicted yields in an experiment failing to match

final harvested yield through no fault of the ML models. Regardless,

for simplicity, harvest yields should be the standard upon which we

evaluate yield estimates generated in silico. In this case, XGBoost

failed to match that standard in at least those two specific instances,

despite its higher repeatability scores.

Fortunately, the ML models performed quite well outside of

these two errors . While there were some occasional

misidentifications, the models were reasonably able to correctly

separate the genotypes into the four distinct yield categories.
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Remarkably, both models improved once the two years were

combined. Once the years were considered together, the

differences between RF and XGBoost greatly diminished, and

both models could conceivably be implemented within a breeding

program. Both models were able to reliably identify Poor genotypes

that should be marked for removal from a program, one of the most

important tasks for plant breeders. Inconsistencies in performance

between 2021 and 2022 could be due to a host of factors, although

the correlations of overt canopy characteristics and yield

demonstrate that the correlations were overall much weaker in

2022 (Figure 4). This would naturally impair the function of ML

models that predict yield based upon those canopy characteristics. It

is well understood that ML models are much more robust and

reliable when they have multiple, variable sets of data, e.g.,

environments, to train them (Ren et al., 2023). Thus, it is

reasonable to hypothesize that both models would be further

improved if additional locations were added to the data. In

addition, the latent phenotypes presented in this study do not

remotely encompass the multitude of variables that affect crop

yields. One of the most important predictive components for crop

yields that is absent in this study is direct quantitative information

about the environment (Sudduth et al., 1996; Liliane and Charles,

2020). While the predicted yield values obtained in this study

indirectly incorporate environment effects as a result of

replication of genotypes within the field, no quantitative

environmental or spatial data at the plot-level could be

incorporated into the models as there were none of these data

collected. Spatial soil and environmental data may be key elements

that could greatly increase the efficacy of ML models (Pandith et al.,

2020). Data for the presence of pests, the weather, the soil, and

many other biotic and abiotic factors could assist ML models in

producing reliable predictions (Sudduth et al., 1996; Pugh et al.,

2019). Despite the absence of these data in the present study, our

results demonstrate that peanut breeders and researchers can use

RF and XGBoost models to make program selections if they use

appropriate training data.
5 Conclusions

The fusion of remote sensing techniques with sophisticated

machine learning (ML) algorithms promises transformative

advancements for plant breeding programs. Once ML-driven

workflows achieve sufficient accuracy and precision in yield

predictions, the traditional practice of harvesting experimental

plots to obtain yield measurements may become obsolete.

Bypassing this labor-intensive step not only reduces financial

inputs but also diminishes the reliance on resources, such as fossil

fuels, required to obtain conventional yield measurements. The

construction of resilient ML frameworks tailored for crops like

peanuts mandates their calibration using data spanning diverse

germplasm and an array of environmental contexts. The richness of

training data directly amplifies ML algorithms’ universality and

predictive prowess, enhancing their adaptability to novel and

unforeseen scenarios.
Frontiers in Plant Science 14
Looking toward the horizon, it is imperative for scientists to

explore a broader spectrum of ML architectures and to develop

models that estimate vital parameters beyond yield. Such an

endeavor requires a multidisciplinary confluence of experts from

remote sensing, data analytics, plant breeding, among many other

fields. Given the dynamic nature of machine learning as a discipline,

a relentless pursuit of model evaluation and comparison is critical.

Yet, the potential dividends from using these techniques in a crop

improvement program eclipses the associated investment in model

development and validation. In summary, this investigation

demonstrates the profound potential of predictive machine

learning frameworks in peanut breeding programs.
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