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Oldřich Trněný,
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Sampling strategies for
genotyping common bean
(Phaseolus vulgaris L.) Genebank
accessions with DArTseq: a
comparison of single plants,
multiple plants, and DNA pools
Miguel Correa Abondano*†, Jessica Alejandra Ospina †,
Peter Wenzl and Monica Carvajal-Yepes*

Genetic Resources Program, International Center for Tropical Agriculture (CIAT), Palmira, Colombia
Introduction:Genotyping large-scale gene bank collections requires an appropriate

sampling strategy to represent the diversity within and between accessions.

Methods: A panel of 44 common bean (Phaseolus vulgaris L.) landraces from the

Alliance Bioversity and The Alliance of Bioversity International and the International

Center for Tropical Agriculture (CIAT) gene bank was genotyped with DArTseq using

three sampling strategies: a single plant per accession, 25 individual plants per

accession jointly analyzed after genotyping (in silico–pool), and by pooling tissue

from 25 individual plants per accession (seq-pool). Sampling strategies were

compared to assess the technical aspects of the samples, the marker information

content, and the genetic composition of the panel.

Results: The seq-pool strategy resulted inmore consistent DNA libraries for quality

and call rate, although with fewer polymorphic markers (6,142 single-nucleotide

polymorphisms) than the in silico–pool (14,074) or the single plant sets (6,555).

Estimates of allele frequencies by seq-pool and in silico–pool genotyping were

consistent, but the results suggest that the difference between pools depends on

population heterogeneity. Principal coordinate analysis, hierarchical clustering, and

the estimation of admixture coefficients derived from a single plant, in silico–pool,

and seq-pool successfully identified the well-known structure of Andean and

Mesoamerican gene pools of P. vulgaris across all datasets.

Conclusion: In conclusion, seq-pool proved to be a viable approach for

characterizing common bean germplasm compared to genotyping individual

plants separately by balancing genotyping effort and costs. This study provides

insights and serves as a valuable guide for gene bank researchers embarking on

genotyping initiatives to characterize their collections. It aids curators in

effectively managing the collections and facilitates marker-trait association

studies, enabling the identification of candidate markers for key traits.
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Introduction

Germplasm banks are repositories of crop genetic diversity.

These collections include landraces, cultivars, wild forms, and

closely related species. Not only do they serve a conservation

purpose, but these plants and seeds are also a vital source of

novel and underused genetic variation, an important input for

national and private plant breeding programs to tackle the

challenges faced by the agricultural sector (Byrne et al., 2018;

Swarup et al., 2021). However, in the lengthy process of

introducing novel genetic variation into a program, the first step

requires field trials to identify candidates to start testing crosses with

elite cultivars. This increases the cost of characterizing gene bank

collections for complex traits like tolerance to abiotic stresses,

considering that collections may number in the tens of thousands

of accessions. To address this, multiple tools have been developed to

improve the characterization of germplasm collections such as

using passport and climate data to identify candidate accessions

for abiotic stress tolerance (Smith et al., 1994; Greene et al., 1999;

Cortés et al., 2013; Khoury et al., 2015; Haupt and Schmid, 2020).

As DNA sequencing and genotyping has become increasingly

prevalent, they have been used to characterize germplasm

collections of cultivated species worldwide. Examples include

cowpea [Vigna unguiculata (L.) Walp.; Wamalwa et al., 2016],

rice (Oryza sativa L.; Wang et al., 2018), forages [Elymus

tangutorum (Nevski) Hand.-Mazz; Wu et al., 2019], cassava

(Manihot esculenta Crantz; Adjebeng-Danquah et al., 2020), and

common bean (Martins et al., 2006; Ariani et al., 2018; Nadeem

et al., 2018). Emerging techniques have been developed, involving

the use of one or more restriction enzymes to fragment genomic

DNA, that enable the selection of specific genomic representations

for subsequent sequencing and marker identification (Sansaloni

et al., 2011). These advances significantly reduce the cost associated

with genotyping numerous accessions. Nevertheless, genotyping

thousands of plants still requires significant resources.

However, there is more to consider in a large-scale genotyping

effort than just the sequencing strategy. A prime example is the seed

bank of Phaseolus species conserved at the Genetic Resources

Program of the Bioversity-CIAT Alliance (“the Alliance” or

“ABC” hereafter). This remarkable collection encompasses

approximately 38,000 plant materials, comprising all five

cultivated species within the genus: the common bean (P. vulgaris

L.), lima bean (P. lunatus L.), runner bean (P. coccineus L.), tepary

bean (P. acutifolius A. Gray), and year bean (P. dumosus Macfady),

along with approximately 40 wild species. The conventional

practice of selecting a single random plant per accession for

genotyping may not adequately represent the entire population

(Gouda et al., 2020). This limitation arises because Phaseolus species

exhibit a wide spectrum of mating behaviors, ranging from strictly

allogamous to fully autogamous (Bitocchi et al., 2017). Moreover,

there exists substantial variation within species themselves (Ibarra-

Perez et al., 1997; Ferreira et al., 2000; Royer et al., 2002).

Genotyping more than 20–30 plants per population to obtain

accurate allele frequencies and other population diversity estimates

results in a significant increase (up to 30-fold) in genotyping costs,

without accounting for additional space, labor, and time
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requirements. As a result, alternative sampling schemes are

imperative for genotyping large collections. Pooling DNA has

emerged as a promising alternative to individual sampling [for a

review, see the work of Schlötterer et al. (2014)]. This approach

involves the collection of equal volumes of plant tissue into a single

tube, followed by a single DNA extraction for subsequent

sequencing. Previous research has been conducted to explore the

genetic diversity of various species using pooled data (Farahani

et al., 2019; Ketema et al., 2020; Dziurdziak et al., 2021; Gapare et al.,

2021; Arca et al., 2023). Recent comparative studies have

investigated individual sampling with bulks of different sizes in

rice (Oryza spp.) using DArTseq (Gouda et al., 2020), comparing

whole-genome individual and pool sequencing of honey bee (Apis

mellifera L.) (Chen et al., 2022) and studying the population

structure of the American lobster with either GBS, rapture, or

whole-genome pool-seq (Dorant et al., 2019). Despite research

exploring the genetic diversity of species using pool data, little

work has been done on the viability of pooling DNA from the

common bean.

This study addressed this gap by using a diversity panel

comprised of 44 accessions of the common bean (P. vulgaris) to

compare two distinct sampling methods: individual sequencing or

pooled sequencing. Our aim is to determine whether pooling DNA

represents a viable alternative for studying the genetic diversity of

the common bean gene bank collection. To achieve this, we evaluate

how individual and pooled sequencing compare in terms of the

number of markers identified through DArTseq, estimates of allele

frequencies and heterozygosity, and the exploration of population

structure of accessions of the species. This investigation contributes

valuable insights into optimizing genotyping strategies for large-

scale germplasm collections.
Materials and methods

Plant material and sample pooling

A total of 44 cultivated accessions of Phaseolus vulgaris L. were

included in this study: 43 landraces and one modern cultivar

(G4489; Supplementary Table 1). These accessions were selected

from various continents including Africa, the Americas, Asia, and

Europe. They were selected from the bean germplasm collection of

the Alliance for the purpose of comparing the impact of pooling

samples on allele frequency estimates. Thirty seeds from each

accession were sown in the greenhouse at 25°C and 60% relative

humidity at the ABC campus in Palmira-Colombia. Young leaf

tissue was collected 15 days after sowing from each individual plant

using a leaf tissue punch to obtain standard-size leaf discs. Tissue

leaf discs were stored individually or pooled together in a single

tube, to create the pool for each accession. All samples were stored

at −80°C until DNA extraction. A total of 1,140 samples, including

1,096 individual samples and 44 pooled samples, were collected.

The samples were intended to compare two types of pools: seq-

pools, consisting of the 22 to 25 tissue leaf discs from individual

plants collected in one tube for DNA extraction and sequenced as

single samples per accession, and the in silico–pools, which
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comprise 22 to 25 individual plants each in single tubes for DNA

extraction and sequenced independently. Subsequently, samples

were analyzed together as in silico–pooled samples.
DNA extraction, sequencing,
and genotyping

Genomic DNA was extracted from around 10 mg of lyophilized

leaf tissue from 2-week-old seedlings according to a modified

Cetrimonium bromide (CTAB) protocol (Dellaporta et al., 1983;

Doyle and Doyle, 1990). Extracted DNA was resuspended in 100 μL

of TE buffer and incubated with 2 U of Ribonuclease (RNase)

(40 μg/mL). DNA integrity was verified on a 0.8% agarose gel,

whereas the quantity and purity were measured by calculating the

absorbance at 260-nm/280-nm ratio using the Epoch

spectrophotometer (Epoch). The final samples were then stored at

−80°C until they were sent for sequencing. Samples were diluted to

a final concentration of 50 ng/μL and were sent to Diversity Arrays

Technology Pty, Ltd., Australia, for genotyping by sequencing with

the DArTseq platform, using a medium-sequencing density

(generating approximately 1.25 million reads per sample). In

summary, a representation of the genomic DNA was obtained by

digesting DNA with two restriction enzymes (PstI and MseI) and

the prepared libraries were sequenced on an Illumina HiSeq2000

(Illumina). A total of 77 cycles were run to produce single reads.

The reference-free marker calling step was done with a Diversity

Arrays Technology Pty, Ltd (DArT P/L) proprietary method in the

DS14 software. Reads were aligned to each other, with a threshold of

two to three nucleotide mismatches, and used to call single-

nucleotide polymorphisms (SNPs). Additionally, these reads were

used to call presence/absence variations called SilicoDArT.
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Quality control and filtering loci

DArTseq SNP data csv files were read into R (V4.0.4; R Core Team,

2022) with the gl.read.dart function of the “dartR” package (V1.9.9.1;

Gruber et al., 2018) and converted into genlight objects. Genlight objects

were later split into three subsets: (i) one containing only individual

samples and another, (ii) containing only pooled samples (seq-pools),

and (iii) a single individual per accession (single plant).

A series of parameters were reviewed to identify potential

samples and loci of low quality. This evaluation included the

following: total reads per sample, total unique reads per sample,

library quality (weak, downshifted, and good), sample call rate, loci

call rate, minor allele frequency (maf), marker reproducibility, read

depth, and polymorphism information content (Figure 1;

Supplementary Figures 1-4).

Based on the descriptive statistics of the data, a set of filters was

applied to all SNP subsets (individual samples and seq-pools) as

follows: Replicability (RepAvg; the fraction of technical replicates at

a locus with the same call) was set to 1; average read depth between

5 and 100 (as, unusually, high read depths can indicate paralogous

regions of the genome mistakenly grouped together), and loci with

call rate higher than 0.75 were retained (since samples cover a large

geographical range, despite all belonging to the same species).

Additionally, all monomorphic sites were removed from each

dataset as they do not provide informative data.

To perform some estimations, we applied different filters. To

estimate the expected heterozygosity (He), the dataset of 1,086

individual samples was split by accession, all missing data within

the subset was removed and, following the recommendations of the

work of Schmidt et al. (2021), we estimated He before and after

removing all monomorphic sites (for further details, see Data

analysis section below).
FIGURE 1

Comparison of the sample call rate between pools of P. vulgaris after filtering. Some accessions have two sequenced pools because of
technical replicates.
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An extra filter was incorporated to assess the resemblance

between seq-pools and in silico–pools derived from the same

accessions. This involved calculating the number of private alleles,

the allele frequency difference (AFD), and a comparison of allele

frequency estimates. Specifically, apart from the base filters

mentioned above, an additional criterion was applied. Loci

identified in both type of pools were retained by cross-referencing

the AlleleIDs assigned by DArT P/L during the genotyping process.

This additional step ensured a more rigorous comparison and

enhanced accuracy of our analysis.
Data analysis

Sampling a random individual
To evaluate the efficacy of pooled data (either in silico–pools or

seq-pools) in comparison to genotyping a single individual per

accession, a random sample of 44 individuals was selected from

the larger dataset of 1,086 individuals, and this dataset will be

referred as the single plant subset. Each individual was drawn

from each accession using a custom R script (R Core Team, 2022)

with a predetermined seed to ensure replicability. To see how

sampling affected the data, 10 runs of the random sampling

described above were performed. The identical set of filters

mentioned previously was applied to this subset to maintain

consistency in the analysis. All analyses were conducted across

all three datasets, except for the estimation of allele frequencies, of

He, and the identification of private alleles (see below). Because the

results from the 10 runs of sampling single plants were very

consistent with each other, only the results of the first run are

presented in the figures of the main text. The figures summarizing

the results are available in the Supplementary Material

(Supplementary Figures 5-10).
Allele frequency estimation and similarity
between pools

To estimate the allele frequencies and assess the similarities

between pools, we calculated allele frequencies within each

accession for each kind of pool (in silico–pools and seq-pools). For

seq-pools, DArT P/L provided an additional file alongside the

standard report of SNPs and SilicoDArTs, containing the number

of reads per allele per marker. Using these data, we calculated the

frequencies as follows:

fij =
  #readsij

o2
j=1readsj

where fij is the allelic frequency of allele i at site j; # readsij is the

number of reads found for allele i at site j; ando2
j=1readsj is the total

number of reads at site j. Moreover, the allelic frequencies of in

silico–pools’ SNPs were estimated on a per-accession basis by using

the following formula:

pij = f (AA) +  
1
2
f (AB); qij = 1 − pij
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where pij is the frequency of the reference allele p at locus i of

accession j; f(AA) and f(AB) are the frequencies of the AA and AB

genotypes, respectively; and qij is the frequency of the SNP allele at

locus i of accession j.

After estimating the allele frequencies of each dataset, we

analyzed a series of key parameters within each pool. Specifically,

we counted the number of called SNPs per pool, identified the

number of missing sites, and determined the number of

polymorphic sites within accessions.

To check the sampling effect on the estimate of allele frequencies,

we used the technical replicates from DArT P/L for both seq-pools

and single plants, assessing different read depth ranges. The average

read depth per marker was estimated using the total read counts for

the reference allele and the alternative allele, divided by the total of

number of samples having reads for that marker. To compare the

results from seq-pools and single plants derived from homogenous

and heterogeneous accessions, we plotted the frequency of SNP allele

reads at each marker across different read depth intervals.

Marker calling between pools and private and
fixed alleles

To assess if there are differences between types of pools regarding

the calling of markers, we compared the number of fixed and private

alleles within each accession’s pool. Following rigorous filtering and

quality control procedures (as detailed in Quality control and filtering

loci section), we counted those sites where a pool exhibited an

exclusive allele (referred to as a private allele) in comparison to the

other pool. Additionally, we assessed sites where opposite genotypes

were called in each pool (referred to as fixed alleles). This comparison

aimed to highlight differences in allele calling patterns between seq-

pools and in silico–pools. These counts of private alleles were fit to a

generalized linear model specified as follows:

log (pi) = hi = μ+ai

where log() is the logarithm link function between the linear

predictor and the counts of private alleles (pi); μ is the general mean;

and ai is the effect of the pool (in silico–pool or seq-pool). The model

was applied using the “glm” function of R V 4.0.4 (R Core Team,

2022), utilizing the option “family = ‘quasipoisson’” due to identified

overdispersion. This conclusion was drawn from a preliminary

analysis where the ratio between residual deviance and degrees of

freedom exceeded 1. The effect of the pool (a) was tested with an

analysis of deviance, as implemented in the Anova function of the

car package (V3.0–12) (Fox and Weisberg, 2019), utilizing the

option “test.statistic = ‘F’.” The estimated means from the model

were back transformed to the scale of the response variable using

the summary function utilizing the option “type = ‘response’” in R.

In order to assess the similarity between allele frequency estimates

across datasets, we calculated the AFDmetric, as introduced by Berner

(2019), which serves as an estimator of population differentiation to

compare in silico–pools, seq-pools, and single plants. This measure was

calculated using the following formula:

AFD =
1
2o

n

i=1
fi1 − fi2j j
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where fi1 and fi2 are the frequencies of allele i of an accession in

datasets 1 and 2, respectively; and n is the number of markers.

Heterozygosity
Expected heterozygosity (He) was calculated before and after

the removal of monomorphic markers, following guidelines

recommended by Schmidt et al. (2021). Schmidt et al. (2021)

categorized these estimates as autosomal (considering all markers)

and SNP (considering only polymorphic markers) heterozygosities.

To avoid confusion, especially as the term “autosomal” implies a

distinction from sex chromosomes, we have referred to these

estimates as H’ [as per Schmidt et al. (2021)] and H for SNPs.

The He and H’e were calculated using in silico–pools and the seq-

pools dataset. The He was not estimated with the single plant dataset

because this parameter is not commonly estimated on an individual

basis, but rather on a population level, and we are working with

accessions as populations. He (also known as gene diversity) is

commonly defined as the expected frequency of the heterozygotes

under Hardy-Weinberg equilibrium. Here, it was calculated asHei =

2piqi, where Hei is the expected heterozygosity at site i, and pi and qi
are the allelic frequencies at site i. Calculations of the estimates of

the heterozygosity were made with custom R scripts.
Modified Roger’s distance and assessment of
genetic patterns

The modified Roger’s distance (MRD) was calculated both

between pairs of accessions within datasets and between samples

of the same accession but different subsets. This calculation was

based on matrices of allelic frequencies, each corresponding to a

specific type of pool (Wright, 1978, p. 91). The pairwise distances

were calculated as follows:

MRDxy =
1ffiffiffiffiffi
2L

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o
L

i  =  1
o
2

j  =  1
(p̂ ij(x) − p̂ ij(y))

2

s

where MRDxy is the distance between x and y; L is the number

of SNPs in the dataset; p̂ ij(x) is the frequency of the ith allele at the

jth locus of sample x; and p̂ ij(y) is the frequency of the ith allele at the

jth locus of sample y. The matrices were calculated using a custom

R script.

We employed various analytical techniques to unravel the

genetic patterns within our dataset and to compare outputs across

types of pools. Principal coordinate analysis (PCoA) was employed

to understand the MRD matrix. PCoA, a dimensionality-reduction

method, was executed using the “gl.pcoa” function from “dartR”

package, generating a two-dimensional representation of the data.

For clustering analysis, we utilized the complete linkage algorithm

from the “stats” R package (V4.0.4) (R Core Team, 2022) to cluster

the MRD matrix. The nodes of the resulting dendrogram were

tested using a bootstrap analysis using the “boot.phylo” function of

the “ape” package (V5.4.1; Paradis and Schliep, 2019) using

parameters “rooted = FALSE” and “B = 1000.”.

To explore population admixture, we compared the best

estimation of K ancestral populations derived from all individuals,

the seq-pools, or a single individual per accession. This comparison

was conducted using the “LEA” package and the “snfm” function in R
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(V3.2.0; Frichot and François, 2015). To run “snmf” with the seq-

pools, the standard output from DArTseq was used because the input

files for the “LEA” package are designed for allele counts, not allele

frequencies. To run the analysis, the data (individuals, seq-pools, and

single plants) as “genlight” objects were transformed into

STRUCTURE input files using the “gl2structure” function of

‘dartR’ package (using option “exportMarkerNames = FALSE” and

all others as default). The STRUCTURE-formatted files were then

converted into the geno format through the “struc2geno” function of

“LEA” (parameters; “ploidy = 2, FORMAT = 2, extra.row = 0,

extra.column = 1”), facilitating further in-depth analysis of genetic

admixture patterns. The “snmf”method from the “LEA” package was

executed for each dataset with specific parameters: “K = 1:20, ploidy =

2, entropy = TRUE, CPU = 20, repetitions = 5, iterations = 500, alpha

= 100.” The optimal K, indicating the most likely number of ancestral

populations given the data, was determined using the cross-entropy

criterion, selecting the point where the cross entropy exhibited a

plateau. Initially the ‘snmf’ run with individual samples did not

display a plateau, leading to an additional run with K-values from 40

to 55. Visual representations, including bar plots of admixture

coefficients and cross-entropy values plots across different K-values

were generated using the ‘ggplot2’ package (V3.3.3, Wickham, 2016).
Results

Before applying any quality filters, a set of parameters, including

total and unique read counts per sample, and the number of

markers called, were assessed, and compared across different

sample types.

For the 1,086 individual samples, the average total read count

was 1,259,666 (± 211,597) and the average total unique read count

was 201,500 (± 48,604). Seq-pools, consisting of 44 samples,

exhibited a slightly higher average total and unique reads,

reaching 1,271,141 (± 107,025) and 218,145 (± 21,432),

respectively. In contrast, the 44 single plants showed the lowest

mean counts of both total (1,241,579 ± 239,180) and unique

(199,673 ± 53,303) reads along all the subsets. The counts of total

and unique reads were more consistent across seq-pools samples

(ranging from 985,347 to 1,443,516 and 167,534 to 267,046,

respectively) than across individual samples (ranging from

594,075 to 1,744,258 and 91,370 to 364,280, respectively). The

latter has a larger number of samples and a wider distribution

across both variables, as reflected in the average and standard

deviation of these counts on each dataset (Table 1).

After splitting the SNP data by datasets (seq-pools, in silico–

pools, single plants) and removing markers with 100% missingness,

the total number of called markers was very similar among the

unfiltered datasets from the three sample types: 86,012 in seq-pools,

86,277 in in silico–pools, and 86,335 in the single plant subset.

Among these markers, 31,677, 15,453 and 15,340 were

polymorphic, respectively. Notably, the in silico–pools exhibited a

higher average of markers called per accession (78,427 SNPs ±

2,150.6) compared to either the seq-pools or the single plants, both

of which had similar averages, 71,984 (± 2,634.5) and 71,909 (±

4,711), respectively (Table 1).
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The effects of applying a series of filters to remove SNPs

(reproducibility = 1, average read depth 5–100, call rate/locus ≥

0.75 and removing monomorphic sites) were assessed on based on

call rate, number of polymorphic sites and allele frequencies

estimates (Table 1; Supplementary Figures 2-4). After filtering,

the number of remaining SNPs numbered 14,078 in the in silico–

pools, 6,281 in the seq-pools, and 6,555 in the single plant datasets

(Table 1). A comparison of the median call rate per sample showed

similarity between seq-pools (0.963) and the individually genotyped

samples (0.969), despite differences in the number of markers and

the significant variation of call rates among samples from the same

accession (Figure 1). The median call rate for the single plant subset

was slightly lower at 0.951 (Table 1). The number of polymorphic

sites per pool/single plant varied across each dataset. In general, the

seq-pools tended to have fewer polymorphic sites than the in silico–

pools from the same accession and slightly more than a single plant

(Figure 2; Supplementary Table 2). The number of polymorphic

sites ranged from 4 to 1,357 in seq-pools, 372 to 3,492 in the in

silico–pools, and 5 to 1,582 in the single plant datasets. The

distribution of polymorphic SNPs varied little across resampling

runs for most of the accessions, while other accessions had outlier

individuals (Supplementary Figure 6).

The estimated allele frequencies from both pooled datasets

revealed a wide range of homozygote markers within pools, from

75% to 97% in in silico–pools and 78% to 99.9% in seq-pools

(Figure 3; Supplementary Table 2). Using the AlleleIDs from each

pool type, we found that 6,142 (~97%) of the SNPs from the seq-

pool data were also called in the in silico–pools. Comparing allele

frequencies of these shared SNPs between types of pools showed

that most markers coincide for the same allele in both pools
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(Figure 3). The distribution of the homozygous SNPs within in

silico–pools showed two groups of accessions, one highly

homogeneous (i.e., over 92% of homozygous SNPs) and one

heterogeneous (<92% of homogeneous SNPs, Supplementary

Table 2). When comparing the frequency of SNP allele reads

estimated between available technical replicates (provided by

DArT P/L) of seq-pools (e.g. G1173, G6450, G17187) it was

observed that SNPs with an average depth below 20 reads had a

higher discrepancy across replicates than SNPs with higher read

depth. This trend was more evident in heterogeneous accessions

(e.g. G17187). The frequency of SNP allele reads of single

plants replicates, was more consistent between replicates

(Supplementary Figure 11).

Some SNPs that were found to be monomorphic on one pool

were polymorphic in the other, i.e., one of the pools had private

alleles with respect to the other (Figure 3; Supplementary Table 2).

After fitting a generalized linear model with a quasi-Poisson

distribution, the analysis of deviance revealed a significant effect

of the type of pool on the number of private alleles (Analysis of

Deviance; Dev. Residuals = 24,221, DF = 1, F = 92.5, p-value =

5.694×10-16). The back-transformed estimated average of private

alleles in seq-pools was 21.7, compared to an estimated 440.7 private

alleles within in silico–pools. Fixed alleles (i.e., opposite alleles called

in each pool) between pools were rare, for instance the highest

observed count was 4 (Supplementary Table 2).

The AFD is an estimator similar to Fst to measure differentiation

between populations (Berner, 2019). The allele frequencies between

the in silico–pools and the seq-pools two pools were highly similar,

with a mean AFD of 0.008 (± 0.011) between pools. Accession

G12709B, which showed a higher average AFD of 0.047 across
TABLE 1 Summary of the comparison between pools before and after filtering.

Dataset Variable In silico–pool Seq-pool Single plant

General information

Number of accessions – 44 44 44

Number of samples – 1,086 52 44

Count of unique
sequence reads
per sample

Mean 201,500 218,145 199,673

Std. dev. 48,604 21,432 53,303

Count of total sequence
reads per sample

Mean 1,259,666 1,271,141 1,241,579

Std. dev 211,597 107,205 239,180

Unfiltered

Call rate/loci Median 0.931 0.942 0.932

Call rate per sample Median 0.845 0.839 0.849

maf Mean 0.109 0.041 0.040

Total number of SNPs – 86,277 86,012 86,335

Number of polymorphic
SNPs across the dataset

– 31,677 15,453 15,340

Filtered

Call rate/loci Median 0.983 1 0.977

Call rate per sample Median 0.963 0.969 0.951

maf Mean 0.110 0.241 0.240

Number of polymorphic
SNPs across the dataset

– 14,078 6,281 6,555
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FIGURE 2

Distribution of the fraction of polymorphic SNPs across accessions of P. vulgaris on each dataset. Numbers in brackets indicate the number of
samples per dataset.
FIGURE 3

Comparison between allelic frequencies of the SNP allele between in silico–pools (X-axes) and seq-pools (Y-axes). Dot colors indicate the density of
homozygotic sites for the same allele in both pools. Blue dots indicate heterozygote sites on either or both pools. Next to each accession ID is the
number of shared markers between pools after filtering, including monomorphic SNPs.
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shared loci, behaving as an outlier (Supplementary Table 2).

Meanwhile, the MRD between both pools and the single plant of

the same accession (Figure 4A) showed that the smallest distances

were estimated between the pools (0.034 ± 0.026), while the

distances of the single plants with either the seq-pools of the in

silico–pools tended to be larger (0.066 ± 0.067 and 0.057 ± 0.047,

respectively). When the data was split by homogeneous and

heterogeneous accessions, the distances between in silico–pools,

seq-pools, and single plants, tended to be smaller in the

homogeneous group than in the heterogeneous group

(Supplementary Figure 12). This pattern persisted even across all

runs of resampling single plants (Supplementary Figure 8).

Although the shape of the distribution of the MRD (Wright,

1978, p. 91) was similar across datasets (Figure 4B; Supplementary

Figure 13), the distances between in silico–pools were consistently

smaller (Average MRD 0.341 ± 0.138) in comparison with either the

seq-pool (Average MRD = 0.492 ± 0.203) or the single plant (Average

MRD = 0.502 ± 0.209; Table 2). MRD was highly consistent across 10

runs of resampling single plants (Supplementary Figure 7).

The difference among datasets was attributed to the presence of

unique SNPs detected in the in silico–pools but not in the seq-pools

which, as shown in Figure 4C, tend to be markers with very low

frequencies. The distance matrix based on the 6,142 shared SNPs

between the in silico–pools and seq-pools Showed an identical

distribution to the seq-pool MRD matrix (Supplementary Figure 13).

In contrast, estimating the distance matrix using markers exclusive to

the in silico–pool data led to the lowest distances between in silico–

pools, as shown in Supplementary Figure 13 with “unique markers

only.” A similar pattern was observed when the AFD was calculated

(Table 2), i.e., the average similarity between in silico–pools was higher

in this dataset (0.142 ± 0.087) than either the seq-pool (0.313 ± 0.192)

or the single plant data (0.308 ± 0.193).

The gene diversity (He = 2pq, expected heterozygosity) showed

a significant variation between estimates (He and H’e) and between

in silico–pool and seq-pool (Figure 5). The mean He was 0.0026 for

the in silico–pools and 0.0017 with the seq-pool data. In contrast, H’e
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was higher, averaging 0.09 and 0.31 in the in silico–pool and seq-pool

datasets, respectively (Supplementary Table 3).

We employed SNP data and their corresponding distance matrices

to investigate signs of population structure through PCoA, hierarchical

clustering, and “snmf,” a method used to model admixture coefficients

based on a given number of K ancestral populations.

In summary, all three analyses yielded consistent results across

datasets (in silico–pools, seq-pools, and a single plant). They

uniformly revealed the divergence and separation between the

Andean and Mesoamerican gene pools of common bean. For the

PCoA, this distinction was evident in the first axis, explaining 63%–

64% of the variance (Figure 6) and clearly separated accessions into

two distinct groups. This applies as well to the 10 resampling runs of

the single plant dataset (Supplementary Figures 9, 10). Only two

accessions, G21242 and G17187, were found in the space between

the two groups, being more evident with the single plant subset

(Figure 6). The second and third axes of the PcoA also showed an

interesting pattern within each gene pool. Each axis split a group

into two, with one composed mostly of accessions from the

Americas and the other containing samples from other regions of

the world (Supplementary Figure 14).

The hierarchical clustering analysis also separated two larger

groups (Figure 7A). Although smaller groups were inconsistent,

with low bootstrap support (< 75%; Figure 7B). Whereas most

accessions remained within the same two major clusters across the

three sampling types, two accessions, G21242 y G17187, exhibited

differential clustering patterns in seq-pools compared to in silico–

pools and a single plant. Moreover, eight replicated seq-pools used

by DArT P/L to estimate the replicability of the marker calling steps

were also included into the tree and they confirmed the robustness

of the clustering by being consistently groups together with their

replicates (Figure 7A; Seq-pool). The panel of this study included

three accessions that were subdivided into multiple accessions over

time: G12709 (three accessions), G19036 (two accessions), and

G23773 (five accessions). Of these, only G12709 was consistently

clustered together across all trees (Figure 7A).
B CA

FIGURE 4

(A) Boxplots of the distribution of modified Roger’s distances (MRDs) between samples (Seq-pool, in silico–pool, or single plant) of the same
accession. Labels on X-axis indicate comparisons. (B) Scatterplot comparing MRD matrices between pairs of datasets (in silico–pool, seq-pool, and
single plant). Color of dots indicates datasets compared. Black line is the diagonal. (C) Distribution of SNP allele frequencies of the in silico–pool
dataset, highlighting markers found only in that dataset (blue) and SNPs found in both in silico–pool and the seq-pool datasets (red).
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Furthermore, when studying the admixture coefficient of

ancestral populations, the best fitting K-value accordingly to

“snmf” was K = 2 for both the seq-pool and the single plant data,

with a cross-entropy of the best run at 0.40 (Supplementary

Figure 15). When mapping the admixture coefficients of the seq-

pool data using the accessions’ passport data, the distribution of the

ancestral populations across the Americas has a clear north-south

split. That is, most Accessions originating to the south of Ecuador

shared the same ancestral population, whereas accessions

distributed across Central and North America shared the other

ancestral population in common (Figure 8). Regarding the

accessions from Africa, Asia, and Europe, most seem to share the

same ancestral population with that of the South American

accessions, but no clear pattern could be discerned (Figure 8A).

These results are highly consistent with the two large clusters found

with the hierarchical clustering (Figure 9).
Discussion

In the last decade, there is been a notable increase in genomic

characterization of long-preserved collections (Wang et al., 2018;

Sansaloni et al., 2020). This trend is driven by cheaper sequencing

costs and the increasing focus on maximizing the value of each

accession in germplasm collections. The genetic data acquired offers
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valuable insight to curators, aiding decision-making and improving

access to alleles and genes linked to key traits. However, challenges

persist, particularly in determining optimal sampling methods.

Balancing the need for representing accessions or populations with

cost-effectiveness is especially crucial for large germplasm collections

managed by CGIAR. Achieving the right balance between scientific

rigor and practicality is essential for effectively navigating these

challenges. In this study, we genotyped 44 accessions of P. vulgaris

using three sampling strategies to assess if analyses based on the

genotype calls, estimated allele frequencies, diversity estimates, and

population structure yielded consistent results across sampling

methods. Our findings indicate that in silico–pools yielded a higher

number of SNPs compared to both seq-pools and the single plant

data. This is attributed to the individual genotyping of each member

within the in silico–pool, which increases the likelihood of identifying

rare alleles. However, calling SNPs from pooled DNA samples poses a

challenge in distinguishing genuine rare variants from sequencing

errors (Schlötterer et al., 2014; Anand et al., 2016). Similarly, there

remains uncertainty when sampling a random individual per

population/accession, as it may not accurately represent the entire

population. Filtering and handling missing data are critical in genetic

analyses. Methods have different tolerances to missing data, and strict

filters can negatively impact downstream inferences (Wiens, 2006;

Rubin et al., 2012; Huang and Knowles, 2014; Eaton et al., 2017).

Conversely, some methods struggle when missingness is non-

random, depending on factors like species or gene pools (Yi and

Latch, 2022).

The overall population patterns observed in PCoA, snmf, and

the hierarchical clustering across datasets (seq-pool, in silico–pool,

and a single plant) after applying uniform filters (Reproducibility =

1, average read depth = 5–100, call rate/locus ≥ 0.75, no

monomorphic sites) were similar. While these criteria may appear

“lax” compared to general recommendations for filtering marker
TABLE 2 Summary (mean ± std. deviation) of the allele frequency
difference (AFD) and the modified Roger’s distance (MRD) between
accessions in each dataset.

Variable In silico–pool Seq-pool Single plant

AFD 0.142 ± 0.087 0.313 ± 0.192 0.308 ± 0.193

MRD 0.341 ± 0.138 0.492 ± 0.203 0.502 ± 0.209
BA

FIGURE 5

(A) Expected heterozygosity (He) estimates of each accession of P. vulgaris between types of pools. Estimates obtained with markers without missing
data and either including monomorphic sites (H’; red) or not (H; blue). (B) Distribution of the number of sites per accession and type of pool used to
calculate the estimates.
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data (e.g., Carson et al., 2014; O’Leary et al., 2018; Pavan et al.,

2020), our dataset encompasses a wide range of samples from

diverse geographic origins, each subjected to different selection

pressures and accumulating genetic differences. Similar lax filters

have been employed in other studies investigating common bean

genetic diversity (Valdisser et al., 2017; Nadeem et al., 2020; Gelaw

et al., 2023). In this work, the aim was to retain sites displaying allele

dropout, a common challenge in reduced representation

approaches like DarTseq (Gautier et al., 2013), as they provide

valuable insights information where they are present, making them

informative across diverse populations (Wiens, 2006). Thus,
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imputation was not performed to avoid assumptions about the

cause of missing markers, acknowledging the biological nature of

allele dropout.

Accurate estimation of allele frequencies is crucial, as it

directly influences MRD matrices. While using single plants

poses challenges due to varying call rates within an accession

and potential bias from missing data (as depicted in Figure 1).

Studies have found that estimating allele frequencies with pooled

data can be more precise. This is attributed to reduced DNA

contribution variance, particularly with larger pool sizes (Futschik

and Schlötterer, 2010; Rellstab et al., 2013). In our study,
B CA

FIGURE 6

Scatterplots of the principal coordinate analysis (PCoA) after filtering the in silico–pool data (A), the seq-pool data (B), and the single plant subset (C).
Dot colors indicate origin according to passport data. Percentages in axes indicate proportion of the variance explained.
BA

FIGURE 7

(A) Hierarchical clustering of 44 accessions of P. vulgaris using three different sampling types (in silico–pools, seq-pools, or a single plant). Lines and
colors connect accessions across trees. Bootstrap shown with colors of nodes (n = 1000). (B) Distribution of the bootstrap support (%) for nodes of
each dendrogram in (A).
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comparing allele frequencies between seq-pools and the in silico–

pools revealed low AFD, suggesting minimal differentiation

between pools of the same accession. Although allele frequency

estimates from seq-pools and in silico–pools appear correlated, the

large sample size and counts of fixed markers consistently return a
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strong and significant correlation every time, which is why they

are not shown here.

Seq-pools exhibit limitations in estimating intermediate (~0.5)

frequencies (Figure 3), regardless of the population’s polymorphic

loci count. Theoretical and empirical research indicates that
B

C D E

A

FIGURE 8

(A) Admixture coefficients at K=2 from seq-pool data mapped according to coordinates of origin from the accessions’ passport data. (B–E) Close-
ups of the American continent (Passport information source: https://www.genesys-pgr.org/a; Map source: https://www.naturalearthdata.com/).
B

C

D

A

FIGURE 9

Comparison between hierarchical clustering using the sequenced pools estimated allele frequencies (A), and snmf using allele counts (B, C). The
color of the nodes in (A) indicates bootstrap support (n = 1,000). Colors of the bars in (B, C) indicate fraction of the genome presumed to originate
from different ancestral populations. (D) Region of origin of the accessions. Missing bars in (B-D) indicate technical replicates from DArTseq that
were included when making the tree in (A).
frontiersin.org

https://www.genesys-pgr.org/a
https://www.naturalearthdata.com/
https://doi.org/10.3389/fpls.2024.1338332
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Correa Abondano et al. 10.3389/fpls.2024.1338332
variance and error of allele frequencies are highest at intermediate

frequencies (Chen et al., 2012; Fung and Keenan, 2014), as is the

difference between simulated and empirical allele frequencies (Hale

et al., 2012). Other causes include technical artifacts such as random

amplification of reads, insufficient locus depth, or uneven DNA

contributions. The latter is unlikely due to meticulous control of

sample tissue area per plant for consistency across individuals.

When we compared the frequency of SNP allele reads between

technical replicates, we observed that the least consistent estimates

of allele frequencies were found in the SNPs with average depth<20

reads (Supplementary Figure 11). This difference between replicates

was more evident in heterogeneous accessions for seq-pools that

from single plants, suggesting a sampling effect on seq-pools, most

likely due to random amplification of reads during library

preparation or insufficient locus depth of rare alleles from

individual including in the pool. Although a similar pattern is

seen in replicates of single plants, the frequency of SNP allele reads

is more consistent.

Another possible cause could be the method of allele

frequencies estimation from pooled data, known as the “naive”

method, where allele reads’ ratio at a locus serves as the estimate [as

used by Inbar et al. (2020)]. This method may inflate minor allele

frequency estimates, particularly for rare alleles (Chen and Sun,

2013). While tools exist for calling markers with pooled DNA data

[see the work of Schlötterer et al. (2014) for a list of methods and for

an in-depth comparison between callers], these pipelines require

aligning reads to a reference genome (Guirao-Rico and González,

2021). To our knowledge, this is the first instance where read count

data from DArTseq has been used for estimating allele frequencies.

Regular allele counts from pools of different sizes have been

employed in other crops such as Barley (Hordeum vulgare;

Dziurdziak et al., 2021), chickpea (Cicer arietinum; Farahani

et al., 2019), cowpea (Vigna unguiculata; Ketema et al., 2020),

pastures (Phalaris aquatica; Gapare et al., 2021), and safflower

(Carthamus tinctorius; Hassani et al., 2020).

Overall, both in silico– and seq-pools exhibited high similarity,

evidenced by the low AFD, minimal private alleles between pairs,

and genetic distances (Figures 4A, B; Supplementary Table 2).

Despite that in silico–pools do discover more markers

(Supplementary Table 2), predominantly low-frequency SNPs

(Figure 4C), the overall difference between pools of the same

accession was small. However, sample similarity was also

influenced by the within-population diversity, as heterogeneous

accession groups revealed higher MRD between samples of the

same accession (Figure 3; Supplementary Figure 11), potentially

indicating single plants’ insufficient representation of an accession.

Regarding the single plant datasets, consistency across multiple

random sampling runs was observed (Supplementary Figures 5-10)

and with either the seq-pool or in silico–pool data (Figure 7).

Nevertheless, a significant discrepancy was noted in the number

of detected SNPs in this dataset (Figure 2; Supplementary Figure 6,

Supplementary Table 2), suggesting that single plant data

underestimates within-accession variation, which is crucial for

comprehending species diversity.

After SNP filtering across datasets, a notable disparity in the

count of polymorphic sites within accessions was observed. For
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instance, the variance in polymorphic markers between in silico–

pools of accessions G12709B and G20592 was substantial, with

3,492 vs. 372 SNPs, respectively. This difference was even more

evident in the seq-pool data, with counts of 1,357 vs. 32 SNPs,

respectively. In contrast, the difference between single plants of

these accessions was minimal, with 16 vs. 9 SNPs (Supplementary

Table 2). When examining gene diversity (expected heterozygosity,

He) across in silico–pool or seq-pool data, the H’e estimates suggest

that certain populations harbor minor alleles with moderate to high

frequencies, indicating potential population sub-structure or

outcrossing events. Conversely, the He estimates derived from

either pooled dataset present a nuanced view of accession

diversity across our panel. Although He varies considerably across

populations/accessions, the values remain quite small (ranging from

0.0004 to 0.0128 for in silico–pool’s data and from 0.000034 to

0.008151 for seq-pool’s data), which fits better with a species that is

mostly self-pollinating. Estimating He based on single plant dataset

would not accurately represent the entire accession. Furthermore,

the distribution of genetic distances was notably influenced by the

presence of low-frequency alleles. Although the shape of the

distribution across all datasets appeared similar (refer to

Supplementary Figure 13), the distance matrix derived from the

in silico–pool data was consistently smaller in magnitude (Table 2).

This difference between datasets nearly disappeared when shared

markers between pools were used to calculate genetic distances

(Supplementary Figure 13). The presence of low-frequency SNPs

reduces the MRD by increasing the denominator (2N) in the MRD

formula (see Materials and Methods). Similarly, the AFD

distribution was comparable between the seq-pool and the single

plant data (Table 2), whereas the in silico–pool data displayed

greater similarity between accessions, indicating that this metric is

also sensitive to a substantial fraction of very rare alleles.

Variation in the within-population diversity of landraces of

common bean was observed (Figures 3, 5), potentially attributed to

the diverse origins of the included accessions in this study

(Supplementary Table 1) and the fact that landraces are generally

more genetically diverse compared to modern counterparts (Byrne

et al., 2020; Wilker et al., 2020). Across the accessions included in this

study, there are some homozygous accessions for almost all loci with

some residual heterozygosity (e.g., G10298 and G1368), whereas

other accessions are more heterozygous (e.g., G17187 and G21242).

The more heterogeneous accessions suggest that they could be a

mixture of seeds, a frequent scenario in common bean, potentially

enhancing diversity (Blair et al., 2010; Garcıá-Narváez et al., 2020).

This contrasts with the expected low within-population diversity of a

mostly selfing species like P. vulgaris, noting that crossing rates may

vary from 2.5% up to 70% (Wells et al., 1988; Ibarra-Perez et al., 1997;

Ferreira et al., 2000; Royer et al., 2002; Chacón-Sánchez et al., 2021).

While DNA pooling is uncommon in common bean genetic diversity

studies, its application has focused on variations between gene pools

(Papa et al., 2007) or used in different marker systems like

microsatellites (Zhang et al., 2008; Asfaw et al., 2009) and simple

sequence repeats (Özkan et al., 2022). Because the most diverse

accessions coincided between seq-pools and in silico–pools

(Supplementary Table 2), seq-pools offers a promising approach for

identifying accessions with high genetic diversity (heterogenous
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accessions). This information is valuable not only for gene bank users

but also for seed collection curators. This highlights a limitation of

single plant data because one individual may not adequately represent

the diversity of an entire population/accession. This limitation is

particularly relevant in the study of landraces, wild forms of P.

vulgaris, and cross-pollinating Phaseolus species. After all, fewer

polymorphic SNPs were detected within accessions compared to

both seq-pool and in silico–pool data, emphasizing the importance of

pooled sequencing methods for comprehensive diversity assessment

(Figure 4A; Supplementary Table 2).

Apart from the mentioned challenge of estimating allele

frequencies, a key limitation associated with the use of seq-pools lies

in the difficulty in accurately estimating the observed heterozygosity

within populations of an accession, as highlighted previously by Chen

et al. (2022). In our study, we were unable to compare estimates of Ho

across datasets. This metric can only be calculated using the in silico–

pools dataset, where individual genotypes are available and not with

seq-pools or single plants. Additionally, pooling does not allow us to

distinguish whether a heterogeneous accession results from a recent

cross or a seed mixture.

As mentioned above, PCoA, hierarchical clustering, and “snmf,”

revealed consistent patterns of population structure within P.

vulgaris, identifying two major ancestral groups across all datasets:

seq-pool, in silico–pool, and single plant datasets. These findings align

with the current consensus of domesticated P. vulgaris having two

major gene pools: the Mesoamerican and the Andean groups (Blair

et al., 2012). We also identified G21242 as a potential hybrid,

consistent with previous research (Blair et al., 2006) Our results

parallel the findings of Arca et al. (2023) in maize pools,

demonstrating the consistency of PCoA, hierarchical clustering,

and admixture coefficients, albeit utilizing microarray and

measurement of fluorescence ratios data for allele frequency

estimation. Whereas the PCoA and the hierarchical clustering

exhibited similar patterns across datasets, the PCoA based on allele

frequencies from seq-pool data revealed more distinct groups along

the second and third axes compared to in silico–pool or single plant

data (Supplementary Figure 14). Notably, the division within major

groups appeared to segregate American and non-American

accessions, which could be attributed to the selection process after

introduction into new environments. The “snmf” analysis with in

silico–pool’s utilized all 1,086 individual samples, leading to a

significant difference in estimating the optimal number of ancestral

populations compared to seq-pool and the random individual data

(Supplementary Figure 15). This discrepancy could be attributed to

data redundancy or a bias from abundant rare alleles with low

informativeness (Linck and Battey, 2019). Conversely, the analysis

with the seq-pool samples showed less sensitivity, possibly due to the

smaller number of accessions studied (n = 44), which may not have

sufficient for rare alleles to exert significant influence. Nevertheless,

the seq-pool data remained highly consistent with the estimated

ancestry coefficients derived from in silico–pools and single plants

at K = 2 (Supplementary Figure 16).

Our findings demonstrate that using pooled DNA for studying

the genetic diversity of domesticated Phaseolus vulgaris yields
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comparable insights to sequencing individuals, despite certain

limitations such as challenges in estimating intermediate allele

frequencies and lack of individual genotypes. Despite these

limitations, pooled samples remain the most practical sampling

strategy for large-scale genotyping efforts of germplasm collections.

Genotyping individuals significantly multiplies the workload and

resources required by a factor of “n” (where “n” represents the

number of samples to be pooled). This increased demand extends

not only to field and lab work but also to sequencing efforts,

genotyping, and all subsequent data analyses, requiring

substantially larger computational resources and processing time.

Although other alternatives, such as WGS or arrays, exist to

genotype plant genetic resources, the former remains costly for

large-scale projects, although it has the advantage of generating

significantly more data. Microarrays, on the other hand, have well-

known issues with ascertainment bias (Arca et al., 2023), and the

amount of data generated would be insufficient for association

studies or analyses beyond genetic diversity.

This study provides valuable guidance for gene bank researchers

undertaking genotyping initiatives, aiding in effective collection

management, and facilitating marker-trait association studies for

identifying candidate markers associated with key traits.
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