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Improving the maize crop row
navigation line recognition
method of YOLOX
Hailiang Gong, Weidong Zhuang* and Xi Wang

College of Engineering, Heilongjiang Bayi Agricultural University, Daqing, China
The accurate identification of maize crop row navigation lines is crucial for the

navigation of intelligent weeding machinery, yet it faces significant challenges

due to lighting variations and complex environments. This study proposes an

optimized version of the YOLOX-Tiny single-stage detection network model for

accurately identifying maize crop row navigation lines. It incorporates adaptive

illumination adjustment and multi-scale prediction to enhance dense target

detection. Visual attention mechanisms, including Efficient Channel Attention

and Cooperative Attention modules, are introduced to better extract maize

features. A Fast Spatial Pyramid Pooling module is incorporated to improve

target localization accuracy. The Coordinate Intersection over Union loss

function is used to further enhance detection accuracy. Experimental results

demonstrate that the improved YOLOX-Tiny model achieves an average

precision of 92.2 %, with a detection time of 15.6 milliseconds. This represents

a 16.4 % improvement over the original model while maintaining high accuracy.

The proposed model has a reduced size of 18.6 MB, representing a 7.1 %

reduction. It also incorporates the least squares method for accurately fitting

crop rows. The model showcases efficiency in processing large amounts of data,

achieving a comprehensive fitting time of 42milliseconds and an average angular

error of 0.59°. The improved YOLOX-Tiny model offers substantial support for

the navigation of intelligent weeding machinery in practical applications,

contributing to increased agricultural productivity and reduced usage of

chemical herbicides.
KEYWORDS

navigation lines, maize inter-row weeding, attention mechanisms, YOLOX-Tiny,
loss function
1 Introduction

In contemporary agriculture, the cultivation and management of maize are intricately

linked with advancements in agricultural weed control machinery (Flores et al., 2020).

Intelligent weed control machinery has become indispensable for the optimal growth of

maize crops (Dhanaraju et al., 2022; Balaska et al., 2023). Accurate identification of
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navigation lines in maize crop rows enables precise navigation of

intelligent weed control machinery, allowing for automatic control

to avoid seedling damage (Machleb et al., 2020; Vrochidou et al.,

2022). This capability not only mitigates the labor-intensive process

of manual weeding, thereby enhancing work efficiency, but also

significantly improves field management practices. However, the

task of accurately identifying these navigation lines is fraught with

challenges such as low illumination, object occlusion, and camera

motion, which can lead to false and missed detections, thus

undermining the accuracy of navigation line identification.

Therefore, it is of great significance to develop a robust and

accurate crop row detection algorithm for maize seedlings in

complex lighting conditions.

The advent of Convolutional Neural Networks (CNNs) has

marked a significant milestone in the field, revolutionizing the

detection of weeds and crop rows under a wide array of

conditions with its robust performance (Hu et al., 2024). While

CNNs have demonstrated formidable capabilities in feature

extraction and classification, the fundamental principles of

simpler methods such as edge detection and shape analysis

continue to offer valuable insights for enhancing algorithmic

efficiency and adaptability. Prior to the emergence of CNNs, these

simpler, non-CNN-based methodologies laid the groundwork,

providing foundational insights and techniques that still guide

current research and applications. These studies underscore the

enduring relevance of simpler, non-CNN-based approaches in the

ongoing evolution of agricultural image processing applications

(Coleman et al., 2022). Traditional methods have employed a

diverse array of image processing techniques. Ranging from

methods based on the Hough Transform (HT), which utilizes

point-line duality for geometric feature detection (Cha et al.,

2006), to least squares fitting, vanishing point analysis,

stereovision, and methods relying on the analysis of horizontal

strips, each approach offers unique advantages in specific contexts

(Yenikaya et al., 2013; Jiang et al., 2015). However, they also present

limitations in computational efficiency, sensitivity to noise, and

adaptability to complex field conditions such as high weed pressure

or significant crop loss. Among these simpler methods, edge

detection serves as a fundamental technique for identifying the

boundaries and shapes of objects within images (Parra et al., 2020).

has showcased the application of edge detection for weed

recognition in lawns, demonstrating its potential in distinguishing

between grass and weeds through the analysis of visual features.

Similarly (Kazmi et al., 2015), has exploited affine invariant regions

and the unique shapes of leaf edges for weed detection, emphasizing

the effectiveness of geometric and morphological characteristics in

differentiating between crops and weeds.

To address these challenges, Researchers have turned to

Convolutional Neural Networks (CNNs) for their prowess in

feature extraction (Hu et al., 2024). CNNs are adept at learning

rich feature representations from raw images (Wu et al., 2020). The

end-to-end training of CNNs enables object detection methods to

better adapt to different object categories and complex scenes.

Presently, deep learning-based object detection methods can be

divided into two categories: two-stage object detection methods and

one-stage object detection methods. Two-stage methods, renowned
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for their robustness against external environmental factors, employ

a region proposal network (RPN) to generate potential object boxes,

which are then refined through classification scoring and bounding

box regression. Despite their impressive performance across

multiple object detection tasks, these methods are hampered by

slow detection speeds, limiting their applicability in real-time

scenarios. In response, the agricultural sector has witnessed a

surge in the integration of one-stage object detection methods,

such as the You Only Look Once(YOLO) network models, into crop

detection processes (Rakhmatulin et al., 2021). This integration

facilitates high-accuracy, real-time row detection, laying the

groundwork for precise extraction of navigation lines from crop

images. Efforts to refine one-stage detection methods have led to

significant advancements in detection accuracy, enabling the

development of innovative solutions such as the “LettuceTrack”

by (Hu et al., 2021), which employs the YOLOv5 network model for

vegetable detection and tracking, and the real-time vehicle

recognition and tracking method proposed by (Wang L. et al.,

2023), leveraging an improved YOLOv4 model (Yang et al., 2022).

utilized the YOLOv3 network model to fit seedling crop rows based

on detection results. Firstly, they processed the seedling images

within the detection box through grayscale filtering to segment the

seedling crop and soil background. Then, they located the seedling

feature points in the detection box using SUSAN corner features.

Finally, they employed the least squares method to fit the seedling

rows. In a recent study conducted by (Zhu et al., 2022), a weeding

robot was designed and implemented for efficient weed control in

maize fields. The weeding robot achieved an average detection rate

of 92.45% for maize seedlings (Ruan et al., 2023). proposed a novel

crop row detection method for unmanned agricultural machinery

based on YOLO-R. This method incorporates the DBSCAN

clustering algorithm to accurately estimate the number of crop

rows present in an image, as well as the number of crops within each

row (Hu and Huang, 2021). sought to address the challenges posed

by weed distribution and lighting intensity on crop row detection.

To achieve this, they proposed an enhanced YOLOv4 network

model combined with a clustering algorithm. The algorithm

exhibited reliable detection performance in scenarios with isolated

weed distribution and optimal lighting conditions. However, its

detection effectiveness was found to be compromised in situations

with high weed pressure (Diao et al., 2023). proposed a navigation

line extraction algorithm for a maize spraying robot using an

improved YOLOv8s network model and the Atrous Spatial

Pyramid Pooling (ASPP) technique. They located the navigation

lines by extracting feature points from the maize canopy in the

maize field. Their methods demonstrated higher accuracy and

stability compared to other algorithms such as SUSAN corner

detection and FAST corner detection.

Detecting crop rows accurately in complex field conditions,

characterized by low light intensity and high weed density, presents

significant challenges. To overcome these challenges, researchers

have been diligently investigating novel methodologies (Wang S.

et al., 2023). introduced an improved YOLOv5 network model and

a centerline extraction algorithm for detecting straight and curved

crop rows, specifically designed for rice seedlings. Nevertheless, this

method did not consider the complexity introduced by different
frontiersin.org
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growth stages or environmental conditions (Yang et al., 2023).

proposed a method that combines the YOLOv5 network model,

hyper-green method, and Otsu method. Researchers have

endeavored to tackle the intricacies involved in detecting crop

rows under complex field conditions, characterized by factors

such as high weed presence, dense distribution, leaf occlusion,

and broken rows. To address these challenges, researchers have

employed diverse methodologies. These approaches involve

segmenting the crop rows and background within the region of

interest, locating feature points using the FAST corner detection

algorithm, and fitting the lines of maize crop rows using the least

squares method (Liang et al., 2022). introduced an algorithm that

combines edge detection with the Otsu method to accurately

determine the contour of seedling columns in wide-row planting

cotton with two narrow rows. To address challenges such as missing

seedlings and furrow interference, they employed the least squares

method to fit the navigation line in the gap between the two narrow

rows (Wang and He, 2021). presented a robust approach for

accurately detecting apple fruitlets in challenging growth

environments. These environments are characterized by uncertain

lighting conditions and the occlusion of apple fruits within clusters.

To address these challenges, they utilized the channel pruned

YOLOv5s network model. This algorithm effectively simplified

the YOLOv5s model while maintaining high detection accuracy

(Meng et al., 2023). have developed a spatio-temporal convolutional

neural network model that leverages the Transformer architecture

for the detection of pineapple fruits. Utilizing a dataset of 2,000

annotated images, the model achieves an optimal detection

accuracy of 92.54% for the single-category target of pineapples.

The challenge escalates as images captured from greater distances

include smaller targets and a higher number of instances,

complicating the detection accuracy. Despite these complexities,

the model maintains high detection rates while boasting an average

inference time of merely 0.163 seconds. In the realm of litchi

harvesting (Wang et al., 2023), addressed the issue of branch

occlusion leading to picking failures. By integrating the YOLOv8

model with both monocular and binocular image processing

techniques, they investigated a method for the identification and

localization of litchi picking points, incorporating a visual system

for the active removal of obstructions. The precision of segmenting

litchi fruits and branches reached 88.1%, with an average

localization error for picking points at 2.8511mm, demonstrating

a significant advancement in the automation of fruit harvesting (Fu

et al., 2021). improved the YOLOv3-tiny model to enhance

differentiation between kiwifruit and complex backgrounds, as

well as address fruit occlusion issues. The model effectively

utilized low-light information in nighttime environments,

resolving the problem of insufficient lighting. Even when using

small hardware devices, it achieved real-time kiwifruit detection in

orchards (Zhang et al., 2023). enhanced the YOLOv4 model by

integrating the lightweight neural network Mobilenetv3 and

depthwise separable convolution. This modification aimed to

address the limited feature extraction capability found in

lightweight models. The proposed approach exhibited notable

advancements in terms of detection accuracy and speed for tea

canopy shoots. Extensive validation experiments conducted in tea
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plantation environments showcased its robust performance across a

range of lighting conditions.

This study aims to further the development of intelligent

recognition capabilities for crop row navigation lines in maize

weeding machinery, particularly for intertillage operations. By

focusing on the challenges posed by variable and complex field

conditions at different growth stages, and the necessity for model

adaptability during nighttime operations, we propose an

optimization of the YOLOX-Tiny single-stage detection network

model. This optimized, lightweight detection methodology is

designed to accurately identify maize crops under various growth

conditions, facilitating the extraction of corresponding navigation

lines. Additionally, the reduction in model size is essential for

deployment on embedded systems, ensuring practical applicability

across a range of agricultural settings.
2 Materials and methods

This chapter provides a detailed exposition of the modifications

implemented on the YOLOX model for its application in maize

crop recognition tasks. Initially, Section 2.1 introduces the

comprehensive experimental workflow, encompassing data

collection and preprocessing, model training and optimization, as

well as model deployment and application. Subsequently, Section

2.2 delves into the principal modifications made to the structure of

the YOLOX-Tiny model, such as multi-scale prediction, the

integration of attention mechanisms, and the incorporation of the

SPPF module. Section 2.3 discusses our adoption of a Gamma

image enhancement method based on Retinex theory, aimed at

improving image recognition performance under varying lighting

conditions. In Section 2.4, we present the evaluation results of the

model on the test dataset and compare its performance with other

prevalent approaches. Finally, Section 2.5 outlines our use of the

least squares method for extracting navigation routes.
2.1 Experimental procedure

The experimental workflow is comprised of three main steps:

The first part involves the collection and processing of maize

images. In this phase, meticulous preprocessing tasks are performed

on the acquired maize imagery, including denoising and contrast

adjustment to ensure image quality. Subsequently, image

augmentation techniques are employed to expand the dataset,

laying a solid foundation for model training.

The second part pertains to the training and optimization of the

model. A series of innovative modifications were applied to the

existing YOLOX network model, including but not limited to the

introduction of a new illumination adjustment module to adapt to

varying lighting conditions, the integration of an enhanced

attention mechanism to improve the model’s recognition

capabilities of maize plant features, and the substitution of the

original loss function to optimize the training process. Given the

limitations in the number of samples, data augmentation strategies

were utilized. These optimization measures resulted in significant
frontiersin.org

https://doi.org/10.3389/fpls.2024.1338228
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Gong et al. 10.3389/fpls.2024.1338228
improvements in both accuracy and detection speed of the model.

Furthermore, the model was comprehensively benchmarked against

other leading object detection models, and its comprehensive

detection capabilities were further validated by substituting

different feature extraction networks.

The third part focuses on the deployment and application of the

model. In this stage, the optimized model was deployed on a mobile

control terminal to achieve precise identification of maize plant

positions. By fitting crop rows using the least squares method, the

midline between two fitted lines was determined and used as a

navigation guide to direct the weeding machinery’s path. This

intelligent navigation system not only minimizes damage to maize

plants but also effectively removes weeds between crop rows. After a

series of validation tests, the detection algorithm was confirmed to

possess the capability for efficient recognition and control

operations in intelligent weeding machinery. The research

workflow diagram is shown in Figure 1.
2.2 Data materials

2.2.1 Data collection
The prime weeding window for maize, identified as the 3-5 leaf

stage, dictated the scheduling of this experiment for June 10-15,

2023. The study was conducted on plots 2-10 of the second division

of Friendship Farm. Utilizing a Nikon D3100 camera, multi-angle

photography of the maize fields was executed. The camera was
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positioned at a height of 1.5 meters, with shooting angles ranging

between 30° and 60°. Photographic sessions were arranged at four

distinct times: 8:00 AM, 12:00 PM, 6:00 PM, and 8:00 PM, under

varying illumination conditions, culminating in a total of 800

images. The photographic process meticulously accounted for

several factors including leaf occlusion, straw residue cover, plant

gaps, weed interference, the dense planting of maize crops, and the

application of nighttime supplemental lighting along the crop rows,

as depicted in Figure 2.

To enhance the accuracy of crop identification under conditions

of nighttime supplemental lighting, specific attention was given to

capturing images with additional illumination during the night. The

supplemental lighting was provided at an intensity of 1500 to 2500

lumens, installed at a height of 1.5 meters to align with the camera’s

elevation. Camera settings were meticulously adjusted to an

aperture of f/2.8, a shutter speed of 1/250s, and an ISO value of

200, to optimize image quality for the intended analysis.

The original images were processed for color, brightness,

contrast, noise, rotation, and mirroring as shown in Figure 3.

Following these processes, the dataset expanded from the initial

800 to 5600 images. The augmented dataset was divided into

training, validation, and test sets in an 8:1:1 ratio.

2.2.2 Dataset labeling
Prior to preparing the training dataset, meticulous labeling of

the maize crop images was performed, as demonstrated in Figure 4.

To construct a high-quality maize seedling dataset, we employed the
FIGURE 1

Research workflow diagram.
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FIGURE 3

Data enhancement processing.
FIGURE 2

Dataset image of maize crop rows.
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professional image annotation software makesense, creating precise

image labels through manual operation. During the data labeling

phase, maize seedlings were specifically marked, allowing the you

only look once object (YOLO) detection model to be optimized to

recognize a single target category—maize seedlings. This single-

target detection strategy significantly enhances the model’s

processing speed, as computational resources are focused on

identifying the sole target type rather than being dispersed among

multiple categories. This approach is particularly beneficial for real-

time scenarios and resource-constrained embedded systems.

During labeling, special care was taken to avoid marking positive

samples with unclear pixel areas. This strategy helps reduce model

overfitting, where the model performs well on training data but

poorly on unseen new data.
2.3 Methods

The primary objective of this investigation is to enhance the

YOLOX-Tiny model through the development of a real-time, high-

precision target detection algorithm. This advancement aims to

facilitate the automatic navigation control of weeding machinery

within maize fields, a critical factor in boosting weeding efficiency

and diminishing the dependence on manual labor. The specific

goals of our research are outlined as follows:
Fron
1. To introduce a methodology based on deep learning,

capable of achieving high-precision in the recognition of

maize crops under a variety of lighting conditions. This

aspect is particularly vital for nocturnal operations.

2. To refine the algorithm to ensure its capability for real-time

execution on embedded systems, thus meeting the online

control prerequisites.

3. To enhance the accuracy of recognition, enabling the

precise identification of maize within complex

environmental settings.
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4. To create a navigational centerline that provides accurate

directional guidance for the weeding trajectory, thereby

facilitating the automation of the weeding process.
YOLOX-Tiny network model, a lightweight version of YOLOX,

strikes a good balance between detection speed and accuracy with

its streamlined network architecture and fast detection speed

(Zheng et al., 2021). This algorithm shows potential for

application in field-based intelligent weeding robots (Liu et al.,

2023). Therefore, in this study, considering the model size,

detection accuracy, and detection speed, we have made

improvements to the detection network for maize crop rows

based on the lightweight YOLOX-Tiny model.

2.3.1 Enhanced network architecture
The improved network structure based on the YOLOX-Tiny

network model framework is illustrated in (Figure 5). The

highlighted sections in the figure represent the main

improvements, which include multi-scale prediction and the

coordinate attention module. In this structure, “Conv” denotes

the depth convolution operation, “BN” represents batch

normalization, “upsample” refers to the upsampling operation

using the nearest neighbor algorithm, and “Concat” signifies the

concatenation of feature maps. The “CBS”module consists of Conv,

BN, and SiLU (Sigmoid Linear Unit) activation function.

The backbone of the network adopts the Modified CSPNet and

SiLU activation function to extract deep semantic information from

the input image. The “Focus” layer is composed of slice operations

and basic convolution, which achieves downsampling while

ensuring low parameter count and computational complexity.

The spatial pyramid pooling fusion (SPPF) layer consists of max

pooling operations with kernel sizes of 5×5, 9×9, and 13×13, along

with basic convolution. This layer is used to enlarge the receptive

field without significantly increasing the model size.

In summary, the modified YOLOX-Tiny network model

incorporates improvements such as multi-scale prediction and the
FIGURE 4

Data labeling diagram.
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coordinate attention module. The backbone network employs the

Modified CSPNet and SiLU activation function to extract deep

semantic information. The network structure achieves

downsampling through the “Focus” layer and enlarges the

receptive field using the SPPF layer, while maintaining a low

parameter count and computational complexity.

To enable multi-scale prediction, the YOLOX-Tiny framework

incorporates the concept of the Feature Pyramid Network (FPN)

and introduces an additional prediction feature map, P2. To

enhance detection performance across different object scales, a

specific implementation is adopted in the YOLOX-Tiny

framework. Firstly, the P3 layer, which contains contextual

information fused effectively, is selected. Subsequently,

convolution and upsampling operations are employed to increase

the size of the feature map. This enlarged feature map is then

concatenated with the I2 layer, which contains detailed information.

Finally, the feature map P2 is generated by fully integrating the

features using the basic building block CSP2_1. By introducing this

additional feature map, the YOLOX-Tiny model effectively
Frontiers in Plant Science 07
improves the likelihood of object detection, surpassing the three

prediction feature maps of the original YOLOX-Tiny model.

First, the input image is resized to 640 pixels×640 pixels. The

Backbone network is then applied, producing feature maps. the

predicted feature maps P2-P5 (with sizes of 160×160, 80×80, 40×40,

and 20×20) are passed through a shared convolutional layer and

two additional branch convolutions to decouple the localization and

classification tasks. The branch convolutions consist of deformable

convolution and depth convolution units (CBS). Each task-specific

convolution generates predictions for the object’s position, class,

and IoU-aware classification scores.

In our study, we incorporate efficient channel attention (ECA)

modules prior to CSP1-3 in the backbone network, as well as

coordinate attention (CA) modules following the third CSP2-1.

The ECA module is a lightweight channel attention module, as

depicted (Figure 6). It computes channel-wise statistics of the input

feature map by employing average pooling. These statistics are then

multiplied with the original channels after being processed by an

adaptive convolution layer and a sigmoid activation function. This
FIGURE 6

Efficient channel attention block structure.
FIGURE 5

The improved YOLOX-Tiny model structure. CBS is a combination of convolution、batch normalization layer and Swish. ECA is efficient channel
attention. CA is Coordinate Attention. SPPF is spatial pyramid pooling fast.
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multiplication operation amplifies the contribution of channels

with higher importance and weakens the contribution of channels

with lower importance. The size of the adaptive convolution kernel

is determined using Equation 1.

ksize =
log2 Cin + 1

2

����
����
odd

(1)

In the Equation 1, the variable ksize denotes the size of the

adaptive convolution kernel. The variable Cin denotes the number

of channels present in the input feature. The jjodd is used to indicate

that the nearest odd number is selected.

The CA module is a lightweight channel and spatial attention

module. It leverages the correlations within the given data to

highlight important features. The CA module incorporates

positional information into channel attention, enabling modeling

of both inter-channel relationships and inter-dependencies among

positional information. Furthermore, this module is plug-and-play,

requiring minimal computational and parameter overhead, making

it highly suitable for deployment in lightweight algorithms.

The structure of the CA module is illustrated (Figure 7). Given

an input feature map, denoted as I ∈ RC�H�W , the CA module

operates as follows: Firstly, two average pooling layers are applied

along different spatial dimensions with pooling kernel sizes of (1,

W) and (H, 1), respectively. This yields two feature vectors that

aggregate information from different dimensions. This approach

captures dependencies in the current spatial direction while

preserving precise positional information from the other spatial

direction. Secondly, the two feature vectors are concatenated

through dimension transformation and then processed by a 1×1

convolution. This effectively utilizes the captured positional and

correlation information to accurately highlight regions of interest.

The resulting feature vector has a size of C/r × 1 × (H + W), where

the parameter r controls the reduction ratio of the number of

channels, enabling reduced computation and inference time.

Thirdly, the feature vector is split along the spatial dimension

into two independent feature vectors, which are transformed into

feature maps with the same number of channels through 1×1

convolution and activation functions. Lastly, the resulting feature

maps are element-wise multiplied with the input feature map.

The YOLOX-Tiny framework incorporates the ECA module

and CA module in the backbone network to enhance feature

representation. The enhanced features are fused with features at

different scales, and the resulting feature maps are used for object

detection tasks. The decoupled convolutional branches enable the

network to generate predictions for object localization,

classification, and IoU-aware classification scores.
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The spatial pyramid pooling fast (SPPF) module is introduced

at the end of the backbone network. The SPPF structure inherits the

advantages of spatial pyramid pooling (SPP) and achieves the fusion

of local and global features. This approach enhances the expressive

power of the feature maps and facilitates the detection of objects of

different sizes in the image. Moreover, the SPPF module offers faster

computation speed.

2.3.2 Optimization function
The maize weeding crop row recognition system requires the

capability to accurately detect and locate maize crops under diverse

environmental conditions. For instance, the appearance and shape

of may vary with different weather conditions, such as under intense

sunlight or during overcast, rainy weather. By incorporating an

augmented loss function, the model can be rendered more robust,

enabling it to better adapt to these variations and accurately detect

and locate maize seedlings.

During the training phase for crop object detection tasks, it was

observed that the target localization loss converges slowly, especially

for small objects in the image. Due to the small size of the objects,

the predicted bounding boxes often fall within the ground truth

boxes, resulting in an inclusion relationship between them. The

complete intersection over union(CIoU) loss function improves the

accuracy of predicted bounding boxes, enabling them to be aligned

with the positions of the ground truth boxes.

When the intersection over union(IoU) loss function is

employed as the regression loss for bounding boxes, it fails to

provide accurate displacement directions for the bounding boxes in

the presence of overlap issues. Consequently, this problem leads to

subpar performance in image localization. The CIoU loss function

is an improved version of the IoU loss function, which incorporates

the calculation of center position and aspect ratio errors. On one

hand, it addresses the issue of overlapping bounding boxes. On the

other hand, it takes into account the overlap area, distance between

center points, and aspect ratio, resulting in faster convergence of the

loss function. Therefore, in this study, the CIoU loss function is

adopted as the formula for bounding box regression loss, as shown

in Equation 2.

LCIoU = 1 − RIoU + r(b,bgt )
c2 + av

a = v
(1−RIoU)+v

,

v = 4
p2 (arctan wgt

hgt − arctan w
h )

2

8>>><
>>>:

(2)

In the Equation 2, the term RIoU denotes the intersection over

union between the predicted and ground truth bounding boxes. The

variable r denotes the Euclidean distance between two points. The
FIGURE 7

Coordinate attention block structure.
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variables b and bgt denote the center point of the predicted and

ground truth bounding boxes, respectively. The variable c denotes

the diagonal distance between the minimum bounding boxes of the

predicted and ground truth bounding boxes. The parameter a is

used to adjust the coordination ratio between the predicted and

ground truth bounding boxes. The parameter v is used to measure

the aspect ratio consistency between the bounding boxes. Finally,

the variables wgt , w, hgt and h denote the width and height of the

predicted and ground truth bounding boxes.

The IoU-aware classification loss and category loss are

computed using the cross-entropy loss function. In the later

stages of model training, an additional L1 regularization boundary

box loss function is incorporated to further reduce the model’s

localization error. Therefore, this study adopts the CIoU loss

function as the bounding box regression loss function, as shown

in Equation 3.

L = 1
Npos

CrossEntropy(Ppos
Cls :,G

pos
Cls :)+

l1
Npos

CrossEntropy(Ppos+neg
Obj : ,Gpos+neg

Obj : )+

l2
Npos

LIoU (P
pos
box ,G

pos
box) +

l3
Npos

L1(P
pos
Re g :,G

pos
Re g :)

(3)

In the Equation 3, the term CrossEntropy denotes the loss

function known as cross-entropy. The LIOU term denotes the loss

function called CIoU. The L1 term denotes the regularization

boundary box loss function. Npos denotes the count of positive

samples. The variables P and G denotes the predicted and ground

truth samples, respectively. The terms pos and neg denotes the

positive and negative training samples, respectively. Cls., Obj., box,

and Reg. denotes the classification scores, IoU-aware scores,

bounding boxes, and localization offsets, respectively.

2.3.3 Image enhancement preprocessing
To enable all-weather operations, a floodlight point light source

was utilized for active illumination during nighttime maize crop

image acquisition (Chen and Chiu, 2023; Jia et al., 2023). However,

the nighttime illumination method falls short of replicating the

illumination effect of parallel sunlight during the daytime, resulting

in a certain degree of degradation in the captured maize crop images

(Rahman et al., 2016; Liu et al., 2018; Liao et al., 2020). These

challenges include a low overall illumination level in the field of
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view and limited color contrast between the maize plants and the

background, especially at the image edges. These factors can

significantly hinder the effectiveness of subsequent machine vision

recognition tasks (Zhang et al., 2024). As shown in Figure 5, the

significant differences in image characteristics resulting from

varying light intensities are evident. The low-light maize image in

Figure 8A exhibits texture and color degradation, leading to reduced

contrast between the foreground and background. In contrast, the

high-light maize image in Figure 8B is bright and clear, facilitating

target detection.

To facilitate recognition under various lighting conditions, our

approach incorporates a Gamma image enhancement algorithm for

image preprocessing, inspired by the Retinex theory. This algorithm

is designed to accentuate crop contours and details, thereby

enhancing the recognition capability of images captured under

low-light conditions. We collected images under different lighting

conditions, observing that images from areas closer to the light

source exhibited higher brightness and were easier for target

detection, whereas images from areas further from the light

source suffered from reduced quality and diminished foreground-

background contrast. The Gamma image enhancement algorithm

employs an adaptive adjustment of image brightness by calculating

the number of pixels at each brightness level. By integrating the

enhanced brightness layers, the output image achieves a more

uniform brightness. Such preprocessing effectively mitigates the

issue of image quality variation due to different distances from the

light source, thus improving the model’s recognition performance

across various lighting conditions.

The main steps of this image enhancement algorithm are

as follows:

Separating the brightness component and reflection component

of the image using the Retinex theory, as shown in Equation 4.

Rc(x, y) =
Ic(x, y)
L(x, y)

, c ∈ r, g, bf g (4)

In the Equation 4, denotes the separated reflection component,

Ic(x, y) denotes the brightness of each channel in RGB, and L(x, y)

denotes the brightness component of the image.

The adaptive gamma correction algorith Rc(x, y) m is utilized to

correct the brightness component. Len(x, y) represents the corrected

luminance component, as shown in Equation (5).
A B

FIGURE 8

Differences in images under different distances from the light source. (A) Low-light image; (B) High-light image.
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Len(x, y) = L(x, y)g (x,y) (5)

Where g (x, y) denotes the coefficient matrix.

Determine the parameters for Gamma correction based on the

distribution of brightness values, as shown in Equation 6.

g (l) = 1 −o
l

v=0

Pw(v)
sp

(6)

sp = o
l

v=0
Pw(l) (7)

In the Equation 7,o
l

v=0

Pw(v)
sp

denotes the cumulative distribution

function of the brightness component, and Pw(l) denotes the weight

distribution function of each brightness value. Pw(l) represents the

weight distribution function of each brightness value, as shown in

Equation 8.

Pw(l) =
P(l) − Pmin

Pmax − Pmin
(8)

In the Equation 8, P(l) denotes the probability density function

of the brightness component

P(l) =
nl
np

(9)

In the Equation 9, nl denotes the number of pixels

corresponding to the respective brightness, and np denotes the

total number of pixels in the brightness component.

The final enhanced image, Lcen(x, y) is obtained by fusing Len(x

, y) and Len(x, y) , thereby restoring the original image’s color and

details, as shown in Equation 10.

Lcen(x, y) = Rc(x, y) · Len(x, y) (10)

The brightness enhancement effect of the illumination

adjustment module on low-light nighttime images is

demonstrated (Figure 9). The low-light images undergo Gamma

transformation, resulting in an overall increase in brightness in the

image field. This enhancement improves the distinction between

foreground targets and background images, thereby facilitating the

detection of maize crop targets at long distances. Additionally, the

grayscale variation of the low-light maize crop rows before and after
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brightness enhancement by the illumination adjustment module is

depicted (Figure 10). After the illumination adjustment, the

grayscale distribution of the image becomes more uniform, with a

larger number of pixels distributed in the middle range of

intensities. This improvement in visual quality and accurate

identification of maize crops contributes to enhancing the

overall performance.

2.3.4 Computation of the central navigation line
for crop row fitting
(1) During the identification process, maize plants are also

present around the periphery of the captured image. Thus,

to accurately extract target position information, a

predefined crop row area is established, which allows for

the extraction of targets solely within the set boundaries.

The target area encompasses the left and right crop rows,

which can be approximately delineated using image

processing techniques, as illustrated in Figure 11A.

(2) Acquisition of target position information is achieved

through the refined output of the YOLOX-Tiny model,

which provides bounding box information of the detected

targets as shown in Figure 11B. This includes the

coordinates of the top-left and bottom-right corners of

the bounding box. The central coordinates of the targets

are computed by determining the horizontal and vertical

midpoints of the bounding boxes, respectively.

Consequently, this establishes datasets for the coordinates

of the left and right crop rows. The central coordinates of

the targets serve as the independent variable,ith the

corresponding y -coordinates as the dependent variable.

Datasets are formed by pairing all central x-coordinates

with their corresponding y-coordinates.
In steps (1) and (2), beyond setting the crop row boundaries,

additional detection logic can be incorporated to identify instances

of missing plants and offsets in seedling positioning. For instance,

missing plants can be detected by calculating the distance between

successive plant positions. If the distance exceeds a predefined

threshold, it can be flagged as a potential gap in planting. A
A B

FIGURE 9

Variation in image brightness. (A) Original night low illumination image; (B) Gamma transformed image.
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distance threshold (Dthresh) is established, and for each seedling pair

i and i+1, the vertical distance (Di,i+1) is calculated. If (Di,i+1 >

Dthresh), the point i+1 is marked as the starting point of a missing

plant. The recognition results of missing plants and offsets are then

used to refine the dataset. Points marked as gaps can be

selectively ignored.
Fron
(3) To mitigate the influence of off-center seedlings on the

fitting results, a weighted least squares method is employed.

The fundamental principle of the least squares method is to

determine the parameters of the fitting line by minimizing

the sum of squared residuals. The weighted least squares

fitting is applied to the dataset to obtain the line parameters.

For each data point (xi, yi), a weight wi is assigned based on

its distance from the center of the crop row, with points

closer to the center receiving higher weights.
The objective function of the weighted least squares method

aims to minimize the sum of the weighted squared residuals, as

shown in Equation 11:

S =o
n

i=1
wi(yi − (mxi + b))2 (11)

In the Equation 11,m denotes the slope, b denotes the intercept,

and wi denotes the weight for the ith data point.

Solving the weighted least squares problem typically involves

resolving the weighted normal equations, as shown in Equation 12:
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A = owix
2
i  owixi owixi owi

� �½m b � owixiyi owiyi
� �

(12)

By solving this set of equations, we obtain the parametersm and

b for the weighted least squares fit.

The equation for the central navigation line is presented in

Equation 13. With the equations of the two fitted crop row lines

y = m1x + b1 and y = m2x + b2, as shown by the two red lines in

Figure 11C, the intersection point (if they intersect) of these two

lines is computed by solving the system of equations to find the

point (xi, yi). The central navigation line is the line that connects the

midpoint of the two lines.

m1x + b1 = m2x + b2 (13)

The slope of the central line (mc) is computed as the harmonic

mean of the slopes of the two lines, as depicted in Equation 14:

mc = tan (
arctan (m1) + arctan (m2)

2
) (14)

The intercept (bc) denotes determined by substituting the

intersection point (xi, yi) into the central line’s Equation 15:

y = mcx + bc (15)

For efficient computation, matrix operation libraries are utilized

to perform the least squares calculations, leveraging optimized

linear algebra operations for enhanced speed. The fitting result,

depicted in Figure 11D, produces the green central navigation line.
A B D EC

FIGURE 11

Fitting of Crop Row Navigation Lines. (A) Original image; (B) lmage recognition and localization; (C) Crop recognition; (D) Crop row fitting; (E)
Navigation lines.
A B

FIGURE 10

Comparison of image grayscale. (A) Original night low illumination image Gamma; (B) Gamma transformed image.
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This line guides the weeding machinery along the navigational path,

preventing damage to the crops. In practical applications,

particularly in machine vision and autonomous navigation

systems, this central line serves as an estimation to direct robots

or equipment navigation between two crop rows.
2.4 Experimental methodology

2.4.1 Model training
The experimental hardware platform was a dell workstation

equipped with an intel core i7-12700H processor, 32GB of RAM,

and an nvidia GeForce RTX 4070 graphics card. The operating

system was Windows 11, with the deep learning framework being

PyTorch version 2.0.1, and Python 3.9.

The experiment employed uniform training parameters as

outlined in Table 1. The optimizer used was standard stochastic

gradient descent (SGD), with momentum, decay coefficient, and

Nesterov momentum set to 0.9, 0.0005, and True, respectively.

These settings were chosen to facilitate accelerated convergence and

enhance the generalization capability of the model. A cosine

annealing learning rate strategy was implemented as the learning

rate scheduler, balancing rapid convergence with avoidance of local

optima. The minimum learning rate was set to 5% of the initial rate

and was employed during the final 15 epochs to maintain model

stability in the latter stages of training. The batch size was set to 16,

with a total of 400 epochs.

For the training set preprocessing, a mosaic data augmentation

strategy was adopted. This strategy enhances the model’s

generalization ability and detection accuracy by combining

multiple images and a variety of augmentation operations to

simulate a richer set of training samples. The online Mosaic

augmentation method, which randomly applies image

enhancement transformations during training, is widely used in

deep convolutional model training to bolster detection precision

and generalization performance. However, given that images

augmented with the Mosaic technique can deviate from natural

appearances, this method was utilized only for the first 280 epochs.
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Subsequently, the mosaic augmentation was disabled to prevent

overfitting, thus reinforcing the model’s learning of complex

scenarios and targets in the initial training phase while avoiding

excessive fitting in the later stages.
2.4.2 Evaluation metrics
This study assesses the effectiveness of the detection model

through various metrics, including precision (P), recall (R), F1 −

score, average precision (AP), and Detection Speed (Carvalho et al.,

2019; Steurer et al., 2021). Detection Speed refers to the time

required by the model to process a single image. The samples can

be categorized into four types based on the combination of their

actual class and the predicted class by the model: True positive (TP),

where the sample is positive and predicted as positive; False

negative (FN), where the sample is positive but predicted as

negative; False positive (FP), where the sample is negative but

predicted as positive.

Precision (P): Precision quantifies the proportion of positive

instances correctly identified by the model out of all the positive

instances it detects. This metric evaluates the model’s accuracy in

identifying true positives, effectively measuring the extent of false

positive errors. The precision is shown in Equation 16:

P =
TP

TP + FP
� 100% (16)

In the Equation 16, True positive (TP) denotes the number of

correctly detected maize instances, and False negative (FP)

represents the number of times the model erroneously identifies

the background as maize.

Recall (R): the proportion of positive instances that the model

successfully detects out of the total actual positive instances. It

assesses the model’s ability to recognize true positives, gauging the

extent of false negative errors. The recall is shown in Equation 17:

R =
TP

TP + FN
� 100% (17)

In the Equation 17, True negative (FN ) denotes the number of

maize instances that the model fails to detect.

Average precision (AP): the model’s accuracy in localizing and

classifying targets within images. A higher AP value signifies

superior target detection performance, indicating the model’s

proficiency in accurately identifying and localizing targets with

minimal false positives and negatives. The AP is shown in

Equation 18:

AP =
Z 1

0
P(R)dR (18)

In the Equation 18, P(R) denotes the integrated area under the

precision-recall curve for a single-class detection target. F1 − score:

the harmonic mean of precision and recall, providing a composite

measure of the model’s precision and recall. A higher F1 − score

denotes a more optimal balance between precision and recall. The

F1 − score is shown in Equation 19:
TABLE 1 Training parameters.

Name Value

Optimizer SGD

Momentum 0. 9

Weight decay 5×10−4

Nesterov True

Learning rate scheduler Type is CosineAnealing,
Learning rate is 0. 0025,
Min lr ratio is 0. 05

Batch 16

Epoch 400

Mosaic Img scale is (640, 640)
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F1 =
2PR
P + R

� 100% (19)
2.4.3 Assessment of fit line evaluation
To evaluate whether the crop row fit lines meet the established

criteria, the average fit time and average angular error are used as

assessment metrics.

The difference in radians between manually annotated and

algorithmically fitted crop row lines is compared to calculate the

angular difference between the two lines, as shown in Equation 20:

Dq = arctan (a1) − arctan (a2)j j (20)

In the Equation 20, a1 and a2 are the slopes of the two lines,

respectively. A smaller angular difference indicates a minor angular

deviation between the two lines.

The average fit time for crop rows is calculated, as shown in

Equation 21:

t =
o
M

m=1
tm

M
(21)

In the Equation 21, tm denotes the fitting time required for the

crop rows in image m, and M denotes the total number of images.

The average angular error for crop rows, na denotes calculated

as presented in Equation 22:

na =
1
Ao

A

i=1
Dqi (22)

In the Equation 22, A denotes the total number of maize crop

rows, and Dqi denotes the fitting deviation for the i-th row.
3 Results

This chapter delves into a thorough analysis and discussion of

the experimental results obtained from the enhanced YOLOX

model in maize crop recognition tasks, juxtaposing these findings

with other pertinent studies. Initially, Section 3.1 provides a detailed

evaluation of the performance of the improved YOLOX-Tiny model

on the test dataset, including key metrics such as recognition

accuracy and false detection rates under various lighting

conditions and scenarios. Subsequently, Section 3.2 employs

feature visualization techniques to observe the features extracted

by the model at different convolutional layers, thereby analyzing the

enhancement in the model’s recognition capabilities. Section 3.3

presents the experimental outcomes of our proposed least squares

method for fitting navigation routes, including metrics such as

fitting time and angular error.
3.1 Model training results and analysis

To comprehensively evaluate the effectiveness of the proposed

improvements in this study, we conducted a series of cumulative

experiments with the enhanced algorithm and summarized the
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results in Table 2. By comparing the data in the table, we can gain a

detailed understanding of the performance and related parameter

configurations of different models in the task of object detection.

Initially, the YOLOX-Tiny model, augmented with the

illumination adjustment module, achieved an average precision of

90.21%, with a model parameter count of 5:04� 106, and a

detection time of 11.40 milliseconds. These results indicate that

the model demonstrates commendable performance in object

detection tasks, accurately identifying and localizing target objects.

Further, researchers improved the model by adopting a multi-

scale prediction approach, which increased the AP to 92.42%.

Multi-scale prediction enables the model to detect targets at

various scales, effectively adapting to and recognizing objects of

different sizes, thereby significantly enhancing detection accuracy.

Moreover, this study also incorporated mechanisms such as

efficient channel attention and coordinate attention. Although the

introduction of these attention mechanisms resulted in a slight

decrease in AP to 92.15%, they aid the model in focusing more

intently on the key features of targets, thus improving the precision

and robustness of detection.

Finally, we optimized the loss function to further refine the

YOLOX-Tiny model, elevating the AP to 92.2%. This outcome

suggests that the optimized loss function can more effectively guide

the model in learning the feature representations of target objects,

thereby improving detection performance. Although enhancements

in model performance were accompanied by an increase in the

number of parameters, the detection time remained relatively

stable. Overall, by implementing multiple optimizations on the

model, we have not only significantly improved model

performance but also maintained a low detection time, achieving

a high AP value.

The evolution of Average Precision and the loss function during

the training process of the model was depicted in Figures 12 and 13.

Initially, there was a significant improvement in accuracy, while the

loss function showed fluctuations. After 100 epochs, both accuracy

and the loss function stabilized, indicating the model’s transition to

the fine-tuning phase. This transition was attributed to the

exclusion of Mosaic data augmentation, which addressed

inaccuracies in object annotations caused by excessive

augmentation. Furthermore, adopting a fixed minimum learning

rate strategy addressed concerns regarding sluggish weight updates.

Additionally, incorporating the L1 regularization bounding box loss

function effectively reduced object localization errors and improved

sensitivity to localization deviations. As the algorithm underwent

iterative enhancements, there was an observable acceleration in

convergence speed and an improvement in recognition accuracy.

The refined network architecture notably amplified accuracy, while

the numerical disparities in the loss function were relatively

insignificant. However, enhancing the loss function resulted in a

noticeable decrease in its numerical value, accompanied by

corresponding accuracy gains.

To evaluate the accuracy, robustness, and stability of the

improved YOLOX-Tiny model, we trained four other object

detection networks on the same dataset: SSD, YOLOV4-Tiny,

YOLOv5s, and YOLOX-Tiny. The SSD model used images with

dimensions of 512×512 pixels, while the other models utilized
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images with dimensions of 640×640 pixels for testing the model’s

detection time. The results are presented in Table 3.

Based on the data and comparative analysis presented in

Table 3, we can draw the following conclusions:

The proposed optimized model outperformed the other models

in terms of maize crop row detection. It achieved the highest scores

in mean average precision (92.2%), F1-score (90.2%), recall (89.1%),

and precision (92.4%), indicating its high accuracy and

comprehensiveness in identifying maize crop rows.

In comparison, the SSD model had lower average precision

(89.2%) and F1-score (84.5%). Although it had the highest detection

accuracy (93.45%), it missed approximately twice as many maize

seedlings compared to the improved YOLOX-Tiny model.

Additionally, the SSD model had a large model size of 95MB,

making it unsuitable for embedded devices. On the other hand, the

YOLOV4-Tiny model had the shortest detection time (7.62

milliseconds) but exhibited the lowest detection accuracy (89.6%).

It also had a higher number of background misclassifications as

crops, indicating limitations in accuracy. In contrast, the improved

YOLOX-Tiny model achieved a good balance between model size,
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detection accuracy, and speed. It had a detection time of 15.6

milliseconds, a 16.4% improvement over the YOLOX-Tiny model,

while still maintaining high detection accuracy. Furthermore, the

improved YOLOX-Tiny model had a smaller model size of 18.6 MB,

a 7.1% reduction compared to the YOLOX-Tiny model. These

findings suggest that the improved YOLOX-Tiny model is suitable

for embedded devices, offering both high accuracy and faster

detection speed with a smaller model size.

In conclusion, the proposed optimized model demonstrated the

best overall performance in maize crop row detection, with higher

average precision, F1-score, recall, and precision. It is well-suited for

deployment on embedded devices, which has significant

implications for practical applications in maize crop row

detection tasks.

The detection results (Figure 14) were used to compare the

performance of five models in various aspects, such as dense maize

crops, missed seedlings in crop rows, straw residue coverage,

presence of weeds in crop rows, and nighttime supplemental

lighting. The SSD model exhibited missed detections and false

detections, especially in scenarios with higher weed presence and

straw residue coverage. Missed detections were more prominent in

nighttime conditions, indicating the vulnerability of the SSD model

to dense detection areas and environmental disturbances. The

YOLOV4-Tiny model showed improved performance in detecting

dense targets but struggled with accurately identifying small targets

occluded by leaves and distant crops. Nighttime lighting conditions

and occlusions between crops also affected the detection

performance of the YOLOv4-Tiny model, leading to missed

detection issues. The YOLOX-Tiny model achieved higher

accuracy in detecting close-range targets but compromised

recognition accuracy for small distant target crops due to its

lightweight network. However, compared to the SSD and

YOLOv4-Tiny models, the YOLOX-Tiny model adapted better to

different lighting conditions and could detect occluded fruits and

crops. It accurately identified cases where small distant target crops

were recognized as a single crop due to leaf occlusion. In regions

with rich weed coverage, it accurately identified crops that were

occluded by leaves and mistaken as a single crop. In nighttime crop

rows, it performed well in areas with close-range strong lighting but

had decreased recognition accuracy in areas with insufficient distant

lighting, potentially mistaking crops passing through as a single

crop due to leaf occlusion.

The YOLOv5s model exhibited high overall detection accuracy but

struggled with identifying small distant targets and occasionally

produced false positives. In this study, the improved YOLOX-Tiny

model was introduced, building upon the strengths of YOLOX-Tiny

while addressing missed detections and false positives. The improved

model demonstrated further advancements in recognition accuracy,

particularly in low-light conditions, effectively identifying crops even in

the presence of straw residue coverage. In challenging field conditions

characterized by dense weed growth, the model accurately discerned

crop features and achieved heightened precision in crop identification

under low-light conditions. Overall, the proposed the improved

YOLOX-Tiny model represented a significant enhancement in crop

detection performance.
TABLE 2 Performance comparison of algorithm Enhancements in a
cascade manner.

Models Average
precision
AP/%

Parameters/
106

Detection
time/ms

YOLOX-Tiny+LA 90.21 5.04 11.40

+multi-scale
prediction method

92.42 5.40 14.3

+Efficient Channel
Attention, ECA
+coordinate
attention CA

92.15 5.41 15.6

+loss function (The
improved YOLOX-

Tiny model)

92.17 5.6 15.6
FIGURE 12

AP curve during training.
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3.2 Model interpretability and
feature visualization

The current process of object detection using convolutional neural

networks (CNN) lacks adequate explanation, thereby limiting our

comprehension of the learned object features and impeding further

optimization of the model structure. To enhance the interpretability of

the model, feature visualization techniques are employed, wherein the

features extracted by different convolutional layers are transformed into

visual images. These images effectively portray the distinctive features

extracted by each convolutional layer. In order to facilitate a better

understanding of the features extracted by convolutional neural

networks, particularly before and after network structure

improvements, we conducted a visualization analysis of the features

from the P2-P5 multi-scale prediction layers. We specifically focused

on the recognition of crops under daylight and nighttime supplemental

lighting conditions, as depicted in Figure 15.

The improved YOLOX-Tiny model’s backbone network extracted

features such as color and texture from crops and background, enabling

the identification of maize crops and their corresponding background

regions. As the network depth increased and features were fused, it

further extracted abstract features of crops while smoothing out

background information. Subsequently, all the extracted features

were integrated within the detection network, effectively removing

background noise and highlighting the morphology of maize crops.
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This study presented the extracted features of maize crop detection in

complex natural environments using the improved YOLOX-Tiny

model, focusing on the perspective of feature extraction and

elucidating the process of maize crop detection using convolutional

networks. The proposed enhancements in the algorithm resulted in

superior coverage of objects of varying scales, surpassing the original

YOLOX-Tiny model in terms of response intensity and boundary

detection. The coordinate attention module extracted crucial channel

information, effectively filtering out background noise, while the

deformable convolution offset the sampling points based on the

object’s shape, enabling more precise coverage of the objects.
3.3 Crop row centerline
detection experiment

The accuracy of maize crop row recognition in this study was

unaffected, even though the images within the bounding boxes were

not preprocessed before locating the feature points. The proposed

model also reduced the fitting time for the centerlines of the crop

rows. The improved YOLOX model was deployed on a mobile

device for real-time testing of its detection and fitting performance.

The mobile device used was a 10-inch capacitive industrial tablet PC

equipped with an Intel(R) Celeron(R) CPU J1800 processor, 2GB of

RAM, and a 32-bit Windows 7 operating system. To validate this

claim, we compared the fitting results obtained using the proposed

least squares method combined with the center point of the

bounding box with the fitting results obtained using other

methods mentioned in the reference (Diao et al., 2023). These

methods include the SUSAN corner detection method + least

squares method (Lai et al., 2023), the Means method + least

squares method (Liu et al., 2020), and the FAST corner detection

method + least squares method (Montalvo et al., 2012). We

calculated the radian difference between the manually labeled and

fitted crop row lines, which represents the angular deviation

between the two lines.

The results of extracting the navigation lines of the intelligent

weeding machinery using the improved YOLOX-Tiny model

(Figure 16). The red line indicates the annotated results obtained

from the algorithm proposed in this study, while the black line

represents the manually annotated baseline of the crop rows.

Based on the results evaluated in Table 4, the SUSAN corner

detection method + least square method had a fitting time of 85.6
FIGURE 13

Loss curve during training.
TABLE 3 Detection performance comparison of five models.

Models Average precision
AP/%

F1
score/%

Recall
R/%

Precision
P/%

Detection
time/ms

Model
size/MB

SSD 89.2 84.5 78.2 93.4 20.7 91.2

YOLOv4-Tiny 89.6 85.6 86.4 88.4 7.62 23.4

YOLOv5s 91.2 89.1 87.5 90.2 9.07 40.7

YOLOX-Tiny 90.5 88.7 88.1 91.6 13.4 20.1

the improved YOLOX-
Tiny model

92.2 90.2 89.1 92.4 15.6 18.6
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milliseconds and an average angle error of 0.87 degrees, indicating a

longer fitting time and a larger angle error. The Means method +

least square method had a fitting time of 74.8 milliseconds and an

average angle error of 0.95 degrees. The FAST corner detection

method + least square method had a fitting time of 67 milliseconds

and the highest average angle error of 1.98 degrees. The improved

YOLOX-Tiny model + least square method had the shortest fitting

time of 42 milliseconds and the lowest average angle error of 0.59

degrees. This indicated that the improved YOLOX-Tiny model +

least square method was both efficient and accurate in fitting

centerlines of maize crop rows. Overall, the improved YOLOX-

Tiny model + least square method performed the best in terms of

fitting time and angle error. It was both efficient and accurate.
4 Discussion

In the realm of modern agriculture, intelligent agricultural

machinery plays a crucial role in crop management and weed
Frontiers in Plant Science 16
control (Flores et al., 2020). This study aims to introduce an

optimized target detection algorithm to address the challenge of

crop row recognition in complex environments. Drawing

inspiration from (Meng et al., 2023), our research focuses on

enhancing detection speed and efficiency for single-target

detection. Initially, we employed a multi-scale prediction

approach, enabling the model to better adapt to targets of varying

sizes (Wang C. et al., 2023). This improvement elevated the model’s

AP to 92.42%. Subsequently, we integrated ECA and CA visual

attention mechanism modules, facilitating the model in more

effectively extracting and focusing on target-relevant information

while suppressing background noise (Wu et al., 2020). By

incorporating a variety of visual attention mechanisms and spatial

pyramid pooling modules, our algorithm achieved significant

performance enhancements in experimental settings. Compared

to previous studies, our model demonstrated superior accuracy in

crop row recognition within complex environments, achieving

higher detection precision and speed, while also being effectively

downsized for deployment on embedded devices. Although this
FIGURE 14

Crop detection results of 5 models. The blue boxes are the detection box for five models, the yellow boxes and circles are the manually marked
missed and falsely detected boxes, respectively.
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modification slightly reduced the AP, it enhanced the model’s

detection accuracy and robustness. Furthermore, we utilized the

CIoU loss function, which further improved the model’s target

localization accuracy and convergence speed, raising the AP to

92.13%. The optimized loss function aided the model in learning

better representations of target features. Ultimately, our model

maintained high detection accuracy with a detection speed of 15.6

ms and a model size of merely 18.6MB, making it suitable for real-

time detection on embedded devices.

(Hu and Huang, 2021) proposed a method that was reliable

under sparse weed distribution and optimal lighting conditions but

underperformed in scenarios of heavy coverage and insufficient

light. In contrast, our model employs an adaptive Gamma

enhancement algorithm, based on Retinex theory, for adaptive

illumination adjustment in low-light mazie crop row images,

showcasing greater stability in complex environments. Compared

to the YOLOX-based blue light weeding robot investigated by (Zhu

et al., 2022), our study introduces several improvements, such as a

lighting adjustment module to enhance low-light recognition

capabilities and the incorporation of attention mechanisms to
Frontiers in Plant Science 17
extract key features. These enhancements significantly improved

the model’s recognition accuracy under complex lighting conditions

(Liang et al., 2022). study utilized edge detection combined with the

Otsu algorithm to identify navigation lines between rows of widely

planted cotton. Their method, employing least squares for line

fitting in the absence of seeds and ditch interference, was limited to

specific cotton plantation structures. In contrast, our approach,

based on the enhanced YOLOX-Tiny model, adapts more effectively

to various crops and growth stages. We implemented multiple

technical improvements such as multi-scale prediction, attention

mechanism modules, and loss function optimization, enabling the

model to maintain high precision under various lighting conditions.

Additionally, compared to the method by (Ruan et al., 2023), which

estimated crop row numbers using the DBSCAN algorithm, our

research directly utilizes the improved YOLOX-Tiny model for crop

localization, followed by least squares fitting for centerline

ident ificat ion, y ie ld ing bet ter recogni t ion resul ts in

shorter timeframes.

Despite the improved target detection algorithm proposed in

this study demonstrating excellent performance in the task of maize
FIGURE 16

Extraction results of navigation lines in maize crop rows.
FIGURE 15

Thermal map visualization results. The redder the color, the greater the output value of the convolution layer.
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crop row recognition, we acknowledge the presence of certain

limitations. Firstly, although our model maintains high

recognition accuracy across a variety of lighting conditions, its

capability under extreme conditions, such as severe occlusion or

very low light, still requires enhancement.

Secondly, the experimental dataset utilized in this study is

primarily focused on maize crops, which may limit the direct

applicability of the model to other row crops. There is a wide

variety of row crops, and differences in morphological

characteristics, growth stages, and planting densities among crops

could impact the adaptability and detection accuracy of the model.

Furthermore, while our approach enhances detection accuracy

and speed through the use of lightweight neural networks, the

incorporation of various optimization techniques, and the

optimization of the model structure, thereby ensuring the model’s

practicality and deployability, balancing the complexity of the

model with the consumption of computational resources remains

a challenge in real-world agricultural applications.
5 Conclusions

The improved YOLOX-Tiny model introduces a multi-scale

prediction approach, significantly enhancing the model’s

adaptability to objects of varying sizes. Experimental outcomes

indicate that this strategy elevates the model’s AP to 92.42%. The

integration of efficient channel attention and coordinate attention

mechanisms concentrates on the pertinent information of the

targets while mitigating background distractions. Furthermore,

the incorporation of the spatial pyramid pooling fast module at

the backbone network’s conclusion bolsters detection precision and

robustness. Although these attention mechanisms slightly diminish

the AP to 92.15%, they effectively underscore the targets’ critical

features, culminating in augmented detection efficacy.

Departing from the conventional loss function, the CIoU loss

function is employed to refine the accuracy and hasten the

convergence speed of maize crop row localization. The utilization

of this optimized loss function boosts the model’s AP. to 92.2%,

guiding the model towards superior representations of the target

objects and thus improving detection performance.

By pinpointing key points on maize seedlings, our algorithm not

only preserves the accuracy of crop row centerline recognition but also

considerably reduces the centerline fitting time by 42 ms. The average
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angle discrepancy between the fitted lines and manual annotations is a

mere 0.59°. These experimental findings corroborate the algorithm’s

real-time performance and accuracy benefits in extracting navigation

lines. The proposed enhanced YOLOX-Tiny model showcases

exceptional performance and practical utility in maize crop row

detection, excelling in both detection accuracy and speed, alongside a

compact model size, making it highly suitable for real-world

applications in intelligent weed control machinery navigation.

Despite the notable success of the target detection algorithm

based on the improved YOLOX-Tiny model in maize crop row

recognition tasks, we are acutely aware of certain limitations inherent

in our study, which delineate directions for future work. Firstly,

concerning the model’s performance under extreme environmental

conditions, we note a performance decline in scenarios of severe

occlusion or very low lighting. Future research could delve into more

advanced image preprocessing technologies, such as deep learning-

based image enhancement algorithms, to ameliorate the quality of

input images, thereby augmenting the model’s robustness under

adverse conditions. Moreover, exploring novel attention

mechanisms may furnish the model with more nuanced feature

extraction capabilities, further enhancing its adaptability to

complex environments. While our research primarily focuses on

maize crops and achieves commendable results, this limits the

model’s direct applicability to other row crops. Future work should

aim to construct a multi-crop dataset encompassing various types of

row crops and diverse growth conditions. Additionally, employing

transfer learning and domain adaptation techniques could effectively

migrate the model from one crop to another, reducing dependence

on extensive labeled data and accelerating the adaptation process for

new crops. Lastly, considering the demands for model size and

computational efficiency in practical applications, future research

should also pay attention to model lightweighting and acceleration

techniques. Techniques such as network pruning, quantization, and

knowledge distillation could significantly reduce the model’s

parameter count and computational requirements, making it more

suitable for deployment on resource-constrained embedded devices.
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