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A SLAF-based high-density
genetic map construction and
genetic architecture of
thermotolerant traits in maize
(Zea mays L.)
Tingting Wen1,2, Xuefei Zhang3, Jiaojiao Zhu1, Susu Zhang1,
Mohammad Saidur Rhaman1 and Wei Zeng1*

1Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced
Agriculture Sciences in Weifang, Weifang, China, 2Seed Administration Station of Shandong Province,
Jinan, China, 3Taian Daiyue District Bureau of Agriculture and Rural Affairs, Taian, China
The leaf scorching trait at flowering is a crucial thermosensitive phenotype in

maize under high temperature stress (HS), yet the genetic basis of this trait

remains poorly understood. In this study, we genotyped a 254 RIL-F2:8
population, derived from the leaf scorch-free parental inbred line Abe2 and

the leaf scorching maternal inbred line B73, using the specific-locus amplified

fragment sequencing (SLAF-seq) method. A total of 10,112 polymorphic SLAF

markers were developed, and a high-density genetic map with a total length of

1,475.88 cM was constructed. The average sequencing depth of the parents

was 55.23X, and that of the progeny was 12.53X. Then, we identified a total of

16 QTLs associated with thermotolerant traits at flowering, of which four QTLs

of leaf scorching damage (LS) were distributed on chromosomes 1 (qLS1), 2

(qLS2.1, qLS2.2) and 3 (qLS3), which could explain 19.73% of phenotypic

variation. Combining one qLS1 locus with QTL-seq results led to the

identification of 6 candidate genes. Expression experiments and sequence

variation indicated that Zm00001d033328, encoding N-acetyl-gamma-

glutamyl-phosphate reductase, was the most likely candidate gene

controlling thermotolerant traits at flowering. In summary, the high-density

genetic map and genetic basis of thermotolerant traits lay a critical foundation

for mapping other complex traits and identifying the genes associated with

thermotolerant traits in maize.
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Introduction

Maize (Zea Mays L.), recognized as one of the most crucial food

crops worldwide, plays a pivotal role in ensuring global food

security and fostering sustainable agricultural development for the

future (Shiferaw et al., 2011). Despite its significance, the quality

and yield of maize face numerous threats from abiotic stresses,

particularly in the maize-growing regions within China’s North-

South climate transition zone. This transitional zone exhibits

significant environmental complexity, biodiversity, and climate

sensitivity, often encountering a multitude of bio-adversities and

abiotic stresses, notably the high temperatures experienced during

the summer months (Kou et al., 2020). Elevated temperatures

exceeding 35°C can lead to severe damage in maize development,

including reduced pollen vigor, prolonged anthesis-silk interval

(ASI), and diminished yields (Dupuis and Dumas, 1990; Fahad

et al., 2017; Lizaso et al., 2018). Despite these challenges, there has

been limited research on the genetic mechanisms underlying high

temperature stress (HS) during the reproductive stage of maize. The

leaf scorching trait represents a critical thermosensitive phenotype

during the reproductive stage of maize, yet only limited research has

been undertaken in this area (Frey et al., 2016). This scarcity of

studies can be attributed to the tendency of researchers to avoid hot

weather during the maize reproductive stage in order to safeguard

corn quality and yield. Consequently, the leaf scorching phenotype

is seldom observed under normal maize growth conditions (Frey

et al., 2016). Therefore, there is a compelling need for a

comprehensive investigation into the leaf scorching traits during

high-temperature stress at the reproductive stage of maize. This

experiment aims to categorize leaf scorching traits into three

indicators—Leaf Scorching damage (LS), Leaf Scorching Degree

(LSD), and Leaf Scorching Ratio (LSR)—in order to explore the

genetic mechanisms of thermotolerance during maize flowering.

The construction of a genetic map is an indispensable tool for

analyzing genetic mechanisms and facilitating molecular marker-

assisted breeding. In previous years, the utilization of simple

sequence repeat (SSR) markers had been prevalent in numerous

crop studies for genetic map construction. However, the limited

polymorphism of SSR markers in maize posed challenges in

establishing a comprehensive genetic map, thereby constraining

their application in fine mapping and marker-assisted selection

breeding (MAS) across various crops (Wang et al., 2019). In recent

times, single nucleotide polymorphism (SNP) markers have gained

popularity in genetic map construction due to their extensive

variability throughout the entire genome (Wang et al., 2015). A

recently developed high-throughput strategy known as Specific-

Locus Amplified Fragment Sequencing (SLAF-seq) has emerged as

a valuable approach for large-scale SNP development and

genotyping, leveraging next-generation sequencing (NGS)

technology (Yang et al., 2019).

This technology has been effectively applied to the construction

of genetic maps and QTL analysis in various plants, including such

as cotton (Gossypium hirsutum) (Huang et al., 2021), Thinopyrum

ponticum (Liu et al., 2018), bread wheat (Triticum aestivum) (Yang

et al., 2019), soybean (Glycine max L. Merr.) (Han et al., 2019),

pepper (Capsicum frutescens) (Guo et al., 2017) (Zhang et al., 2019),
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black gram (Vigna mungo (L.) Hepper) (Somta et al., 2019), flax

(Linum usitatissimum L.) (Wu et al., 2018), wolfberry (Lycium

Linn.) (Zhao et al., 2019), broccoli (Brassica oleracea L. italic) (Yu

et al., 2019), watermelon (Citrullus Lanatus L.) (Li et al., 2018),

sunflower (Helianthus annuus L.) (Zhou et al., 2018), Citrus

(Poncirus trifoliate) (Xu et al., 2021), Onion (Allium cepa L.) (Li

et al., 2023), Faba bean (Vicia faba L.) (Zhao et al., 2023), Guava

(Psidium guajava L.) (Maan et al., 2023) and Sesame (Sesamum

indicum) (Mei et al., 2017). However, there has been limited

research on the application of SLAF-seq technology in

constructing genetic maps for maize recombinant inbred lines

(RIL) mapping populations. In this study, we utilized SLAF-seq

technology to develop 10,112 polymorphic markers, enabling the

construction of a high-density genetic map for the RIL-F2:8
population in maize. Specifically, the three objectives of this study

were to: (1) construct a high-density genetic map for the RIL-F2:8
population using SLAF-based methods, (2) elucidate the genetic

architecture of thermotolerant traits during flowering and identify

candidate genes responsible for thermotolerance, and (3) facilitate

molecular marker-assisted breeding to expedite the development of

new thermotolerant maize varieties.
Materials and methods

Plant materials

The 254 RIL-F2:8 population were obtained by single seed

decent (SSD) from the F2 population of a cross between parental

inbred lines B73 and Abe2. The representative inbred line B73

exhibited a leaf scorching (thermosensitive) phenotype when

subjected to high temperature stress above 35°C during the

flowering stage in a field environment. And the native waxy

maize inbred line Abe2 in northwestern China exhibited a leaf

scorch-free (thermotolerant) phenotype under the same conditions.

The 254 RIL-F2:8 population and their parents used to construct the

high-density genetic map were planted in Ledong County, Hainan,

China (18°45N, 109°10E) in 2016.
Thermotolerant experimental design

Research by Frey et al. showed that leaf scorching trait was one

of the important thermosensitive phenotypes under high

temperature stress at flowering in maize (Frey et al., 2016). The

leaf scorching phenotype in this study was divided into three

categories: Leaf Scorching damage (LS), Leaf Scorching Degree

(LSD), and Leaf Scorching Ratio (LSR). Phenotypic data of the

three types for the LS trait were collected by visual method: extreme

leaf scorching damage (phenotypes of leaf scorching are consistent

with B73), leaf scorch-free damage (phenotypes of leaf scorching are

consistent with Abe2.), and intermediate type. LSD represented the

proportion of the leaf scorching damage area in the whole leaves,

indicating the degree of leaf scorching damage. It is indicated by the

Roman number 1 (no leaf scorching damage) to 9 (extreme leaf

scorching damage), with a total of 9 indication levels. LSR referred
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to the ratio of the number of scorching leaves to the total number of

leaves, expressed as 0 to 100%. The broad-sense heritability of leaf

scorching traits was calculated according to the following formula:

H2  =  sg2=(sg2  +  se2)

where sg2 represented the variance of genetic effects, and se2

represents the variance of environmental effects (Yang et al., 2019). A

basic statistical analysis was implemented by the SPSS16.0 software with

default parameters (SPSS Inc., Chicago, IL, USA) (Zhu et al., 2019).

In view of the continuous high temperature weather conditions

in Hefei over the past years, we planted the 254 RIL-F2:8 population

and their parents for three biological replicates per year in Dayang

experimental farm of Anhui Agricultural University (31°49N, 117 °

13E) with interval contrast design (ICD) in early June 2017 and

2018 (Zeng et al., 2020). During the maize jointing to flowering

stage, they were subjected to continuous high temperature stress, as

shown in Supplementary Figure 1. In fact, 24 and 29 days of high

temperatures above 35°C in 2017 and 2018, respectively.
DNA extraction, SLAF library construction
and high-throughput sequencing

When the 254 RIL-F2:8 population and parental inbred lines grew

to the V6 period (6 visible leaves), fresh green leaves were removed

and stored in the dry ice. Extraction of total genomic DNA for

experimental samples using a modified Cetyltrimethyl ammonium

bromide (CTAB) method (Murray and Thompson, 1980). An

improved SLAF-seq strategy was utilized in our experiment. In this

experiment, Oryza sativa L Geng/japonica was used as the control,

and the evaluation of the control data monitored whether the

experimental process was normal and the effectiveness of the

digestion protocol was determined. First, the pre-designed scheme

of SLAF is selected using the training data. B73_RefGen_V4 reference

genome of maize was used to simulate the number of markers

produced by different enzymes, designing marker identification

experiments. Next, SLAF library construction was conducted

according to a pre-designed scheme. For the 254 RIL population,

two enzymes (HaeIII and Hpy166II, New England Biolabs, NEB,

USA) were used to digest the genomic DNA at 37°C. A single

nucleotide (A) overhang was added subsequently to the digested

fragments using Klenow Fragment (3´→ 5´) and dATP (New

England Biolabs, NEB, USA). Duplex tag-labeled sequencing

adapters (PAGE-purified, Life Technologies, USA) were then

ligated to the A-tailed fragments using T4 DNA ligase. Polymerase

chain reaction (PCR) was performed using diluted restriction-ligation

DNA samples, dNTP, Q5®High-Fidelity DNA Polymerase and PCR

primers (Forward primer: 5’-AATGATACGGCGACCACCGA-3’,

reverse primer: 5’-CAAGCAGAAGACGGCATACG-3’) (PAGE-

purified, Life Technologies). PCR products were then purified using

Agencourt AMPure XP beads (Beckman Coulter, High Wycombe,

UK) and pooled. Pooled samples were separated by 2% agarose gel

electrophoresis. Fragments ranging from 414 to 464 base pairs (with

indexes and adaptors) in size were excised and purified using a

QIAquick gel extraction kit (Qiagen, Hilden, Germany). Gel-purified

products were then diluted. And pair-end sequencing was performed
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on an Illumina platform system (Illumina, Inc; San Diego, CA, USA)

according to the manufacturer’s recommendations.
Sequence data grouping and genotyping

The SLAF marker identification and genotyping were performed

according to procedures described by Sun et al. (Sun et al., 2013).

Briefly, low-quality reads were filtered out and then raw reads were

sorted to each subsequence according to duplex barcode sequences.

After the barcodes and the terminal 5-bp positions were trimmed from

each high-quality reads, clean reads from the same sample were

mapped onto the maize genome sequence using SOAP software (Li

et al., 2008). The reference genome information is based on version

B73_RefGen_v4. Sequences mapping to the same position were

defined as one SLAF locus (Zhang et al., 2015). Single nucleotide

polymorphism (SNP) loci of each SLAF locus were then detected

between parents, and SLAFs with more than 3 SNPs were filtered out

firstly. In order to obtain high-quality SLAF markers for genetic map

construction, first, the average sequence depth should be >21X for

parents, while for each offspring the reads with sequence depth >8X

were used to define alleles. Second, markers with a data missing rate of

more than 50% were filtered. Third, Chi-square test was used to detect

segregation distortion. In the process of map construction, markers

with significant partial separation (P<0.05) were treated as an auxiliary

marker. SLAFs with two to four alleles were identified as polymorphic

and considered potential markers. All polymorphism SLAFs loci were

genotyped with consistency in the parental and offspring SNP loci. The

marker code of the polymorphic SLAFs were analysed according to the

RIL population type, which consisted of one segregation types (aa×bb).
Linkage map construction

SLAF loci were partitioned primarily into linkage groups (LGs)

based on their locations on B73_RefGen_V4 reference genome of

maize. Next, the modified logarithm of odds (MLOD) scores between

SLAF markers were calculated to further confirm the robustness of

markers for each LGs. Markers with MLOD scores< 5 were filtered

prior to ordering. To ensure efficient construction of the high-density

and high-quality map, a newly developed HighMap strategy was

utilized to order the SLAF markers and correct genotyping errors

within LGs (Liu et al., 2014). Firstly, recombinant frequencies and LOD

scores were calculated by two-point analysis, which were applied to

infer linkage phases. Then, enhanced Gibbs sampling, spatial sampling

and simulated annealing algorithms were combined to conduct an

iterative process of marker ordering (Jansen et al., 2001). Briefly, in the

first stage of the ordering procedure, SLAF markers were selected using

spatial sampling. Onemarker was taken randomly in a priority order of

test cross, and markers with a recombination frequency smaller than a

given sampling are excluded from the marker set. Subsequently,

simulated annealing was applied to searching for the best map order.

Summation of adjacent recombination fractions was calculated as

illustrated by (Liu et al., 2014). The annealing system continued

until, in a number of successive steps, the newly generated map

order is rejected. Blocked Gibbs sampling was employed to estimate
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multipoint recombination frequencies of the parents after the optimal

map order of sample markers were obtained. The updated

recombination frequencies were used to integrate the two parental

maps, which optimize the map order in the next cycle of simulated

annealing. Once a stable map order was obtained after 3-4 cycles, we

turned to the next map construction round. A subset of currently

unmapped markers was selected and added to the previous sample

with decreased sample radius. The mapping algorithm repeats until all

the markers were mapped appropriately. The error correction strategy

of SMOOTHwas then conducted according to parental contribution of

genotypes (Van Os et al., 2005), and a k-nearest neighbor algorithm

was applied to impute missing genotypes (Huang et al., 2021). Skewed

markers were then added into this map by applying a multipoint

method of maximum likelihood. Map distances were estimated using

the Kosambi mapping function (Kosambi, 2016).
QTL analysis of thermotolerant traits

The QTL mapping of thermotolerant traits was performed by R/

qtl software (Broman et al., 2003) for composite interval mapping

(CIM) analysis, and the logarithm of odds (LOD) significance

threshold levels was determined by 1000-permutation test (P<0.05).

The confidence interval for each QTL was defined using a 2-LOD

support interval (Li et al., 2016). The mapping interval of each QTL

was determined by the the peak of the LOD and its surrounding value

(≥ 2). The software used for drawing the map were origin 7.0 and

HighMap. We estimated additive effects and the phenotypic variance

explained by individual QTL by the coefficient of determination (R2).

Positive additive effects indicated favorable alleles derived from Abe2,

while negative additive effects indicated favorable alleles from B73.
Candidate gene analysis, RNA extraction
and relative quantitative analysis

After the major QTLs for LS trait were identified, the genetic

effect analysis of each QTL locus was carried out to determine the

QTL locus with the greatest effect. Combined with previously

published QTL-seq results to identify final candidate genes

controlling thermotolerant traits (Zeng et al., 2020). The qPCR

primers of candidate genes were designed to carry out relative

quantitative analysis, with ubiquitin as an internal reference gene.
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(Supplementary Table 1). The parental lines Abe2 and B73 were

germinated and grown in a growth chamber at 28°C until the stage

of visible 4-leaf growth. Subsequently, a high-temperature stress

experiment was conducted in a plant light incubator at a

temperature of 42°C and a humidity of 65%. 2×Spark Taq PCR

Master Mix (with dye) (Shandong Sparkjade Biotechnology Co.,

Ltd.) is used for PCR amplification. TRIzol kit (TIANGEN, W9330)

was used to extract RNA from fresh leaf, and SPARKscript II RT kit

(With gDNA Eraser) (Shandong Sparkjade Biotechnology Co., Ltd.)

was used to reverse message RNA into cDNA, which was diluted by

five times and amplified by 2×SYBR Green qPCR Mix (With ROX)

(SparkJade, AH0104-B).
Results

SLAF sequencing and genotyping of the
RIL-F2:8 population

To develop high-density polymorphic molecular markers, we

performed high-throughput SLAF sequencing of the 254 RIL-F2:8
population. This resulted in a total of 1,366.12 million reads and

273.03 Gb raw data, with an average Q30 percentage of 93.03% and

an average GC percentage of 42.79% (Supplementary Figure 1A, B

and Table 1). For the paternal inbred line (Abe2), a total of 684,620

SLAF markers were developed with an average sequencing depth of

18.48×. The maternal inbred line (B73) produced 955,168 SLAF

markers with an average sequencing depth of 23.95×. In addition,

420,299 SLAF markers were developed for the RIL-F2:8 population,

with an average sequencing depth of 8.05× (Supplementary Table 2).

The SLAF markers were aligned to the maize reference genome

using BWA software (Van Os et al., 2005), and the count of SLAF

markers and polymorphic SLAF markers on each linkage group was

determined. The length of SLAFmarkers ranged from 414 bp to 464 bp

(Supplementary Figure 1C). Polymorphism analysis was conducted

based on the variation in allele number and marker sequence, resulting

in three types of SLAF markers: Polymorphic, Non-Polymorphic, and

Repetitive SLAF (Figure 1; Supplementary Table 3, 4). A total of

589,770 SLAF markers developed for all samples were used for SLAF

polymorphism marker analysis (Supplementary Table 3). Among

them, 108,709 were identified as polymorphic SLAF markers, with a

polymorphism ratio of 18.43% (Supplementary Table 3). The

distribution of SLAF markers and polymorphic SLAF markers across
TABLE 1 High-throughput SLAF sequencing data for the RIL-F2:8 population in maize.

Sample Total Read Total Bases (bp) Q30 percentage (%) GC percentage (%)

Abe2 (P) 25,152,840 5,029,378,190 92.64 44.11

B73 (M) 29,848,184 5,968,717,354 92.55 44.23

offspring 5,023,429 1,003,972,479 93.03 42.78

Total 1,366,116,164 273,034,912,606 93.03 42.79
Q30 percentage (%): Percentage of bases with a sequencing quality value ≥30;
GC percentage (%): Guanine (G) and cytosine (C) as a percentage of total bases in the sequencing results;
Offspring: Average of the sequencing data of the offspring;
P: paternal inbred line;
M: maternal inbred line.
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each linkage group was visualized (Figures 1A, B; Supplementary

Table 4), indicating an even distribution of SLAF markers on each

linkage group.

To facilitate further genetic analysis, the polymorphic markers were

encoded following the general 2-allelic coding rules of genetics

(Supplementary Table 5). After filtering out the SLAF markers with

parental information, a total of 108,709 polymorphic SLAF markers

were genotyped and classified into eight segregation patterns

(Figure 1C). Additionally, we calculated the recombination values

between all polymorphic SLAF markers and observed fewer

recombination hotspots on each chromosome (Figure 1D). Based on

the genetic characteristics of the RIL-F2:8 population, the aa x bb type

polymorphic markers were selected as valid markers. Consequently,

48,397 markers belonged to the valid marker category of the aa x bb

type, resulting in an effective polymorphism rate of 8.21%

(Supplementary Table 3).
Construction of a high-density genetic
map based on the polymorphic
SLAF markers

To ensure the quality of the genetic map, the polymorphic SLAF

markers underwent several filtering steps. First, markers were filtered

based on parental sequencing depth, ensuring it was above 6X. Then,

markers with less than 5 SNPs were excluded. Completeness filtering

was applied, requiring the genotype to cover at least 50% of all progeny

individuals. Additionally, markers showing partial separation were
Frontiers in Plant Science 05
filtered out. After this process, 10,724 polymorphic SLAF markers

remained for genetic map construction. Subsequently, markers with

MLOD values lower than 5 when compared with other SLAF markers

were further filtered (Huang et al., 2011), resulting in a final count of

10,112 polymorphic markers used for constructing the genetic

map (Table 2).

Each chromosome served as a linkage group, and HighMap

software (Li et al., 2018) was utilized to analyze the linear array of

SLAF markers. Genetic distances between adjacent markers were

estimated, culminating in the construction of a genetic map with a

total map distance of 1,475.88 cM (Table 2; Figure 2). The high-density

genetic map had an average genetic distance of 0.16 cM, with 98.77% of

the gaps being less than 5 cM and distributed nearly evenly across each

linkage group (Table 2). Among the 10 chromosomes, chromosome 9

exhibited the largest gap of 10.9 cM due to an insufficient number of

polymorphic markers, resulting in an average genetic distance of 0.73

cM, the highest among all linkage group maps. Conversely,

chromosome 5 boasted the highest number of markers, with 2,121

polymorphic SLAF markers and the smallest average genetic distance

of 0.09 cM among all linkage group maps (Table 2).
Comprehensive evaluation and high-
quality construction of a genetic map
using SLAF-seq technology

In order to assess the quality of the genetic map, a

comprehensive evaluation of various aspects was conducted to
B

C D

A

FIGURE 1

Development of SLAF markers for the RIL-F2:8 population in maize. (A) The distribution of SLAF markers on each chromosome. (B) The distribution
of the polymorphic SLAF markers on each chromosome. The more SLAF markers, the darker the color, and the fewer SLAF markers, the lighter the
color. (C) Genotype distribution of polymorphic SLAF markers. The x-axis indicates eight segregation patterns of polymorphic SLAF markers, the y-
axis indicates the number of markers. (D) Recombination rate of polymorphic SLAF markers on each chromosome.
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ensure its accuracy and reliability. These aspects include analyzing

the collinearity between the map position of SLAF markers and

their physical location on the genome (Supplementary Table 6),

examining the sequencing depth of the markers (Supplementary

Table 7), analyzing SNP markers within each linkage group

(Table 3), assessing segregation distortion (Supplementary

Table 9), evaluating the integrity of markers across all individuals

(Supplementary Figure 3), conducting monomer analysis for

individual genotypes (Supplementary Figure 4), and studying the

recombination relationship between SLAF markers and adjacent

ones (Supplementary Figure 4). Each aspect provided valuable

insights into the quality and reliability of the genetic map.

The quality of the genetic map has a direct impact on

subsequent QTL mapping and genetic analysis. Upon evaluating

the seven key aspects mentioned above, it is evident that this

experiment yielded a high-quality, high-density genetic map. The

map order of SLAF markers aligns consistently with the physical

genome location (Supplementary Table 6), with each molecular

marker exhibiting an average sequencing depth exceeding 10X
Frontiers in Plant Science 06
(Supplementary Table 7). Furthermore, the genotype integrity of

each individual reached 99.83% (Supplementary Figure 3), and the

allelic origins for larger genetic segments in each individual

demonstrated high consistency (Supplementary Figure 4). In

summary, we utilized SLAF-seq technology to develop 10,112

polymorphic molecular markers, resulting in the construction of a

high-quality, high-density genetic map.
Understanding the impact of high
temperature stress on maize leaf
scorching phenotype

Frey et al. proposed that leaf scorching is a crucial

thermosensitive phenotype during the reproductive stage of maize

under high temperature stress (Frey et al., 2016). A survey of daily

temperatures throughout the maize growth period revealed that the

parental inbred lines and RIL-F2:8 population encountered

temperatures exceeding 35°C for up to 17 days in 2017 and 19
FIGURE 2

The high-density genetic map constructed based on the 10,112 valid polymorphic SLAF markers for maize F2-8 RIL population. The x-axis represents
the linkage group number, the y-axis indicates the genetic distance (cM) within each linkage group.
TABLE 2 Basic information of a high-density genetic map based on the 10,112 polymorphic SLAF markers.

LG SLAF Markers Total Distance (cM) Average Distance (cM) Gaps≤5 (cM) Max Gap (cM)

1 1,204 191.22 0.16 100.00% 2.67

2 962 151.54 0.16 100.00% 2.67

3 935 166.06 0.18 100.00% 2.45

4 713 105.06 0.25 100.00% 3.36

5 2,121 187.12 0.09 100.00% 4.93

6 1,319 154.09 0.12 100.00% 4.46

7 1,249 160.30 0.13 99.92% 5.9

8 1,151 146.36 0.13 100.00% 2.67

9 240 103.94 0.73 98.74% 10.9

10 218 110.20 0.68 100.00% 4.21

Total 10,112 1,475.88 0.16 99.87% 10.9
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days in 2018 (Supplementary Figure 1). Following prolonged

exposure to high temperatures, the parent B73 displayed

noticeable leaf scorching damage, whereas the parent Abe2

remained unscathed by leaf scorching (Zeng et al., 2020). The

RIL-F2:8 population exhibits a remarkably diverse range of

phenotypic variations, characterized by various levels of

thermosensitive phenotypes under prolonged exposure to high

temperature stress. (Supplementary Figure 5, 6; Supplementary

Table 8). Correlation coefficients between the three indicators of

the leaf scorching trait were calculated as 0.146 (between LS and

LSR), 0.144 (between LS and LSD), and 0.875 (between LSR and

LSD) (Supplementary Figure 6). Notably, a highly significant

positive correlation between LSR and LSD was observed,

suggesting these two indicators could serve as reliable references.

The broad-sense heritability values for the three indicators were

0.73 (LS), 0.38 (LSD), and 0.60 (LSR), respectively (Supplementary

Table 10). Despite the strong correlation between LSR and LSD,

their heritability differed significantly, with LS exhibiting the highest

heritability and LSD the lowest. Overall, this research sheds light on

the complex relationship between high temperature stress and leaf

scorching in maize, providing valuable information for

understanding and potentially improving the plant’s resilience to

such environmental challenges.
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Genetic architecture feature of
thermotolerance traits in the RIL-
F2:8 population

Based on the high-density genetic map and phenotypic

characterization, we performed QTL analysis of thermotolerance

traits using composite interval mapping (CIM) method of R/qtl

software. A total of 16 QTLs were identified (Table 4,

Supplementary Table 11; Figure 3), including 4 QTLs belonging

to LS, and 6 QTLs each for LSD and LSR, respectively. The four LS

QTLs were distributed on chromosomes 1 (qLS1), 2 (qLS2.1,

qLS2.2) and 3 (qLS3), explaining a phenotypic variation range

between 2.83% and 6.58% (Table 4). The six LSD QTLs were

located on chromosome 1, 2, 5, 6, 8 and 9 respectively, explaining

a phenotypic variation range between 2.13% and 9.11%. The genetic

architecture of LSD featured a large-effect QTL along with many

small-effect QTLs (Table 4). The six LSR QTLs were located on

chromosomes 1, 4, 5, 6, and 8, respectively, collectively explaining

25.98% of the phenotypic variation. Further genetic architecture

information for thermotolerance traits could be found in (Table 4,

Figure 3; Supplementary Figure 7). Among the 16 QTLs, the

favorable allele loci of 11 QTLs were from the parental inbred

line Abe2, while the favorable allele loci of the remaining QTLs were

from the maternal inbred line B73 (Supplementary Figure 7). The

localization results and chromosomal distribution of the 16 QTL

loci associated with thermosensitive phenotype traits are presented

in Supplementary Figure 8. Chromosome 1, 2, and 8 each harbor

three QTL loci, while chromosome 5 and 6 contain two QTL loci

each. Lastly, chromosome 3 and 4 each have one QTL locus. Most of

the QTL loci span large genomic regions.
Identification and characterization of
candidate genes influencing
thermotolerance traits by combining high-
density genetic map and QTL-seq strategy

Among the 16 identified QTLs associated with thermotolerance

traits, the qLS1 allele displayed a notable difference of 8.13E-05

(Figure 4A), pointing to its significance as a key candidate locus.

Additionally, we conducted an analysis of the genetic effects related

to four QTL loci governing the LS trait, with the outcomes depicted

in Figure 4B. Notably, when the allele of qLS2.2 was denoted as a1,

and the alleles of the other three loci were a1 or b1, the

thermotolerance index of the RIL-F2:8 individuals generally
TABLE 3 Basic information of SNP loci of 10 linkage groups (LG).

LG SNP Number Trv Tri Trv/Tri

1 2,351 670 1,681 0.4

2 1,795 524 1,271 0.41

3 1,738 499 1,239 0.4

4 1,418 397 1,021 0.39

5 3,611 979 2,632 0.37

6 2,439 681 1,758 0.39

7 2,206 613 1,593 0.38

8 1,908 496 1,412 0.35

9 454 144 310 0.46

10 389 106 283 0.37

Total 18,309 5,109 13,200 0.39
Trv: SNP transversion.
Tri: SNP conversion.
TABLE 4 The QTLs of thermotolerance traits identified in the RIL-F2:8 population using a high-density genetic map.

Traits no.
of QTLs

Variation explained by each
QTL (%)

Variation explained by all
QTL (%)

Genetic architec-
ture feature

LS 4 2.83-6.58 19.73 many small-effect QTLs

LSD 6 2.13-9.11 27.98 a large-effect QTL plus many small-
effect QTLs

LSR 6 2.39-6.89 25.98 many small-effect QTLs
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exhibited lower levels, highlighting the pivotal role of the qLS2.2

locus in controlling the LS trait. Furthermore, the majority of RIL-

F2:8 individuals displayed leaf scorching phenotypes when

possessing the a1 allele of the qLS2.2 locus. Conversely, when the

allele of qLS2.2 was b1, and alleles of qLS2.1 and qLS3 were a2a3, the
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RIL-F2:8 individuals demonstrated higher thermotolerance indices,

particularly when the allele of qLS1 was a4, signifying its crucial role

in regulating the LS trait (Figure 4B). Notably, the allele of qLS1 was

a4, the RIL-F2:8 individuals could exhibit strong thermotolerance.

Furthermore, in conjunction with preceding QTL-seq results from
FIGURE 3

The QTLs of thermotolerance traits identified in the RIL-F2:8 population using a high-density genetic map. Thermotolerance trait was divided into
three types: LS (Leaf Scorching damage, Black lines), LSD (Leaf Scorching Degree, Red lines) and LSR (Leaf Scorching Ratio, Blue lines). The x-axis
indicated genetic position (cM), the y-axis indicated LOD score.
B C

D E F

A

FIGURE 4

Identification of candidate genes for the thermotolerance traits by combining high-density genetic map and QTL-seq strategy. (A) Allele significance
analysis of qLS1 controlling the thermotolerance traits. (B) Genetic effects of 4 QTLs of leaf scorching damage (LS) controlling the thermotolerance
traits. a1b1 represented the allele of qLS2.2. a2b2 represented the allele of qLS2.1. a3b3 represented the allele of qLS3. a4b4 represented the allele of
qLS1. (C) Candidate genomic region on chromosome 1 controlling the thermotolerance traits by combining linkage genetic analysis and QTL-seq
strategy. (D) Tissue expression patterns of six candidate genes. (E) Relative expression of candidate Gene 2 under high temperature stress.
(F) Relative expression of candidate Gene 5 under high temperature stress. The significance between different treatment groups was examined using
the t-test method.
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our laboratory (Zeng et al., 2020), a co-localization on chromosome

1 was discovered, encompassing only six genes governing the

thermotolerance trait (Figure 4C).

The annotation details for the six candidate genes are provided

in Table 5. Gene 1 is identified as a 2-oxoglutarate (2OG) and Fe

(II)-dependent gene, potentially implicated in redox processes.

Gene 2 is characterized as an N-acetyl-gamma-glutamyl-

phosphate reductase, also likely involved in redox processes. Gene

3 belongs to the Cyclin class and may play a role in regulating the

cell cycle. Gene 4 is classified as an ARM repeat superfamily protein

with no associated functional annotation. Gene 5 is described as a

Calcium-transporting ATPase 2 plasma membrane-type, possibly

involved in ion transport processes. Lastly, Gene 6 is identified as a

LOB domain-containing protein 28, potentially involved in ATP

hydrolysis-coupled cation transmembrane transport processes.

Subsequently, the coding sequence variants of the six candidate

genes were analyzed, revealing that only four genes exhibited

variations in the coding region (Supplementary Table 12).

Notably, gene 2 harbored a sole non-synonymous variant SNP.

Analysis of the tissue expression patterns of the six candidate genes

indicated robust expression of gene 2, particularly in leaves and

internodes, while the remaining five genes displayed markedly

lower expression levels (Figure 4D). Furthermore, assessment of

the relative expression of the six candidate genes under high-

temperature stress unveiled significant differences in the

expression of gene 2 between the parents (P<0.05) (Figure 4E),

with gene 5 exhibiting low expression without significant variance

(Figure 4F). Conversely, the expression of the remaining four genes

was undetectable due to extremely low expression levels. In

summary, based on significant differences in both expression

levels and coding region sequences, gene 2 emerges as the prime

candidate gene influencing the thermotolerance trait.

We further analyzed the variations in the promoter region and

found a total of 1681 SNP variations within the QTLmapping interval,

with 22 SNPs located in the coding sequence (CDS) region, most of

which were promoter region variations (Supplementary Table 13).

Specifically, the promoter region of Zm00001d033328 exhibited 47 SNP

variations along with 41 cis-regulatory elements (Supplementary

Table 14). These elements play a crucial role in various biological

processes such as MeJA-responsiveness, light responsiveness,
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regulation of flavonoid biosynthetic genes, auxin-responsive elements,

gibberellin-responsive elements, drought-inducibility, abscisic acid

responsiveness, and MeJA-responsiveness.
Discussion

Genetic map has been widely developed in plants or animals,

which has been shown to be useful for a variety of applications,

including gene mapping of important agronomic traits or quantitative

trait loci (QTL) mapping, map-based cloning, marker-assisted

selection breeding, and genome assembly analysis (Foulongne-Oriol,

2012). The correct selection of mapping populations is a prerequisite

for effective separation of the population. According to the different

stability, the mapping population can be divided into temporary

mapping population and permanent mapping population. The

mapping population in this study was a highly homozygous F2:8
recombinant inbred line (RIL) population, which belonged to the

permanent mapping population. Compared with temporary mapping

populations, such as F2 population and backcrossing (BC) population,

RIL population had the characteristics of stable inheritance,

homozygous genotype and easy to reuse.

Compared with the previous genetic map constructed using SSR

molecular markers (Mei et al., 2006; Shi et al., 2022), the high-

density genetic map constructed by SLAF sequencing technology in

this study have the following characteristics: 1, it belongs to the

third generation of molecular markers, which is the most abundant

molecular marker at the current level; 2. The distribution of

molecular markers on each linkage group is more uniform and

denser than SSR; 3. Compared with SSR molecular markers, the

mapping interval is narrower. The successful construction of a high-

density genetic map is an important basis for subsequent QTL

mapping of thermotolerance trait at flowering and other agronomic

complex traits in maize. In this study, high-throughput SLAF

sequencing technology was used to obtain a high-quality, high-

density genetic map with a total length of 1,475.88 cM, and 10,112

SLAF markers were uniformly covered on 10 linkage groups

(Table 2; Figure 2). We evaluated the quality of the high-density

genetic map by seven aspects of quality assessment (Supplementary

Figures 2–4; Figure 1; Table 3; Supplementary Tables 2, 6–9), which
TABLE 5 The annotation information of the candidate genes controlling the thermotolerance trait.

Gene Gene
ID_AGPv4

Chr Start
(bp)

Stop
(bp)

Gene annotation Related phenotype
in other plants

Homologs

Gene 1 Zm00001d033327 1 259129101 259130297 2-oxoglutarate (2OG) and Fe(II)-dependent
oxygenase superfamily protein

no AT3G19010.1

Gene 2 Zm00001d033328 1 259165238 259169626 N-acetyl-gamma-glutamyl-
phosphate reductase

no AT2G19940.1

Gene 3 Zm00001d033330 1 259214061 259215909 Cyclin-D5-1 no AT4G37630.1

Gene 4 Zm00001d033333 1 259324966 259330535 ARM repeat superfamily protein no AT1G64960.1

Gene 5 Zm00001d033334 1 259330315 259335855 Calcium-transporting ATPase 2 plasma
membrane-type

no AT4G37640.1

Gene 6 Zm00001d033335 1 259429013 259429858 LOB domain-containing protein 28 no AT5G66870.1
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fully demonstrated that this is a high-quality, high-density genetic

map in maize.

Using the constructed high-density genetic map, we analyzed the

genetic structure of thermotolerance traits, which could be divided

into LS, LSR and LSD. Frey et al. suggested the leaf scorching trait was

a phenotype exhibited by high temperature stress during the adult

stage of maize, and the trait was divided into nine grades from 1

(weak damage) to 9 (strong damage) (Frey et al., 2016). In this

experiment, we also observed that the leaf scorching trait was a

phenotype exhibited by high temperature stress during the flowering

stage of maize, and the leaf scorching trait was described in more

detail (Supplementary Figure 1, 6; Supplementary Table 10). Based

on the high-density genetic map, a total of 16 QTLs associated with

thermotolerance traits were identified and distributed on all

chromosomes except the 7 and 10 chromosomes. It was worth

mentioning that we used the leaf scorching degree (LSD) indicator

consistent with Frey et al. to collect data for leaf scorching from 1

(weak damage) to 9 (strong damage). We found that qLSD9 was

located at 65.17 cM on chromosome 9, which could explain 5.62% of

the phenotypic variation, consistent with the mapping results of Frey

et al. (Frey et al., 2016). In addition, among the three indicators of

thermotolerance traits (LS, LSD, LSR), the broad-sense heritability of

the LSD is the lowest, only 0.38, while the broad-sense heritability of

the LS could reach to 0.73 (Supplementary Table 10). This implied

that the LS indicator was more suitable as a measurement index

under high temperature stress during the reproductive stage of maize.

In the study, it was observed that only LSR (Leaf Scorching

Ratio) and LSD (Leaf Scorching Degree) exhibited a high correlation

among the RIL-2:8 population, while LS (Leaf Scorching damage)

does not show a strong correlation with the other two indicators.

Here are some possible explanations: 1. Genetic factors: The

correlation between different traits can be influenced by the

underlying genetic factors. It is possible that the genetic basis for

LS is different from the genetic basis for LSR and LSD. This could be

due to the involvement of different genes or genetic pathways in

determining the severity and extent of leaf scorching damage

compared to the proportion of scorching leaves. 2. Environmental

factors: It is possible that the environmental factors in the specific

conditions where the RIL population was evaluated had a stronger

influence on LS compared to LSR and LSD. This could lead to a

weaker correlation between LS and the other two indicators. 3.

Measurement methods: The different measurement methods used

for LS, LSR, and LSD could contribute to the variation in their

correlations. Visual assessment, as described in your study, might

introduce subjectivity and measurement errors. It is possible that the

visual method used for LS assessment was less precise or more prone

to variation compared to the methods used for LSR and LSD, leading

to weaker correlations with LS. 4. Sample size and statistical power:

The strength of correlations can be influenced by the sample size and

statistical power of the study. It is possible that the RIL population

used in your study was not large enough to detect significant

correlations between LS and the other indicators. A larger sample

size might be needed to uncover potential correlations that were not

observed in our study.

In summary, this study was the first to systematically analyze

the phenotypic and genetic basis of leaf scorching traits under high
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temperature stress during the reproductive stage of maize. Through

the high-throughput SALF-seq technology, 10,112 polymorphic

SLAF markers were developed and a high-quality, high-density

genetic map was constructed. This provided an important

foundation for the genetic basis of other agronomic complex

traits and future marker assisted selection breeding (MAS) in

maize. This study also identified six candidate genes associated

with thermotolerance traits by combining the high-density genetic

maps with the QTL-seq strategy, of which Zm00001d033328 is the

most likely candidate gene for controlling the thermotolerance trait

at flowering in maize.
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SUPPLEMENTARY FIGURE 1

Daily maximum temperatures during the maize growing period in 2017-2018.

SUPPLEMENTARY FIGURE 2

Genomic sequencing quality analysis and SLAF length distribution. (A)
Distribution of sequencing quality values. The abscissa is the base position

of the reads, and the ordinate is the single-base error rate. (B) Distribution
analysis of base types. The abscissa is the base position of reads, and the

ordinate is the proportion of bases; Different colors represent different base

types, green represents base A, red represents base C, orange represents base
G, blue represents base T, and gray represents base N that cannot be

identified in sequencing. (C) The 414-464 bp mapped reads are the main
SLAF length range.

SUPPLEMENTARY FIGURE 3

Integrity analysis of SLAF markers in all RIL-F2:8 individuals.
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SUPPLEMENTARY FIGURE 4

Monomer analysis (up) for each individual genotype and recombination
analysis (down) between the SLAF marker and adjacent SLAF markers. One

row in the monomer figure (up) represents a marker, and one column

represents one individual originated from the RIL-F2:8 population. In
recombination figure (down), each row and column are markers that follow

the genetic map order. Each small square represents the recombination rate
between the two SLAF markers. The change of color from yellow to red to

purple represents the recombination rate from small to large.

SUPPLEMENTARY FIGURE 5

The various levels of thermosensitive phenotypes from RIL-F2:8 population
under high temperature stress at flowering in maize.

SUPPLEMENTARY FIGURE 6

Phenotypic variation of thermotolerance traits in the RIL-F2:8 population. The
figures on the diagonal show the phenotypic distribution of each

thermotolerance trait. The values above the diagonal are pairwise

correlation coefficients between the thermotolerance traits, and the figures
below the diagonal are scatter plots between the thermotolerance traits. *, P<

0.05; **, P< 0.01. LS, Lead Scorching damage, LSD, Leaf Scorching Degree,
and LSR, Leaf Scorching Ratio.

SUPPLEMENTARY FIGURE 7

The R2 and additive effect of quantitative trait loci (QTLs) for thermotolerance

traits in the RIL-F2:8 population. The x-axis indicates each identified QTL, and
the y-axis indicates the percentage of phenotypic variance explained by a

QTL (up) and additive effects (down) by each QTL.

SUPPLEMENTARY FIGURE 8

Unveiling the chromosomal distribution of QTLs in Maize under high

temperature stress during the flowering stage. The larger the graphic of

each QTL locus, the larger the genomic region; the narrower the graphic, the
smaller the genomic region.

SUPPLEMENTARY TABLE 8

The thermosensitive phenotypes from RIL-F2:8 population under high
temperature stress at flowering in maize.
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