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Improving path planning for
mobile robots in complex
orchard environments: the
continuous bidirectional
Quick-RRT* algorithm
Lei Ye*, Jin Li and Pu Li

School of Intelligent Engineering, Shaoguan University, Shaoguan, China
Efficient obstacle-avoidance path planning is critical for orchards with numerous

irregular obstacles. This paper presents a continuous bidirectional Quick-RRT*

(CBQ-RRT*) algorithm based on the bidirectional RRT (Bi-RRT) and Quick-RRT*

algorithms and proposes an expansion cost function that evaluates path

smoothness and length to overcome the limitations of the Quick-RRT*

algorithm for non-holonomic mobile robot applications. To improve the

zigzag between dual trees caused by the dual-tree expansion of the Bi-RRT

algorithm, CBQ-RRT* proposes the CreateConnectNode optimization method,

which effectively solves the path smoothness problem at the junction of dual

trees. Simulations conducted on the ROS platform showed that the CBQ-RRT*

outperformed the unidirectional Quick-RRT* in terms of efficiency for various

orchard layouts and terrain conditions. Compared to Bi-RRT*, CBQ-RRT*

reduced the average path length and maximum heading angle by 8.5% and

21.7%, respectively. In addition, field tests confirmed the superior performance of

the CBQ-RRT*, as evidenced by an average maximum path lateral error of

0.334 m, a significant improvement over Bi-RRT* and Quick-RRT*. These

improvements demonstrate the effectiveness of the CBQ-RRT* in complex

orchard environments.
KEYWORDS

path planning, mobile robots, orchard environments, rapidly exploring random tree,
bidirectional expansion
1 Introduction

Mobile robots are garnering increasing attention among researchers as intelligent devices.

Owing to their high degree of automation, mobile robots can improve productivity and

provide various conveniences. Mobile robots are currently being utilized in various scenarios

(Ferguson and Stentz, 2006; Zhao et al., 2014; Ljungqvist et al., 2019; Reid et al., 2020; Strader
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et al., 2020; Buchanan et al., 2021; Ye et al., 2023). As agricultural

automation research has gained widespread attention in recent years,

mobile robots have begun to make their way into agricultural settings

(Xiong et al., 2017; Blok et al., 2019; Ren et al., 2020). Khajepour et al.

(2020) proposed a particle filter algorithm using a laser beam model

and Kalman filter algorithm based on line detection for the

positioning and navigation of mobile robots in orchards. Qiu and

Li (2022) implemented a path-tracking control for orchard mobile

robots using a PID algorithm. Yang et al. (2022) used a dataset of

orchard road data to train semantic segmentation networks to extract

navigation paths and achieve path tracking for orchard robots.

However, the studies above focused on orchard robots operating in

structured environments with more prominent road features, with

less consideration for path planning and obstacle avoidance. In

unstructured orchard scenes, it is difficult for mobile robots to

make decisions by obvious features or scene markers to realize

specific navigation movements. The mobile robot in the orchard

needs to perceive the unstructured orchard environment and plan the

movement path for the mobile robot in the navigation operation

stably and efficiently through the constructed environment map or by

obtaining the real-time perception feedback. Therefore, in the field of

mobile robot navigation in orchards, path planning is a fundamental

and crucial aspect. Path planning refers to the process by which a

mobile robot identifies, within the configuration space, an obstacle-

free path from its initial configuration to its target configuration. The

path must simultaneously satisfy environmental constraints and the

kinematic constraints of the mobile robot itself (Siciliano et al., 2008).

In recent years, a substantial amount of research has been

dedicated to the path planning conundrum for orchard robots. Jiang

et al. (2022) used 3D and 2D LiDAR to map greenhouse orchards and

used the Dijkstra algorithm to plan global paths for mobile robots.

Tian et al. (2023) proposed an ant colony optimization algorithm to

solve multitarget waypoint planning for unmanned aerial vehicles in

orchards. Zhang et al. (2023) introduced an improved artificial

potential field algorithm for weed-removal robot path planning,

improving the safety of robot automation operations. Zhang et al.

(2022) conducted LiDAR scans of greenhousemaps and employed the

probabilistic roadmap technique to calculate the paths between all

target points, consequently establishing comprehensive global paths

for navigating multiple operational points. In addition to general-

purpose path planning algorithms, researchers have extensively

researched path planning algorithms for special orchard target

guidance based on the perception of the orchard scene. Liu et al.

(2023) proposed a real-time orchard mapping method based on visual

odometry-centered position estimation fused with a LiDAR camera

and achieved real-time apple global localization using ORB-SLAM3,

YOLO-V5, Euclidean clustering filtering, and the local point cloud

sliding window method. Xiong et al. (2023) combined the VINS-

RGBD SLAM framework with the semantic segmentation algorithm

BiSeNetV1 to propose a real-time localization and semantic map

reconstruction method for unstructured citrus orchards. Chen et al.

(2021) presented a global map-construction method tailored to the

nature of orchard-picking tasks using the ORB-SLAM3 algorithm.

Chen et al. (2024) proposed a set of vision algorithms for moving
Frontiers in Plant Science 02
target estimation, real-time self-localization, and dynamic harvesting.

In addition, a reliable coordination mechanism was established for

continuous motion and harvesting behavior.

In large and complex orchard environments, efficiently

determining the navigation paths for mobile robots is of concern

(Ye et al., 2023). The rapid-exploration random tree (RRT)

algorithm is a framework for path planning algorithms widely

used by mobile robots. This algorithm iteratively generates

feasible paths by incorporating points obtained from random

sampling of the state space, providing probabilistic completeness

(LaValle et al., 2001). The efficiency of RRT algorithms for path

planning has been highlighted in recent studies. Huan et al. (2023)

employed the RRT*-connect algorithm to plan the navigation path

of a microrobot in a plant–vein environment. Combined with the

characteristics of the Dijkstra algorithm for path optimization,

Wencheng et al. (2020) improved the RRT algorithm to solve the

path planning problem of orchard spraying robots. Castro et al.

(2023) proposed an online adaptive path planning solution fusing

RRT and deep reinforcement learning algorithms. Despite these

advantages, the RRT has inherent limitations due to its random

sampling nature, including (1) reliance on a global uniform random

sampling strategy, which results in slower convergence due to the

lack of guided search (Li et al., 2020); (2) path generation from

random sampling and iteration, resulting in non-optimality (Liu

et al., 2023); and (3) unsuitability of RRT-generated paths for

scenarios involving mobile robot tracking motion because it

overlooks kinematic constraints (Webb and Van Den Berg, 2013).

Researchers have refined the basic RRT algorithm to

accommodate various application environments and overcome

limitations. Kuffner and LaValle (2000) proposed Bi-RRT, a

bidirectional search tree that initiates two parallel trees from the

start and target states to expedite algorithm convergence to improve

the convergence speed of the RRT algorithm. Ye et al. (2021)

enhanced the Bi-RRT by incorporating a gravitational algorithm

with an adaptive step and gravitational coefficient adjustment into

the AtBi-RRT algorithm, which they applied to a picking robot,

achieving improved search efficiency and the ability to navigate

complex obstacle regions. Tahir et al. (2018) proposed a potentially

guided intelligent bidirectional RRT* algorithm that significantly

improves convergence speed and memory utilization. To advance

the optimization of paths generated through iterative random

sampling in the RRT algorithm, Karaman and Frazzoli (2011)

introduced the RRT* algorithm that incorporates key processes such

as ChooseParent and Rewire and proved its asymptotic optimality. As

the number of samples increased, the algorithm gradually approached

the optimal solution, with the path acquisition cost converging to the

optimum. However, the convergence is slow, especially in complex

environments. The informed RRT* algorithm was introduced to

enhance convergence efficiency (Gammell et al., 2014). This

algorithm restricts the sampling to an elliptical region that narrows

as the path length decreases after finding a feasible path. This strategy

preserves the probabilistic completeness and asymptotic optimality of

RRT*, speeds up convergence, and improves solution quality.

Furthermore, Nasir et al. (2013) developed RRT*-Smart to further
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speed up convergence. The algorithm starts from the sampled nodes

and seeks direct, unobstructed connections to ancestral nodes,

reducing path costs. Similarly, Jeong et al. (2019) proposed Quick-

RRT*, which extends the set of parent nodes beyond the immediate

neighbors to include their ancestors. This approach also influences the

rewiring process, favoring the alignment of new nodes with nearby

parent nodes, improving initial solutions, and achieving faster optimal

convergence compared to RRT. Li et al. (2020) combined a potentially

guided method and Quick-RRT* to propose the PQ-RRT* algorithm,

which achieved faster convergence and better initial path quality than

the Quick-RRT*. Moreover, researchers have proposed two

approaches to apply RRT algorithms to kinematically constrained

navigation scenarios. The first is the consideration of kinematic

constraints during the RRT path search process. Webb and Van

Den Berg (2013) introduced kinodynamic-RRT*, an asymptotically

optimal path planning solution for robots with linear dynamics. Moon

and Chung (2014) proposed a dual-tree RRT algorithm for path

planning for mobile robots with differential wheels. Wang et al. (2021)

proposed the KB-RRT* algorithm, incorporating kinematic

constraints to prevent unnecessary node expansion and speed up

the feasible path identification for differential-wheel mobile robots.

The second approach involves post-processing to mitigate increasing

computational complexity during sampling. Methods such as spline

fitting maintain the planning speed while producing smooth paths.

Elbanhawi et al. (2015) proposed a cubic B-spline smoothing

algorithm that ensured curvature continuity while satisfying a

robot’s incompleteness constraint. Other smoothing methods, such

as Bezier curves, have also been widely used to smooth the initial RRT

paths, making them suitable for different motion planning scenarios

(Liu et al., 2019; Li and Yang, 2020; Gan et al., 2021).

The conventional directional extension algorithm research pays

relatively little attention to the smooth connection of paths at the

conjunction between two trees; in the RRT sampling algorithm,

processing the dynamics constraint during each iteration will

occupy a significant amount of computational resources and

increase the planning time, especially in complex environments; in

path planning research combining RRT algorithm with spline fitting,

relatively few studies consider the corner constraints of path points,

resulting in large deviations between the actual trajectory and planned

path, which can easily trigger accidental collisions in complex

environments. Therefore, applying the existing path planning

methods for the path planning problem of orchard mobile robots in

complex environments is relatively difficult. Based on the limitations

of the existing studies, our primary contributions are presented below.
Fron
(1) The path length and maximum heading angle of the path

are simultaneously adopted as the path cost according to

the mobile robot. Hence, the algorithm is optimized for

path smoothness and improved in terms of path

executability during the extension process.

(2) The path planning speed is improved by adding a directional

extension method to the Quick-RRT* algorithm.

(3) To improve the local path smoothness of the bidirectional

extension algorithm in conjunction with the two trees, the

CreateConnectNode optimization algorithm is proposed to
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generate the optimal connection point directly in the

conjunction region of the two trees.
The remainder of this paper is organized as follows: Section 2

discusses the specific implementation of the proposed continuous

bidirectional Quick-RRT* (CBQ-RRT*) algorithm. Simulation

comparisons and field experiments for B-RRT*, Quick-RRT*, and

CBQ-RRT* are described in Section 3, and the results are compared

and analyzed. Finally, Section 4 presents the conclusions and

discusses the study.

2 Methods

In developing path planning algorithms for the autonomous

navigation of mobile robots in orchards, the primary considerations

are the executability and efficiency of the paths planned by the

algorithm and the computational efficiency of the algorithm. This

study improves the Quick-RRT* algorithm and introduces a CBQ-

RRT* algorithm to meet these requirements. The pseudocode for

the CBQ-RRT* algorithm is presented in Algorithm 1. Initially, an

extended cost function containing the kinematic constraints of the

mobile robot is established, which is applied to lines 4 and 11 in

Algorithm 1 to constrain the extension direction of the nodes. The

optimal parent nodes are further selected for Xnew and Xnew2 in lines

7 and 14 using this cost function. Then, a bidirectional

augmentation method is introduced to accelerate path planning.

Finally, an optimization strategy is proposed for connecting dual

trees to avoid abrupt connections that violate the kinematic

constraints (line 19). Further details of the implementation are

presented in the following section.
1 Va ← {Xstart}; Vb ← {Xgoal}; Ea ← ∅; Eb ← ∅; Ta ← (Va, Ea);

Tb ← (Vb, Eb);

2 for i ← 0 to N do

3 Xrand ← Sample();

4 Xnearest ← NearestVertex(Xrand, Ta);

5 Xnew ← Extend(Xnearest, Xrand);

6 sa ← Steer(Xnearest, Xnew);

7 Xparent_Ta ← ChooseParent(Xnew, Depth);

8 if Xparent_Ta ≠ ∅ then

9 Ta ← Rewire(Ta, Xnew, Xancestries_Ta)

10 end if

11 Xnearest_Tb ← NearestVertex (Xnew, Tb);

12 Xnew2 ← Extend(Xnearest_Tb, XTb_Extend);

13 sb ← Steer(Xnearest_Tb, Xnew2);

14 Xparent_Tb ← ChooseParent(Xnew2, Depth);

15 if Xparent ≠ Ø then

16 Tb ←Rewire(Tb, Xnew2, X ancestries_Tb)

17 end if

18 if distance(Xnew2,Xnew) ≤ GoalRadiu;

19 Xcreate_conn ← CreateConnectNode(Ta, Tb, Xnew);

20 end if

21 end for
Algorithm 1. CBQ-RRT*.
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2.1 Cost function of smooth expansion

In the application of mobile robots in orchards, the efficacy of the

RRT and its extended variants in path planning has been suboptimal.

The heading angles of the generated path nodes have large variations

in the path planning phase because of the random nature of the

algorithm, which challenges the kinematic constraints of the mobile

robot. This leads to significant lateral deviation in the navigation of

the robot, contributing to navigation failure. This section proposes a

novel path cost function based on the analysis of the kinematic

constraints of a mobile robot that mitigates this problem.

Assuming a uniform terrain, the spatial position of a tracked

mobile robot within an orchard environment can be defined as

Xi = (xi, yi, qi), as illustrated in Figure 1. Here, xi and yi represent the

coordinates in the global xw–yw coordinate system, while qi signifies
the robot’s orientation angle. The computation of qi is done using
Equation (1).

qi = arctan
yi − yi−1
xi − xi−1

� �
(1)

Additionally, by neglecting any track deformation during the

motion of the tracked mobile robots, we can approximate their

kinematics as that of a differentially driven mobile robot. According

to the kinematic model formula, the kinematic constraints can be

articulated using Equation (2).

xi+1

yi+1

qi+1

2
664

3
775 =

xi

yi

qi

2
664

3
775 +

Z Dt

0
vc cos (qi + wt)dt

Z Dt

0
vc sin (qi + wt)dt

Z Dt

0
wdt

2
666666664

3
777777775

=

xi

yi

qi

2
664

3
775 +

−R sin qi + R sin (qi + wDt)

R cos qi − R cos (qi + wDt)

wDt

2
664

3
775 w ≠ 0

xi

yi

qi

2
664

3
775 +

vcDt cos qi
vcDt sin qi

0

2
664

3
775 w = 0

8>>>>>>>>>>><
>>>>>>>>>>>:

(2)

where vc and w are the linear and angular velocities of the robot,

respectively; R is the turning radius of the robot, and R = vc
w .

From Equation (2), the transformation between the robot’s

current configurations depends on the kinematic parameter

constraints. When the planned path includes points with

significant changes in yaw angles, it can result in unreachable

points along the path. Consequently, significant lateral deviation

errors occur during the robot’s trajectory tracking process, as shown

in Figure 2, where X2 = (x2, y2, q2) is the path point of the planned

path and X2’ = (x2’, y2’, q2’) is the path point reached by the mobile

robot under the kinematic constraints.

Thus, significant changes in the heading angle at the waypoint

result in considerable lateral error in the path-following trajectory of

the mobile robot during navigation. This section introduces a novel

path cost function, denoted as C(xi, xi+1), designed to regulate the
Frontiers in Plant Science 04
expansion direction of the nodes, as shown in Equations (3) and (4).

C(Xi,Xx+1) = D(xi, xx+1) + A(Xi,Xx+1) (3)

D(Xi,Xi+1) = (Xx _ i − Xx _ i+1)
2 + (Xy _ i − Xy _ i+1)

2

A(Xi, xi+1) =
0,D(Xi,Xi+1) + D(Xi,Xi(parent)) < D(Xi(parent),Xi+1)

+∞, others

(
8>><
>>:

(4)

where Xi(parent) denotes the parent node of Xi. The path cost

function C(Xi, Xi+1) comprises a distance cost function D(Xi, xi+1)

and an angle penalty function A(Xi, Xi+1). The computation of D(Xi,

Xi+1) involves using the Euclidean distance formula, whereas A(Xi,

Xi+1) is calculated indirectly using the cosine formula. An angle cost

penalty is introduced when the heading angle between path nodes

exceeds p/2.
The CBQ-RRT* algorithm uses the cost function in lines 4—6

and 11—13 of Algorithm 1 to select the initial parents of Xrand and

Xnew in the two extended trees, ensuring that the paths between

them and their respective parents satisfy the kinematic constraints.

Thus, the CBQ-RRT* algorithm restricts the expansion direction of

the nodes, ensuring compliance with the kinematic constraints of

the mobile robot. Figure 3 illustrates the node expansion process.

Additionally, the CBQ-RRT* algorithm incorporates the cost

function into the ChooseParent and Rewire functions in lines 7–

10 and 14–17 of Algorithm 1, which further maintains the path to

satisfy the kinematic constraints during the path optimization

process of the CBQ-RRT* algorithm. The pseudocode for

implementing the ChooseParent and Rewire functions is shown

in Algorithm 2 and Algorithm 3.
1 Xnear ← NearVertices(Xnew, T, R);

2 for Xnear ∈ Xnear do

3 Xancestry ← Xnear;

4 for i = 0 to Depth do

5 if Xancestry ∉ Xancestries;

6 Xancestries ← Xancestry ∪Xancestries;
FIGURE 1

Schematic diagram of the mobile robot configuration.
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7 end if

8 Xancestry ←parent(Xancestry);

9 end for

10 end for

11 Xparent_new←findCost_min(Xancestry, Xnew)

12 Return Xparent_new
Algorithm 2. ChooseParent(Xnew, Depth).
1 for all Xfrom∈Xnew∪Xancestries do

2 for all Xnear ∈Xnear
3 if Cost(Xfrom) + Cost(Xfrom, Xnear) ≤ Cost (Xnear) &

CollisonFree then;

4 Xparent_near ← Xfrom;

5 end if

6 end for
Algorithm 3. Rewire(Xnew, Xnear, Xancestries).
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2.2 Dual-tree smooth connected method

Adding the Quick-RRT* algorithm to the bidirectional

expansion method in Algorithm 1 improves the planning

efficiency, but in the expansion direction; Ta expands in the Xrand

direction and Tb expands in the Xnew direction generated by Ta.

Moreover, ChooseParent and Rewire optimization during the dual-

tree expansion is performed independently, making it difficult to

obtain the optimal connection point by random sampling in a

complex environment. For example, in Figure 4, if the Quick-RRT*

algorithm is added directly to the bidirectional expansion method,

the iteration is stopped after the dual-tree connection. In addition,

there is a higher probability of path points with large changes in the

heading angle in the path connection, and a large redundant section

of the path is added, as shown in Figure 4A. To enhance this

situation, once a connection path is obtained between the two trees

(line 18 in Algorithm 1), the CBQ-RRT* algorithm proposes the

CreateConnectNode algorithm to generate a more optimal dual-

tree connection point Xcreat_conn (line 19 in Algorithm 1). The

pseudocode implementation is displayed in Algorithm 4, and an

example of the algorithm implementation is displayed in Figure 4B.
1 Xup ← Xconn

2 Xbottom ← Xparent_Ta

3 while distance(Xup, Xbottom) > dichotomy do

4 Xtransition ← (Xup + Xbottom)/2;

5 if CollisionFree(Xtransition, Xparent_x_new)

6 Xup ← Xtransition;

7 else

8 Xbottom ← Xtransition;

9 end if

10 end while

11 Xbottom ← Xparent_Tb;

12 while distance(Xup, Xbottom) > dichotomy do

13 Xcreat_conn ← (Xup+ Xbottom)/2;

14 if CollisionFree(Xcreat_conn, Xparent_x_new)

15 Xup ← Xcreat_conn;

16 else
FIGURE 3

CBQ-RRT* algorithm node expansion process.
FIGURE 2

Schematic of mobile robot trajectory deviation.
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17 Xbottom ← Xcreat_conn;

18 end if

19 end while

20 return Xcreat_conn
Algorithm 4. CreateConnectNode(Ta, Tb, Xnew).

The CreateConnectNode algorithm operates as follows:
(1) When the two expansion trees Ta and Tb are connected, the

respective node sets Xancestry_Ta and Xancestry_Tb belonging to

node Xconn are identified. The parent nodes Xparent_Ta and

Xparent_Tb of Xconn are also located within this set.

(2) Initially, the transition point Xtransition on the line linking

Xparent_Ta and Xconn is ascertained. At the iteration onset,

Xparent_Ta and Xconn are characterized as the lower and

upper endpoints Xbottom and Xtop, respectively. The

midpoint between Xbottom and Xtop is defined as Xmid.

This is followed by connecting Xparent_Tb and Xmid. In the

absence of a collision, Xmid is reassigned as Xtop; otherwise,

Xmid is redefined as Xbottom. The iteration continues, and

according to the dichotomy principle, the distance between

Xtop and Xbottom is progressively reduced until it falls below

a pre-established dichotomy parameter. Using this

approximation, Xtransition on the line connecting Xparent_Ta

and Xconn is obtained. Applying the same principle,

Xtransition and Xparent_Tb are designated as Xup and Xbottom,

respectively, with the optimal connection point Xcreate_conn

discovered on the line connecting Xtransition and Xparent_Tb.

(3) Eventually, Xcreate_conn serves as the link connecting the two

expansion trees Ta and Tb, with Xparent_Ta and Xparent_Tb

assigned as parent nodes, respectively, thereby combining

the two trees and revealing the final path, as depicted in

Figure 5B. The CreateConnectNode optimization algorithm

produces an improved connection point, Xcreate_conn, over

the original. This resolves the smoothing issue encountered

when connecting two expansion trees, thereby reducing

both the trajectory’s extensive angular change and

its length.
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3 Simulations and experimentations

3.1 Path planning simulations

3.1.1 Simulation setting
To evaluate the performance of the proposed algorithm, three

representative orchard scenarios (Figure 6) were used to construct

the corresponding simulation maps (Figure 5). The white and black

areas indicate the feasible and obstacle areas, respectively; the green

and red points indicate the starting and target points of the scenario

path plan, respectively. The maps have dimensions of 1,152×648

pixels and a resolution of 0.025 m/pixel. The starting and target

configurations for all three scenarios are presented in Table 1. The

simulation experiments were conducted on a computer powered by

an Intel Core i5 processor with 16 GB of RAM utilizing the ROS-

Melodic platform. For a comparative analysis, the proposed

algorithm was pitted against the Bi-RRT* and Quick-RRT*

algorithms, run with the depth parameter set to three during

the simulation.

In the practical application of the orchard mobile robot

navigation path planning, we focused on the executability,

execution efficiency of the planned paths, and computational

efficiency of the algorithm. Therefore, we systematically

recorded the key parameters: the length and maximum

steering angle of the algorithmically planned path, and the

time taken by the algorithm for path formulation in the

simulation. Path length serves as a central metric for

evaluating the execution efficiency of an algorithmically

planned path. A shorter path length directly corresponds to

reduced time to execute the path, particularly for a given linear

velocity of the mobile robot. Simultaneously, the maximum

steering angle acts as an indicator of path smoothness. The

conclusions drawn from the previous kinematic analysis indicate

that a smaller maximum steering angle in the path correlates

with a smaller lateral error generated by the mobile robot during

path execution. The execution time of an algorithm is a direct

indicator of its computational efficiency, which is related to its

real-time responsiveness to dynamic scenarios.
A B

FIGURE 4

CreateConnectNode algorithm implementation procedure. (A) Originally planned path; (B) optimized planned path.
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In this section, each algorithm was executed 100 times in the

three scenarios. The evaluation aimed to assess the efficiency of path

planning, the feasibility of mobile robots in orchards, and overall

algorithmic efficiency.

3.1.2 Analysis of simulation results
Examples of the simulation results are shown in Figures 7–9.

The thin red lines indicate the randomly constructed trees, whereas

the thick green lines indicate the final planned paths.

The path planning results highlight a notable reduction in the

number of red lines for the Bi-RRT and CBQ-RRT* algorithms

compared to the Quick-RRT* algorithm. This reduction implies that

the Bi-RRT* and CBQ-RRT* algorithms can formulate planned paths

with an expansion of a relatively modest number of nodes, indicating

superior efficiency in path planning. Additionally, an examination of

the final planned path, represented by the thick green line, reveals

distinctive characteristics. The path of the Bi-RRT* algorithm at the

dual-tree node, as indicated by the rectangular box, displays a

noticeable curvature. In contrast, the path planned by the CBQ-
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RRT* algorithm demonstrates remarkable smoothness, with a shorter

length than that planned by the Bi-RRT* algorithm. This observation

underscores the superior quality of the paths generated by the CBQ-

RRT* algorithm compared to the Bi-RRT* algorithm. The simulation

examples provided initially demonstrate that the CBQ-RRT*

algorithm can achieve higher-quality path planning while

maintaining superior algorithmic efficiency. More detailed

simulation results and statistics are presented in Figure 10 and

Tables 2–4.

First, Figure 10A and Table 2 demonstrate that the CBQ-RRT*

algorithm consistently outperforms the Bi-RRT* and Quick-RRT*

algorithms in generating more efficient paths across the three

distinct environmental scenarios. During iteration, the CBQ-

RRT* and Quick-RRT* algorithms enhance the potential parent

node set in the ChooseParent and Rewire phases, finding shorter

paths. Additionally, the CBQ-RRT* algorithm employs

CreateConnectNode optimization, significantly improving path

quality and yielding shorter paths than the Quick-RRT*

algorithm, as shown in Table 2.

Second, unlike Bi-RRT* and Quick-RRT* algorithms, the CBQ-

RRT* algorithm integrates a cost function that accounts for

cornering constraints, significantly reducing sudden changes in

path curvature. The CBQ-RRT* algorithm uses a smoothing

connection technique in the bidirectional tree connection process

to produce smoother paths and is further supported by the

maximum path-turning angle data in Figure 10B and Table 3.

Based on the constraints imposed by the robot kinematics, the

smaller the maximum turning angle, the smaller the lateral

deviation error of the mobile robot when executing the path.
A B C

FIGURE 6

Simulated orchard scene. (A) Standardized orchard planting; (B) orchard with irregular roads; (C) orchard with irregular planting.
A B C

FIGURE 5

Scenarios of simulation experiment. (A) Scenario 1; (B) scenario 2; (C) scenario 3.
TABLE 1 Parameters of the starting and target points of the
simulation environment.

Scenarios Starting
configuration

Target configuration

1 [0 m, 0 m, 0°] [0 m,-14 m, 180°]

2 [0 m, 0 m, 0°] [3 m,27 m, 90°]

3 [0 m, 0 m, 0°] [26.5 m,-1.6 m, 0°]
frontiersin.org

https://doi.org/10.3389/fpls.2024.1337638
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Ye et al. 10.3389/fpls.2024.1337638
A B C

FIGURE 7

Example of simulation results for scenario 1. (A) Bi-RRT*; (B) Quick-RRT*; (C) CBQ-RRT*.
A B C

FIGURE 8

Example of simulation results for scenario 2. (A) Bi-RRT*; (B) Quick-RRT*; (C) CBQ-RRT*.
A B C

FIGURE 9

Example of simulation results for scenario 3. (A) Bi-RRT*; (B) Quick-RRT*; (C) CBQ-RRT*.
A B C

FIGURE 10

Statistics of simulation results. (A) The path length statistics results; (B) the maximum path angle statistics results; (C) the planning time
statistics results.
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Finally, regarding algorithmic efficiency, Figure 10C and Table 4

show that Bi-RRT* and CBQ-RRT* algorithms have shorter path

initialization times than the Quick-RRT* algorithm, particularly in

Scenario 1, as characterized by the smaller feasible region and a more

complex environment. This emphasizes the effectiveness of

bidirectional RRT algorithms, including CBQ-RRT*, in meeting the

efficiency needs of path planning for mobile robots in orchard settings.

The results confirm that the CBQ-RRT* algorithm is superior to

Bi-RRT* and Quick-RRT* algorithms in terms of overall

performance and demonstrates its ability to efficiently plan

shorter collision-free paths that align better with the kinematic

constraints of mobile robots in a shorter time.
3.2 Planned path tracking experiment

3.2.1 Experiment setting
The algorithmic performance of CBQ-RRT* was further

evaluated in an orchard context using real-world experiments. The

physical orchard mobile robot used is shown in Figure 11, and its

motion parameters are listed in Table 5. The experimental

environment consisted of an orchard with complex obstacles, as

shown in Figure 12A. The mobile robot, equipped for picking,

incorporated a three-dimensional LiDAR “Robosensen_16” for

environmental sensing and a nine-axis IMU module to monitor its

movement. From the resulting sensor data, an offline map is

constructed using the cartographer algorithm proposed by Hess

et al. (2016) to facilitate path planning. This map, shown in

Figure 12B, consists of 712×659 pixels at a resolution of 0.05 m/pixel.

This map was utilized to plan paths using the Bi-RRT*, Quick-

RRT*, and CBQ-RRT* algorithms, each originating at [6 m, 2 m, 0°]

and terminating at [22.73 m, 1 m, 90°], over five trials per algorithm.

The experiments assessed the executability of each path planning

algorithm by comparing the lateral deviation error between the

planned and actual robot trajectory. The results of these on-field

experiments are represented in Figures 13, 14; Supplementary
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Figure 1 statistics regarding the maximum path deviation are

summarized in Table 6.

3.2.2 Analysis of experiment results
Figure 13 shows the results of the paths planned by the Bi-

RRT*, Quick-RRT*, and CBQ-RRT* algorithms in a real

environment map. These results are consistent with those

obtained in the simulation experiments, with the CBQ-RRT*

algorithm demonstrating the ability to generate planned paths of

relatively high quality using fewer extended nodes.

The real-time trajectory of the robot was monitored during path

execution using the localization module of the Cartographer

algorithm. Supplementary Figure 1 shows the paths planned by

the three algorithms, represented by red line segments, along with

the actual trajectories of the mobile robot during navigation,

represented by blue curves. The planned and actual trajectories

are length normalized to quantify the executability of the path

during the navigation process. We select n observation points from

them in equal proportions and calculate the lateral error of the

mobile robot during the path-following process as Equation (5).

Lateral _ err(i) =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½x(i)p − x(i)r�2 + ½y(i)p − y(i)r�2

q
(5)

where x(i)p, y(i)p and x(i)r , y(i)r are the coordinates of the ith

observation point in the planned path and actual trajectory,

respectively. Figure 14 shows the lateral error between the actual

and planned trajectories when the mobile robot executes the paths
TABLE 3 Maximum path angle of simulation results.

Scenarios
Algorithm

Scenario
1

Scenario
2

Scenario
3

CBQ-RRT* 60.89° 53.93° 52.89°

Quick-RRT* 61.74°
(+1.4%)

54.78°
(+1.6%)

58.26°
(+1.0%)

Bi-RRT* 74.33°
(+41.44%)

60.46°
(+20.4%)

71.61°
(+22.9%)
f

TABLE 4 Planning time statistics of simulation results.

Scenarios
Algorithm

Scenario
1

Scenario
2

Scenario
3

CBQ-RRT* 2.96 s 2.14 s 1.33 s

Quick-RRT* 41.97 s 8.86 s 2.24 s

Bi-RRT* 2.15 s 1.47 s 1.49 s
FIGURE 11

Self-developed mobile robot.
TABLE 2 Path length statistics of simulation results.

Scenarios
Algorithm

Scenario
1

Scenario
2

Scenario
3

CBQ-RRT* 80.84 m 39.93 m 43.65 m

Quick-RRT* 81.06 m
(+0.2%)

40.33 m
(+1.0%)

43.92 m
(+0.6%)

Bi-RRT* 85.33 m
(+5.3%)

44.71 m
(+10.9%)

46.55 m
(+6.0%)
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planned by these algorithms. Supplementary Figure 2 illustrates the

movement of a mobile robot when executing a planned path. The

mobile robot exhibits comparatively smaller lateral errors in

Figure 14; Supplementary Figures 1, 2 when executing the paths
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planned by the CBQ-RRT* algorithm, suggesting superior

executability of the paths planned by the CBQ-RRT* algorithm.

Table 6 presents the maximum path lateral error statistics

obtained from these experiments. CBQ-RRT* recorded an average

maximum path lateral error of 0.334 m across five trials. In contrast,

Quick-RRT* and Bi-RRT* recorded lateral errors of 0.455 and

0.796 m, respectively. The field experiments validated the superior

performance of the CBQ-RRT* algorithm in challenging orchards.

4 Conclusions

When operating autonomously, orchard mobile robots, such as

those used for weeding, spraying, and picking, must easily traverse
TABLE 5 The motion parameters of the mobile robot.

Parameter Value

Minimum turning radius Rmin 0.6 m

Maximum curvature kmax 1.6 m-1

Maximum angular velocity wmax 20°/s

Maximum speed vc_max 2 m/s
A B

FIGURE 12

Experimental environment. (A) Experimental field scenario; (B) grid map of the experimental scenario.
A B C

FIGURE 13

Planned paths result. (A) Bi-RRT*; (B) Quick-RRT*; (C) CBQ-RRT*.
A B C

FIGURE 14

The lateral error records. (A) Bi-RRT*; (B) Quick-RRT*; (C) CBQ-RRT*.
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through the orchard. Existing research on the navigation scheme of

orchard mobile robots focuses on path extraction and fixed path

following in a structured orchard. However, this type of research

cannot be applied to unstructured orchard scenes where the road

characteristics are fuzzy, and the robot needs to autonomously plan

the navigation path according to environmental perception.

Therefore, an efficient path planning algorithm is key to

achieving improved automation for mobile orchard robots in

unstructured orchard environments.

In this study, based on the Quick-RRT* algorithm, a

bidirectional expansion method was introduced, and a

computationally lightweight path cost function was proposed to

maintain the smoothness of the paths between nodes and the

efficiency of node expansion during random tree expansion.

Moreover, the algorithm performs smoothness optimization

during dual-tree link processing, which locally improves the

kinematics of the paths at the dual-tree link. We prove the

effectiveness of the CBQ-RRT* algorithm for the path planning

problem of working mobile robots in an orchard scene by setting

three types of orchard simulation maps: a standardized planting

scene, an irregular road scene, and an irregular planting scene. The

statistical simulation results of the experiment show that, compared

with the Bi-RRT* algorithm, the CBQ-RRT* algorithm improves

the length and smoothness of the planned paths under the premise

of using a similar path planning time, and the planning efficiency is

significantly improved compared with the Quick-RRT* algorithm.

Path-following experiments were conducted in a real field

environment to prove further the effectiveness of the CBQ-RRT*

algorithm in practical work-robot applications. The experimental

results show that the mobile robot can follow the path planned by

the CBQ-RRT* algorithm more accurately. The experimental

results show that the CBQ-RRT* algorithm can effectively plan a

safe and feasible point-to-point navigation path for a mobile robot

in a complex orchard environment and the mobile robot can follow

the path planned by the CBQ-RRT* algorithm more accurately.

Autonomous point-to-point navigation is integral in orchard

robotics, particularly spraying, weeding, and inspection robots.

These robots also share structural similarities with the tracked
Frontiers in Plant Science 11
chassis used in our experiment, leading us to believe that CBQ-

RRT* can be directly applied to enhance operational efficiency.
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