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Better crop stand establishment, a function of rapid and uniform seedling

emergence, depends on the activities of germination-related enzymes, which is

problematic when there is insufficient soil moisture. Different ways are in practice

for counteracting this problem, including seed priming with different chemicals,

which are considered helpful in obtaining better crop stand establishment to some

extent through improved seed germination and seedling emergence. In this

growth room experiment, caffeine was used as a seed priming agent to improve

germination under moisture scarcity. Polyethylene glycol-8000 (18%) was added

to Hoagland’s nutrient solution to create drought stress (−0.65 MPa). The

experiment was arranged in a completely randomized design (CRD), having four

replications of each treatment. A newly developed wheat genotype SB-1 was used

for the experimentation. Different doses of caffeine, i.e., 4 ppm, 8 ppm, 12 ppm, and

16 ppm, including no soaking and water soaking, were used as seed priming

treatments. Water deficit caused oxidative stress and adversely affected the seed

germination, seedling vigor, activities of germination enzymes, photosynthetic

pigments, and antioxidative defense mechanism in roots and shoots of seedlings.

Caffeine seed priming ameliorated the negative effects of water deficit on seed

germination and seedling vigor, which was attributed to the reduction in lipid

peroxidation and improvement in the activities of germination-related enzymes

like glucosidase, amylase, and protease. Conclusively, seed priming with 12 ppm

caffeine outperformed the other treatments and hence is recommended for better

crop stand establishment under conditions of soil moisture deficit.
KEYWORDS

caffeine, seedling emergence, hydrolyzing enzymes, wheat, antioxidants, photosynthetic
pigments
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1 Introduction

Changing environmental conditions are severely disturbing the

life cycles of plants in different ways, resulting in sever yield losses.

Shortage of fresh water for irrigation and increase in

evapotranspiration due to a rise in temperature along with changes

in rainfall patterns are being considered the major constraints in this

regard (Batool et al., 2022; Habib-ur-Rahman et al., 2022; Nyaupane

et al., 2024). Semi-arid and arid areas, totally dependent upon

rainfalls for their agricultural needs, are highly prone to such

environmental variations. These areas contribute a major share of

the world’s agricultural productivity. Moreover, the negative impacts

of environmental variations are more pronounced in developing

countries like Pakistan (Habib-ur-Rahman et al., 2022). Water

deficiency negatively affects every stage of plant life, but seed

germination and seedling establishment are considered the most

vulnerable ones (Qayyum et al., 2011; Kizilgeçi et al., 2017; Song et al.,

2019). Reduction in seed germination and seedling emergence leads

to poor crop stand establishment with the ultimate decline in seed

yield (Farajollahi et al., 2014; Muscolo et al., 2014; Kizilgeçi et al.,

2017; Batool et al., 2022).

An optimum level of soil moisture is required for the proper

germination of seeds, the deficiency of which critically hampers the

process of germination and frequently depresses the seedling vigor

(Basu et al., 2016) by disturbing the metabolic activities, necessary

to start the seed germination and are also helpful for seedling

development (Perveen et al., 2021). This depression in seed

germination, under limited availability of moisture, is the

function of reduction in the absorption of water by seed,

necessary for imbibition (Hussain et al., 2018). The weak crop

stand establishment, owing to poor germination and seedling

emergence, is more problematic under rain-fed conditions in arid

and semi-arid areas (Qayyum et al., 2011). It can only be overcome

by improving and speeding up the processes of seed germination

and seedling emergence (Saeed et al., 2023a) that sorely depends on

the extent of water absorption by seed for imbibition, necessary for

triggering the activities of germination-related enzymes, such as

amylase (Amy), protease (Prot), and glucosidase (Gluco) (Ali et al.,

2018). Better activities of these hydrolyzing enzymes catabolize the

stored large bio-molecules into simpler ones, like fatty acids, amino

acids, and sugars, which serve as raw materials for the developing

seedlings (Perveen et al., 2021; Saeed et al., 2023a). These catabolic

activities provide not only the basic simple molecules but also the

energy to the developing seedlings (Perveen et al., 2021, Perveen

et al., 2022; Saeed et al., 2023a).

To overcome the negative impacts of different stresses at any of

the growth stages, different methods or techniques are being

employed (Ali et al., 2019; Ali et al., 2020a, Ali et al., 2020b, Ali

et al., 2020c; Perveen et al., 2021; Saeed et al., 2023a, Saeed et al.,

2023b), including the screening of plant genotypes with improved

germination potential (Ali et al., 2016, Ali et al., 2018), agronomic

practices (Lamichhane and Soltani, 2020), and use of chemicals

(organic and inorganic ones) through different ways at different

growth stages (Ali et al., 2018; El Sabagh et al., 2019; Ali et al.,

2021; Shehzad et al., 2022). Seed priming not only improves seed

germination to obtain a good crop stand but also induces tolerance in
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plants to various stresses at later growth stages (Lutts et al., 2016;

Noman et al., 2018a, Noman et al., 2018b; Nawaz et al., 2020; Ali

et al., 2020a; Habib et al., 2021; Arun et al., 2022). It is considered a

low-cost approach for obtaining better production by establishing

good crop stands (Zulfiqar, 2021), not only under limited water

supply but also in well-irrigated conditions (Ali et al., 2020a; Habib

et al., 2021). Pre-sowing seed treatment is gaining the attention of

researchers due to its low cost and significant positive outcomes at the

global level (Noman et al., 2018a, Noman et al., 2018b; Ali et al.,

2020a; Habib et al., 2021). Various types of seed priming agents are in

practice, but the use of eco-friendly organic compounds, having a

significant role in seed germination and seedling establishment, is

gaining popularity among researchers (Noman et al., 2018a, Noman

et al., 2018b; Nawaz et al., 2020; Ali et al., 2020a; Habib et al., 2021;

Seleiman et al., 2021).

A review of previous literature reveals that the use of such

chemicals for seed priming has the potential to accelerate the seed

germination process and induce stress tolerance at later growth

stages of plants (Johnson and Puthur, 2021). In this regard, different

sugars (Mostofa et al., 2015; Shao et al., 2022), vitamins,

antioxidants (Alam et al., 2022), plant-based extracts (Noman

et al., 2018b; Ali et al., 2020d), and amino acids (Ahmed et al.,

2019; Doycheva, 2022) are being applied individually or in

combination. Several researchers have recommended the use of

organic compounds for seed priming to obtain better production by

stress amelioration (Ali et al., 2017; Habib et al., 2020; Saeed et al.,

2023a). However, the potential of phytochemicals in modulating the

cellular metabolism for stress tolerance is still unexplored.

Several secondary metabolites are synthesized by the plants,

including alkaloids, flavonoids, phenols, and terpenoids, which have

major contributions to the adaptations of plants to their

surroundings (Montes et al., 2014). Alkaloids are specialized

metabolites that influence numerous biological activities. Plants

are protected by these naturally occurring nitrogenous chemicals in

order to withstand a variety of stressful environmental situations

(Bhambhani et al., 2021). Purine alkaloids, well-known secondary

metabolites, are often used as mild stimulants. A well-known

alkaloid 1,3,7-trimethylxanthine, commonly known as caffeine,

originated from purine, belongs to the xanthene family, and is

naturally present in almost 100 plant species (Montes et al., 2014).

Caffeine is bitter, white, and crystalline in nature. It is found in

coffee, tea, chocolates, and many other food items (Jadhav et al.,

2016). It is similar in structure to cytokinins, which perform various

metabolic functions in plants, especially the process of cell division

(Taiz et al., 2015). Caffeine is reported as both enhancer and

inhibitor of growth in plants (Montes et al., 2014). However, very

little information is available on the metabolic role of caffeine, as a

seed-treatment agent, in the process of seed germination and

seedling emergence under drought stress. Recently, Emanuil et al.

(2022) found the stress-relieving effect of exogenously applied

caffeine in spinach plants. Moreover, the exogenous application of

caffeine improved the yield of Bambara ground nut (Vigna

subterranea L.), which was associated with caffeine-inducible

better seed germination (Mshelmbula et al., 2018). Treatment of

sunflower seeds with caffeine at low concentrations improved seed

germination and seedling growth (Khursheed et al., 2009).
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Among agronomic crops, wheat is the most widely traded

product. It is the largest contributor with almost 50% and 30% in

the world grain trade and grain production, respectively (Akter and

Rafiqul Islam, 2017). Among cereals, it remains a major source of

human diet for many civilizations in many parts of the world.

Among cereals, wheat has secured the third position following rice

and maize (Asseng et al., 2011). Approximately more than 35% of

the global population, including Pakistan, depends on wheat to

fulfill their food requirements. In Pakistan, almost one-third of the

total cultivated land is rain-fed, receiving insufficient rainfall

(Mahmood et al., 2021). In these regions, water deficiency is a

major barrier to better production of wheat (Qayyum et al., 2011),

and annually, approximately 30% loss in wheat yield occurs due to

poor crop stand establishment.

In view of the information available, regarding the limited use of

caffeine, it was hypothesized that exogenous use of caffeine as a seed

priming agent may be helpful in ameliorating the negative impacts

of PEG-induced drought stress on seed germination and seedling

growth of wheat. The present study was designed with the objectives

of exploring the possible roles of low doses of caffeine in improving

seed germination and seedling emergence and vigor, in relation to

activities of hydrolyzing enzymes, which have key roles in seed

germination and seedling biomass production.
2 Materials and methods

2.1 Experimental conditions

The whole experiment was performed in a growth room at 25°C ±

2°C in the Experimental Botany Lab of the Department of Botany,

Government College University Faisalabad. Light was maintained by a

LED (PHILIPS cool daylight) light system. The given light intensity was

500 μmol m−2 s−1, which was maintained for 9 h on a daily basis. The

experiment was arranged in a completely randomized design (CRD)

with four replicates of each treatment. Wheat genotype SB1 (developed

from a cross of S-24 and Bhakkar), with high yield potential, was used

for the experimentation. The experiment comprised 48 Petri dishes,

where 24 Petri dishes were allocated to non-stressed treatments, while

the remaining 24 were allocated to drought-stressed ones. In each Petri

dish, 30 seeds were sown usingWhatman No. 1 filter paper in a double

layer as a substrate. Hoagland’s nutrient solution (10 mL in each Petri

dish) was supplied to the set of Petri dishes allocated to non-stressed

treatments, and 18% PEG-8000 solution (10 mL in each Petri dish)

prepared in Hoagland’s nutrient solution (with a solute potential of

−0.65 MPa) was added in Petri dishes allocated to drought stress

treatments. Hoagland’s nutrient solution was applied to make it

compatible with the soil environment. PEG-induced drought stress

reduced the availability of water to plants in a growth medium, and the

plants showed similar physiological responses as observed under water-

deficient conditions in soil (Gergely et al., 1980; Gonzalez et al., 2023).

Seed priming treatments were as follows: no soaking (NS), water

soaking (WS), and caffeine levels of 4 ppm, 8 ppm, 12 ppm, and 16

ppm. Before sowing, seeds were soaked for 12 h in water and each of
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the respective caffeine solutions, followed by air-drying to a constant

weight. For surface sterilization, the seeds were treated with HgCl2
solution (0.1%) for 5 min and thoroughly washed with distilled water.

After air-drying, 30 seeds were sown in each Petri dish supplied with

respective solutions. The whole experiment was performed in

duplicate. One set of the experiment was specified to measure the

seed germination, seedling emergence, growth, and different physio-

biochemical attributes, while the second set was specified to measure

the activities of germination-related enzymes. After germination count

in the first set of experiments, the seedlings were grown under the same

environmental conditions for 15 days in the same Petri dishes to

measure different biochemical attributes. After seed germination, the

seedlings in the Petri dishes were supplied with the solutions of

required strength at the rate of 20 mL per day in each Petri dish.
2.2 Seed germination-related attributes

Data on seed germination and related traits were recorded

following the instructions of the Association of Official Seed

Analysts (1990). Seed germination count was conducted on a daily

basis and continued till the constant number was achieved. The seed

germination percentage was calculated using the following equation.

Seed germination percentage

= (total seed germinated at final count=total seeds sown)� 100:

Time to 50% seed germination (E50) was determined according

to the method given by Coolbear et al. (1984), using the following

equation.

Time to 50%  seed germination = ti + ½(N=2 − ni) (tj − ti)=nj − ni�,
where ni and nj are the counts of seeds at the times ti and tj,

respectively, that emerged from the adjacent counts, when ni< N/2

and nj> N/2. Here, N shows the total seeds that were germinated in

the final count.

Mean emergence time (MET) was calculated using the

following equation given by Ellis and Roberts (1981).

Mean emergence time = (SDn=S n) :

Here, n corresponds to the emerged seeds on day D, and D

corresponds to the number of days counted from the initiation of

seed germination.

For the calculation of the coefficient of uniformity of emergence

(CUE), the equation given by Bewley and Black (1985) was applied,

as mentioned below.

CUE = S n=S ½(t= − t)2 � n�,
where n represents the number of germinated seeds with

healthy emergence, counted on t day; t is the number of days

after seed sowing; t/ is the MET.

Seed emergence index (EI) was estimated following the method,

given below, as described by the Association of Official Seed

Analysts (1983).
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EI = Count of germinated seeds

+ days to first count……… count of germinated seeds

+ days to final count :

Germination energy (GE) is the percentage of seeds germinated

at day 4 to the total number of seeds. Germination energy was

calculated by the method devised by Ruan et al. (2002).
2.3 Activities of seed germination enzymes

For the estimation of the activities of enzymes, necessary for

seed germination, the seeds grown in the second set of the

experiment were used after 48 h of sowing.

To estimate the Amy activity, 10 germinating seeds per replicate

were taken, ground well using a mortar and pestle in an ice-chilled

solution of NaCl (1%), and prepared in phosphate buffer (0.2 mM)

having pH 5.5 for the extraction of enzymes. The obtained homogenate

was centrifuged for 20 min at 10,000 rpm. The supernatant obtained

after centrifugation was used to measure the enzyme activity as

reported by Chrispeels and Varner (1967). The Amy activity was

measured as mg of starch hydrolyzed g−1 fresh weight h−1.

For the estimation of Prot activity in germinating seeds, the

procedure given by Ainouz et al. (1972) was followed. From each

replicate, five seedlings were selected, ground well using a mortar

and pestle in an ice-cold solution of 1% NaCI, and prepared in 0.2

mM phosphate buffer having pH 7.0 for the extraction of enzymes.

The finely ground homogenate was centrifuged for 20 min at 14,000

rpm. The supernatant (1 mL) was mixed well with 1% solution of

casein (5 mL) and prepared using the phosphate buffer (0.2 M) with

pH 6.0. The resultant solution was incubated for 1 h at 50°C. The

reaction was terminated by adding 1 mL trichloroacetic acid (TCA)

(40% solution) and mixing with Folin’s phenol reagent, and the

absorbance was read using a spectrophotometer at 570 nm,

following Classics Lowry et al. (1951).

For measuring the activity of Gluco in germinating wheat seeds,

the mixture was prepared for incubation, containing maltose (0.1

mL) with the required strength, prepared using the McIlvaine buffer

(Dawson et al., 1969) having pH 5. The same buffer (0.3 mL) was

mixed with Gluco (0.1 mL) to prepare the Gluco solution. The

extracted enzyme was mixed with this solution to start the reaction,

followed by incubation at 37°C for 30 min. The Gluco activity was

determined following Lloyd and Whelan (1969) using the glucose

oxidase method, with the glucose liberated from maltose. Again,

incubation was carried out at 37°C for 50 min, and 5 N HCl (2.5

mL) was added by continuous mixing to terminate the reaction.

Then, the final prepared mixture was used to read the absorbance at

525 nm spectrophotometrically.
2.4 Caffeine content

Fresh root and shoot samples, stored at −20°C, were thawed using

double-distilled water with a known quantity, and the supernatant was

centrifuged at 10,000×g at 4°C. The supernatant was then concentrated
Frontiers in Plant Science 04
using gaseous nitrogen, followed by filtration using a 0.2-μm

membrane Syringe Filter (Sartorius, Göttingen, Germany). The final

obtained filtrate was then processed using HPLC (PerkinElmer,

Waltham, MA, USA; Chromera 200 series USA), fitted with C18

column (Pinnacle DB Aqueous C18, 5 μm, 250 × 4.6 mm; Restek

Corporation, Centre County, PA, USA). The separation was conducted

using a 15% methanolic solution with a flow rate of 1 mL. The system

was equipped with a Flexar UV/Vis LC detector. The quantitative

analysis was conducted based on the obtained peak area against a series

of known standards of 5–25 mg/kg.
2.5 Growth and morphological attributes

Data on the morphological parameters of plants were recorded

after 15 days of the final germination count. Four plants were

selected from each treatment and separated into roots and shoots.

After washing, the excess water was removed from root surface.

Fresh biomass and length of roots and shoots were noted, and the

samples were oven-dried for 72 h at 65°C to measure the

dry weights.
2.6 Biochemical parameters

2.6.1 Photosynthetic pigments
The acetone extraction method was employed for the

quantification of leaf chlorophyll and carotenoid (Car) contents.

The leaf sample (0.1 g) was ground using a pestle and mortar in

acetone (80%). The resulting material was centrifuged at 10,000 ×g,

and the supernatant was used to read the absorbance at 663, 645, and

480 nm spectrophotometrically. Calculations for total chlorophyll (T.

Chl.), chlorophyll b (Chl. b), and chlorophyll a (Chl. a) were made as

described by Arnon (1949). Carotenoid content was measured using

the method given by Kirk and Allen (1965).

T :  Chl : (mg g−1FW)

= ½(0:0202� A645) + (0:00802� A663)� � V=1, 000�W,

Chl :  b (mg g−1FW) = ½22:9(A645) − 4:68(A663)� � V=1, 000�W,

Chl :  a (mg g−1FW) = ½12:7(A663) − 2:69(A645)� � V=1, 000�W,

Car :  (mg g−1FW) = A480 + (0:114� A663 – 0:638� A645) :
2.6.2 Malondialdehyde and hydrogen peroxide
Malondialdehyde content in shoots and roots was estimated

following the method given by Cakmak and Horst (1991). Leaf and

root samples (0.50 g) of the same plant were ground separately

using a pestle and mortar in 6% TCA (10 mL) by adding liquid

nitrogen. After that, centrifugation was conducted at 10,000 ×g for

10 min, and the obtained supernatant (0.5 mL) was mixed with 5%

TBA. The resultant mixture was heated at 95°C in a water bath. The

reading of the final obtained material was taken at 600 nm and 532
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nm spectrophotometrically. For H2O2 in roots and shoots, the

above-obtained supernatant (0.5 mL each) was added in premixed

50 mM potassium phosphate buffer having pH 7.5 and 1 M KI,

followed by incubation for 50 min. After that, the absorbance of the

material was read at 390 nm, following the instructions given by

Velikova et al. (2000).

2.7 Enzymatic antioxidants, total soluble
proteins, and free amino acids

Fresh samples of roots and shoots (0.5 g) were ground with

liquid nitrogen in 10 mL of ice-chilled 50 mM potassium phosphate

buffer (pH 7.8). After centrifugation for 20 min at 10,000 ×g at 4°C,

the supernatant was used to measure the antioxidative enzyme

activities, free amino acids (FAA), and total soluble proteins (TSP).

The activity of superoxide dismutase (SOD) in shoots and roots

of wheat seedlings was estimated using the method given by

Giannopolitis and Ries (1977). Reaction solution (1 mL),

containing enzyme extract, riboflavin (1.3 μM), methionine (13

mM), EDTA (75 nM), and NBT (50 μM), was prepared in

formamide. The mixture was treated with light using a 20-W

bulb for 15 min. A sample without any extract added was also

prepared (blank sample) each time. The absorbance of the mixture

was read using a spectrophotometer at 560 nm.

Activities of peroxidase (POD) and catalase (CAT) in shoots and

roots were determined by following Chance and Maehly (1955). The

reaction mixture (3 mL) for estimation of CAT activity was prepared

using the same buffer as was used for the extraction of the enzymes.

The absorbance of the mixture was measured in a time-scale manner.

The absorbance of the mixture was read at 240 nm with intervals of

20 s up to 120 s. For the activity of POD, the reaction mixture was

prepared by mixing 40 mM H2O2, 100 μL enzyme extract, and 50

mM buffer as was used for the extraction of enzymes and 20 mM

guaiacol. The absorbance of the reaction mixture was read at 470 nm

in a time scan manner for 2 min with 20-s intervals. The activity of

ascorbate peroxidase (APX) was determined using the method of

Asada and Takahashi (1987). The reaction mixture contained 300 μL

ascorbate (0.5 mM), 300 μL H2O2, phosphate buffer (2.1 mL), and

300 μL enzyme extract. The absorbance of the final prepared mixture

was measured spectrophotometrically at 290 nm in a time scan

manner with intervals of 20 s for 2 min.

For the estimation of glutathione reductase (GR) activity in

roots and shoots, the procedure described by Schaedle and Bassham

(1977) was followed. A sample of 0.2 g was ground in 5 mL of 50

mM Tris-HCl, followed by centrifugation at 22,000 ×g for 4 min.

The reaction mixture was prepared by adding 200 μL supernatant,

50 mM Tris buffer (pH 7.6), glutathione disulfide (1 mM), NADPH

(0.15 mM), and MgCl2 (mM). A decrease in absorbance of NADPH

was recorded at 340 nm using a spectrophotometer. The GR activity

was measured in units per milligram of proteins.
2.8 Non-enzymatic antioxidants

Total phenolic content (TPC) was determined by using the

Folin–Ciocâlteu phenol reagent, as described by Julkunen-Titto
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(1985). The fresh samples (0.05 g) were well homogenized in

acetone (80% prepared with dH2O) and centrifuged for 10 min at

10,000 ×g. The supernatant (100 μL) was mixed thoroughly with 1

mL of Folin–Ciocâlteu phenol reagent, and 2 mL of ddH2O was

added to the mixture. After that, 20% Na2CO3 (5 mL) was added to

the triturate. Finally, the volume of the mixture was made to 10 mL

by adding ddH2O, and the absorbance was read at 750 nm. For the

quantification of leaf TPC in the samples, an absorbance curve was

made using standard solutions of tannin with known concentration.

The total flavonoid content (TFC), in shoots and roots of seedlings,

was assayed following the method given by Sultana et al. (2009). To

the methanolic extract (1 mL), 5% NaNO2 (0.3 mL) and 1 M NaOH

(2 mL) were added. After 10 min, 2.8 mL ddH2O was added to the

mixture and incubated for 40 min at room temperature.

The absorbance was read spectrophotometrically at 430 nm of the

final prepared triturate. For quantifying TFC, a series of known

standards of catechin were used.

The total anthocyanin (TAC) content in roots and shoots of

wheat seedlings was determined using the methanolic extraction

method given by Mirecki and Teramura (1984). Shortly, 0.5 g of

fresh material of root and leaf was ground separately in 10 mL of

acidic methanol. After centrifugation for 5 min at 14,000 ×g, the

absorbance of the supernatant was measured spectrophotometrically

at 657 nm and 530 nm. Total anthocyanin content was quantified

using the following equation.

TAC = A657� (A530 − 0:25)�M−1 :

Here, M represents the fresh root and shoot biomass

(Thiobarbituric acid) in grams used for the extraction, and A530

and A657 are the absorptions at the specific wavelengths.

Determination of ascorbic acid (AsA) in roots and shoots of the

seedlings was carried out following the protocol described by

Mukherjee and Choudhuri (1983). The sample (0.5 g) was

ground using a pestle and mortar in 6% TCA solution and

centrifuged for 20 min at 10,000 ×g. The supernatant (4 mL) was

mixed with 2% DNPH (2 mL) and prepared in the acidic medium.

A drop of thiourea (10%) was added to the resultant mixture and

then incubated at 95°C with the addition of 80% H2SO4 (v/v). The

final prepared solution was read at 530 nm spectrophotometrically.

For the estimation of reduced glutathione (GSH) and oxidized

glutathione (GSSG) in roots and shoots of wheat seedlings, the

method given by Griffith (1980) was used. Shortly, fresh material of

root or shoot (250 mg) was well homogenized using 0.1 M HCl (2

mL) and EDTA (1 mM) in a pestle and mortar. After that, the

supernatant was obtained by centrifugation for 15 min at 12,000 ×g at

4°C. For preparing the reaction mixture, the following were added:

200 μL of the phosphate buffer (strength of 125 μM), having EDTA of

6.3 mM with pH 7.5, 100 μL DTNB of 6.0 mM strength, 200 μL

extract, and 500 μL NADPH (0.3 mM). The absorbance of the final

prepared mixture was read spectrophotometrically at 412 nm.
2.9 Osmolytes

Free proline (Pro) content, in roots and shoots, was assayed

following the method of Bates et al. (1973). Fresh biomass of roots
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and shoots (0.5 g) was ground separately by adding 10 mL of 3%

sulfosalicylic acid using a pestle and mortar. After centrifugation of

the homogenate, the supernatant (2.0 mL) was mixed with acid

ninhydrin (2 mL). Acidic ninhydrin was prepared using 1.25 g

ninhydrin in 30 mL glacial acetic acid, 6 M orthophosphoric acid,

and 2 mL of glacial acetic acid in a test tube. The final prepared

mixture was then incubated for 1 h at 100°C using a water bath.

Toluene (4 mL) was added to the cooled mixture and passed through

the air stream for 1–2 min. The toluene layer of the mixture was

taken, and the absorbance was read spectrophotometrically at 520

nm. Quantification of the Pro was made by forming an absorbance

curve with pure standards of proline using the given formula:

μmol Pro g−1   fresh  weight

= (μg proline mL−1 �mL of toulene=11:5)=(g of sample) :

Glycine betaine (GB), in shoots and roots of seedlings, was

assessed following Grieve and Grattan (1983). Shortly after, dry

material of root and shoot samples (5 g) was ground separately

using ddH2O (10 mL). After centrifugation of the homogenate for

10 min at 5,000 ×g, 1 mL of 2 N HCL was mixed with 1 mL of

supernatant. Potassium triiodide solution (200 μL) was mixed with

0.5 mL of the prepared mixture and put in chilled water with

shaking. Later on, 2 mL ddH2O (ice cooled) and 20 mL 1,2-

dichloromethane were added to the cooled mixture and put in

chilled water. After that, the mixture was treated with continuous

air stream for 1–2 min in an ice bath. The absorbance of the lower

layer was read spectrophotometrically at 365 nm. GB, in roots and

shoots of seedlings, was quantified based on the standard curve

obtained by using pure GB standard solutions (5–25 ppm) of

analytical grade.
2.10 Metabolites

TSP content was determined using the same phosphate buffer

extract, as used for the analysis of enzymatic antioxidants

(Bradford, 1976). Shortly, 2 mL of Bradford’s reagent was added

to 0.1 mL of the enzyme extract and mixed well, and the absorbance

was read spectrophotometrically at 595 nm. Quantification of TSP

was conducted by following a standard curve made from pure

bovine serum albumin (200–14,000 mg/kg).

Determination of FAA in roots and shoots was conducted using

the same extract as was used for enzymatic antioxidants and TSP,

following the methodology of Hamilton and Van Slyke (1943).

Briefly, 10% of the pyridine solution was mixed with 1 mL of

buffer-extracted supernatant and ninhydrin (2%) solution. Then,

the mixture obtained was incubated for approximately 30 min at

room temperature. After that, the absorbance of the final prepared

mixture was read at 570 nm spectrophotometrically. The content of

FAA in roots and shoots was quantified using the standard curve.

Determination of total soluble sugars (TSS) in roots and shoots

was conducted using the procedure described by DuBois et al.

(1956). Fresh material (0.5 g) of roots and shoots was extracted

separately using methanol. After centrifugation, 0.1 mL of the

supernatant was reacted with 3 mL of anthrone reagent. The
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mixture was then heated for 15 min, using a water bath, at 95°C.

After cooling the mixture in ice-chilled water, it was incubated for

30 min at room temperature. The absorbance was then read at 490

nm. The quantification of the TSS contents in roots and shoots was

computed using a standard curve prepared with a range of standard

solutions (200–1,000) of pure sugar of analytical grade.

Total reducing sugars (TRS) were determined in shoots and

roots using the method of Wood and Bhat (1988). The sample (0.5

g) was extracted using 80% methanolic solution by grinding. The

material was then centrifuged at 14,000 ×g for 15 min at room

temperature, and the supernatant was obtained. To 1 mL of the

supernatant, DNS (4 mL) was added, and the material was heated

for 5 min using a water bath at 95°C. The mixture was then cooled

using ice-chilled water. The mixture was incubated at room

temperature, and the absorbance was measured at 540 nm

spectrophotometrically. A formula given by Lakho et al. (2017)

was adopted to uncover the NRS content.

TSS = Non� reducing sugars + reducing sugars :
2.11 Statistical analysis

The experiment was carried out using a CRD. The CoStat

Computer Program (Windows version 6.303, PMB 320,

Monterey, CA, USA) was employed to estimate significant

variations in the studied parameters among treatments. For the

estimation of significant variations among the means of studied

parameters, the least significant difference (LSD) test with a 5%

significance level was employed. Furthermore, in order to access

correlations among the studied attributes, the principal component

analysis (PCA) was employed, and a heatmap was drawn to detect

the correlations among studied parameters using the RStudio

version 4.2.2 computer program.
3 Results

The impacts of PEG-induced water stress on seed germination

attributes and seedling vigor are presented in Figures 1, 2. The visual

ameliorative impacts of caffeine seed treatments on seed germination

and seedling vigor are presented in Figures 1A, B. Drought stress,

imposed by PEG-8000, adversely affected the GI, GE, MET, E50, G%,

and CUE (Figures 2A–F). Pre-sowing seed treatment with caffeine

showed significant improvements in all germination-related

attributes of wheat seeds when grown under drought stress and

normal moisture conditions. However, the extent of amelioration

was caffeine dose-specific. Caffeine doses of 4 ppm and 12 ppm were

the most effective ones in mitigating the adverse effects of moisture

deficit on G%, GE, GI, and CUE. However, the higher level of

caffeine, i.e., 16 ppm, was the least effective in the case of G%, GE, GI,

and CUE, whereas 12-ppm caffeine level was the most effective in the

case of MET and E50. Caffeine seed priming also improved the

germination-related attributes of seeds under normal conditions, but

the impact was less pronounced than that of water-deficit conditions

(Figures 2A–F).
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Moisture deficiency also adversely affected the activities of

enzymes related to germination, including Amy (Figure 3A), Prot

(Figure 3B), and Gluco (Figure 3C). Seed priming with caffeine

ameliorated the deleterious impacts of water scarcity on Amy, Prot,

and Gluco in a dose-dependent manner. Caffeine seed priming also

improved the activities of these enzymes under non-stress

conditions. Under drought stress, seed treatment with caffeine

levels of 4 ppm and 12 ppm, followed by 8 ppm, showed better

results in improving the activities of Prot, Amy, and Gluco, than

other doses. However, under non-stressed conditions, 4-ppm, 8-

ppm, and 12-ppm caffeine levels were found equally effective in

improving the activities of Amy and Prot, but for Gluco activity,

more improvement was found due to 4- and 8-ppm doses followed

by 12 ppm caffeine. However, a higher level of caffeine (16 ppm) was

not found to be very effective under both drought stress and well-

watered conditions (Figures 3A–C).

Data on growth parameters show that drought stress severely

affected the root length (RL), shoot length (SL), root fresh weight
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(RFW), shoot fresh weight (SFW), root dry weight (RDW), and

shoot dry weight (SDW) of wheat seedlings (Figures 4A–F). Seed

priming with caffeine considerably improved the growth traits of

seedlings under stress in a dose-specific manner. Pre-sowing seed

treatment with 12 ppm, followed by 8 ppm and 16 ppm, of caffeine

produced the most promising results in increasing biomass

production. The maximum increase in SFW (13%) and SDW

(24%) was induced by 12 ppm, followed by 16 ppm, of caffeine

treatment under stress. However, the least increment was induced

by 4 ppm caffeine. Caffeine treatment (4 ppm and 12 ppm)

considerably increased SL under drought stress, followed by 16-

ppm treatment (Figure 4A). Caffeine seed treatment also

significantly improved the growth attributes of seedlings grown

under well-watered conditions, but the impact was less pronounced

as compared with the stressed plants.

Seed treatment with caffeine significantly increased the caffeine

contents in roots and shoots of wheat seedlings under both water

regimes. Drought-stressed seedlings showed higher caffeine content
A

B

C

FIGURE 1

Seed germination and seedling growth behavior of wheat under PEG-induced water stress when grown after soaking in different levels of caffeine.
(A) Wheat seed germination responses after 72 h of seed sowing when grown under PEG-induced water stress after soaking with different levels of
caffeine. (B) Wheat seedling growth behavior after 120 h under PEG-induced water stress when grown from seeds primed with different levels of
caffeine. (C) Morphological variations in root and shoot growth behavior of wheat seedlings under PEG-induced water stress grown from seeds after
soaking with different caffeine levels.
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in shoots and roots than those grown under a normal moisture

supply. Shoots show higher caffeine content than roots under both

stress and normal conditions. The results revealed a high rate of

translocation of caffeine from root to shoot after germination

(Figures 4G, H).

Caffeine seed treatment significantly increased the photosynthetic

pigments (Chl. a, Chl. b, Car./T. Chl., Chl. a/b, Car., and T. Chl.) in

wheat seedlings under both water deficit and normal conditions

(Figures 5A–F). Regarding, Chl. b (Figure 5B), Car./T. Chl.

(Figure 5C), Chl. a (Figure 5A), Car. (Figure 5F), and T. Chl.

(Figure 5D), considerable increments were recorded in seedlings

raised from seeds primed with 12 ppm caffeine, followed by 4 ppm.

However, in the case of Chl. a/b (Figure 5E), 16 ppm caffeine showed

the highest increase, followed by 12 ppm at both water regimes.

Moreover, 16-ppm caffeine treatment significantly decreased Car./T.

Chl. in plants grown in well-watered conditions.

Caffeine seed treatment significantly reduced MDA and H2O2

accumulation in roots and shoots of seedlings grown in a water

deficit environment (Figures 6A–D). Among different caffeine

levels, 12-ppm level proved to be more effective followed by 4-

ppm level. In contrast, in reducing root H2O2 content, 16-ppm level

of caffeine proved better than 4- and 8-ppm levels (Figure 6).
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Total phenolic contents in shoots of seedlings increased

significantly when grown in water stress (Figure 6E). Caffeine

treatment further increased the shoot TPC contents in wheat

seedlings. This caffeine-induced increase in shoot TPC was

caffeine level-specific. TPC in shoot increased at a maximum level

by 12-ppm caffeine dose, followed by 8- or 16-ppm dose

(Figures 5, 6).

Drought stress significantly increased the activities of SOD,

POD, CAT, APX, and GR in roots and shoots of seedlings

(Figures 7A–J). Caffeine seed treatment further enhanced the

activities of these enzymes in roots and shoots of seedlings under

drought stress. Caffeine seed priming also increased the activities of

these enzymes in normally grown plants. However, the extent of

increment in enzyme activities in roots and shoots of wheat

seedlings, grown under either drought stress or non-stress

conditions, was caffeine level-specific. Seed treatment with 12

ppm caffeine increased the POD and SOD activities more than

other doses, in both roots and shoots of seedlings under drought

stress, followed by 4- and 8-ppm levels, except the shoot POD,

where all caffeine doses showed the same increment in its activity.

Seed treatment with 12 ppm caffeine under water deficit slightly

increased the activity of CAT in shoots (Figure 7E). However, the
A B

D

E F

C

FIGURE 2

Seed G% (A), GE (B), GI (C), MET, (D), E50 (E), and CUE (F) of wheat grown from seeds treated with different levels of caffeine under non-stress and
PEG-induced water stress (mean ± SE; n = 4). Bars with the same alphabets do not differ significantly [blue for non-stressed ones (a, b, c, etc.) and
red for stressed ones (u, v, w, etc.) against a specific caffeine treatment]. * on bars showing the significant difference between stress (red) and non-
stress (blue) in a specific treatment. NS, no soaking; WS, water soaking; G%, germination percentage; E50, time to 50% seed germination; MET, mean
emergence time; CUE, coefficient of uniformity of emergence; GI, germination index; GE, germination energy. P values for G%, GE, GI, MET, E50
and CUE are P ≤ 0.001**, P ≤ 0.0019**, P ≤ 0.0007***, P ≤ 0.0004***, P ≤ 0.0004*** and P ≤ 0.0086** respectively.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1336639
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Ali et al. 10.3389/fpls.2024.1336639
same dose of caffeine (12 ppm) caused a significant enhancement in

the activity of CAT in roots of seedlings under drought stress

(Figure 7F). All caffeine doses showed similar effectiveness in

improving APX activity in shoots and roots of seedlings, facing

moisture scarcity (Figures 7G, H). Moreover, it was recorded that

seed treatment with 12 ppm caffeine significantly increased the

activity of enzymes in roots and shoots of well-watered wheat plants

too, in comparison with the rest of the doses of caffeine.

The activity of GR considerably increased in roots and shoots of

seedlings under moisture deficit conditions (Figures 7I, J). Pre-

sowing seed treatment with caffeine further improved GR activity.

Seed treatment with 4 ppm and 16 ppm caffeine induced a higher

increase in shoot GR activity. For root GR activity, 4-ppm dose

performed better but differed non-significantly with other levels of

caffeine. Under non-stressed conditions, an increase in the activity

of GR was more prominent in roots and shoots of seedlings grown

from seeds primed with 16 ppm caffeine than in other doses.

Data showed a remarkable increase in TFC, AsA, TAC, GSSG,

and GSH contents in roots and shoots of drought-stressed plants

(Figure 8). Seed treatment with different concentrations of caffeine

further enhanced the contents of these non-enzymatic antioxidants.

Caffeine seed treatment also improved the contents of these non-

enzymatic antioxidants in roots and shoots of wheat seedlings

grown in well-watered conditions. In water-stressed plants, 12-

ppm caffeine treatment caused the highest increase in these

antioxidants, followed by 4-ppm level, except for the root GSSG,
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where 4-ppm caffeine dose stood out from the rest of the

treatments. Under non-stressed conditions, 12-ppm caffeine dose

considerably increased TFC (Figures 8A, B) and AsA (12 ppm) in

shoots and roots. However, shoot TAC was positively influenced by

16-ppm caffeine level. For root and shoot GSSG, 16-ppm level of

caffeine performed better than other treatments. However, for shoot

GSH (Figure 8I), 12 ppm and 8 ppm were taken as superior ones,

and for root GSH (Figure 8J), 12-ppm caffeine level was taken as the

superior one (Figure 8).

The contents of FAA, GB, Pro, and TSP in roots and shoots and

TPC in shoots of seedlings increased significantly in drought stress

(Figure 9). Caffeine treatment further increased GB, Pro, and TSP

levels in both shoots and roots and TPC contents in shoot of wheat

seedlings. However, caffeine seed priming decreased the FAA in

roots as well as in shoots of wheat seedlings. This reduction in FAA

and increase in GB, Pro, and TSP content in roots and shoots and

TPC in shoot, due to seed priming, were caffeine level-specific. Seed

treatment with 12 and 16 ppm caffeine decreased FAA (Figures 9A,

B) in roots and shoots. GB, Pro, and TSP in roots and shoots and

TPC in shoot increased maximally with 12-ppm caffeine dose,

followed by 8 ppm or 16 ppm.

Drought stress significantly increased RS and TSS in both

shoots and roots of wheat seedlings. However, NRS content

increased only in shoots of seedlings under stress (Figure 10C).

Seed treatment with caffeine further increased the RS, NRS, and TSS

in shoots and roots of wheat seedlings grown under water stress.
A B

C

FIGURE 3

Amyl (A), Prot (B), and Gluco (C) of wheat grown from seeds treated with different levels of caffeine under non-stress and PEG-induced water stress
(mean ± SE; n = 4). Bars with the same alphabets do not differ significantly [blue for non-stressed ones (a, b, c, etc.) and red for stressed ones (u, v,
w, etc.) against a specific caffeine treatment]. * on bars showing the significant difference between stress (red) and non-stress (blue) in a specific
treatment. NS, no soaking; WS, water soaking; Amy, amylase; Prot, protease; Gluco, glucosidase. P values for Amy, Prot, GIuco, are ≤ 0.0079**, P ≤

0.0085** and P ≤ 0.0084** respectively.
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However, this increment in RS, NRS, and TSS was caffeine dose-

and parameter-specific. Regarding RS (Figures 10A, B) in roots and

shoots under water stress, more increase was found in wheat

seedlings raised from seeds pre-treated with 12-ppm level of

caffeine, followed by 16- and 4-ppm levels of caffeine. However,

under non-stressed conditions, only 8-ppm level was effective in

increasing RS. In the case of shoot NRS (Figure 10C), 4- and 12-

ppm levels of caffeine improved its contents in wheat seedlings

grown under both water regimes but for root NRS (Figure 10D) 8

and 12ppm were found better under water stress and non stress

condition respectively. The highest increase in shoot TSS

(Figures 10E, F) was found in water-stressed seedlings raised

from seeds treated with 4 ppm and 12 ppm caffeine. However,

under well-watered conditions, all caffeine doses showed similar

effects in improving the shoot TSS in wheat seedlings. Under

drought stress, seed treatment with 12 ppm caffeine induced a

significant increase in root TSS, followed by 8 ppm and 16 ppm.

However, under non-stressed conditions, 8- and 12-ppm levels of

caffeine were superior in improving TSS levels in roots of

wheat plants.

Growth and germination attributes of wheat seedlings had a

strong and positive correlation with the activities of seed Prot,
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Gluco, and Amy. However, these attributes, including enzyme

activities, were negatively correlated with MET and E50. MET and

E50 revealed a strongly positive correlation with each other but had

a strongly negative correlation with the activities of germination-

related enzymes (Prot, Amy, and Gluco) and growth attributes.

Activities of seed hydrolyzing enzymes had a strongly positive

correlation with the seed G%, CUE, GE, GI, and growth

attributes (Table 1).

PCA values indicated a strong correlation of physio-

biochemical attributes with photosynthetic pigments. PCA

revealed a positive correlation of growth-related attributes with

one another (Figure 11; Table 2). Root and shoot H2O2, FAA, and

MDA were strongly correlated with one another. Hydrogen

peroxide (H2O2), MDA, and FAA had a strong negative

correlation with growth and physio-biochemical attributes. In

determining the variance, factor 1 and factor 2 had a major

contribution of 81.9% and 13.1%, respectively, with a cumulative

value of 95%. Heatmap analysis for studied attributes shows their

correlation with the treatments under both water regimes (Figure

12). The intensity of color in a column or row against a parameter

shows the extent of negative (red color) or positive (green color)

correlation with the caffeine doses under both water regimes. The
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FIGURE 4

SL (A), RL (B), RDW (C), RFW (D), SDW (E), SFW (F), shoot caffeine (G), and root caffeine (H) of wheat seedlings grown from seeds treated with
different levels of caffeine under non-stress and PEG-induced water stress (mean ± SE; n = 4). Bars with same alphabets do not differ significantly
[blue for non-stressed ones (a, b, c, etc.) and red for stressed ones (u, v, w, etc.) against a specific caffeine treatment]. * on bars showing the
significant difference between stress (red) and non-stress (blue) in a specific treatment. NS, no soaking; WS, water soaking; SL, shoot length; RL, root
length; RFW, root fresh weight; RDW, root dry weight; SFW, shoot fresh weight; SDW, shoot dry weight. P values for SL, RL, RDW, RFW, SDW, SFW,
Shoot Caffeine and Root Caffeine are P ≤ 0.0031**, P ≤ 0.0001***, P ≤ 0.00351**, P ≤ 0.0001***, P ≤ 0.0088**, P ≤ 0.0024**, P ≤ 0.0002*** and P
≤ 0.00013*** respectively.
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positive effectiveness among the treatments, categorized at the y-

axis, reveals that seed priming with 12 ppm caffeine was a standout

performer, followed by 4-ppm dose.
4 Discussion

Maintenance of good crop stand establishment is a pre-requisite

for better production, especially in agronomic and field crops. Good

crop stand establishment is the function of better seed germination

and uniform and speedy seedling emergence. However, failure to

achieve good crop stand is seriously disrupting agricultural yields

under stressful conditions, especially in low water availability

(Batool et al., 2014; Rezayian et al., 2018; Dani and Siswoyo,

2019) in rain-fed environments of semi-arid and arid areas. Soil

moisture deficit slows down the pre-germination metabolic

activities in seed and hence delays germination and seedling

establishment (Basu et al., 2016). The availability of a sufficient

amount of water for the imbibition of seeds is a pre-requisite to

activate the hydrolyzing enzymes such as Prot, Amy, and Gluco,

which break down the large metabolites into smaller ones. These

simple metabolites act as building blocks for the newly developing
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seedlings and are helpful in the fast emergence of seedlings and their

early adaptation to the prevailing environment (Perveen et al.,

2021). Different ways/techniques, including agronomic practices

and seed priming with different chemicals (inorganic or organic)

(Ali et al., 2020a; 2020b, Saeed et al., 2023a), are being employed as

possible solutions to overcome the problem of poor seedling

emergence. Pre-sowing seed treatment performs different

functions, depending on the type and nature of applied

compounds (Noman et al., 2018b; Ali et al., 2020a; 2020b;

Noman et al., 2021). First, it reduces the osmotic potential of the

treated seeds, which results in better water absorption for

imbibition under low soil water potential, which is necessary for

proper activation of the hydrolyzing enzymes. Second, the applied

compound directly boosts the metabolic activity of the embryonic

region of seeds and expedites cell division and embryo growth in

parallel with the help of other metabolic reactions (Ali et al., 2020a).

However, the extent of effectiveness depends on the type and

concentration of the compound (Noman et al., 2018b; Ali et al.,

2020a; Noman et al., 2021).

In the present study, seed priming with caffeine ameliorated the

negative effects of drought on different seed germination- and

seedling emergence-related attributes of wheat including GE, E50,
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FIGURE 5

Leaf Chl. a (A), Chl. b (B), T. Chl. (D), Chl. a/b (E), Car. (F), Car/T., and Chl. (C) of wheat seedlings grown from seeds treated with different levels of
caffeine under non-stress and PEG-induced water stress (mean ± SE; n = 4). Bars with same alphabets do not differ significantly [blue for non-
stressed ones (a, b, c, etc.) and red for stressed ones (u, v, w, etc.) against a specific caffeine treatment]. * on bars showing the significant difference
between stress (red) and non-stress (blue) in a specific treatment. NS, no soaking; WS, water soaking; Chl. a, chlorophyll a; Chl. b, chlorophyll b; T.
Chl., total chlorophyll; Chl. a/b, chlorophyll a/b ratio; Car, carotenoid; Car./T. Chl., carotenoid/total chlorophyll ratio; MDA, malondialdehyde. P
values for Chl. a, Chl b, Car/T. Chl., T. Chl., Chl. a/b and Car are P ≤ 0.0001***, P ≤ 0.0042**,P ≤ 0.0019**,P ≤ 0.0000***, P ≤ 0.029* and P ≤

0.0002*** respectively.
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GI, G%, CUE, and mean emergence time. However, better

ameliorating effects were observed due to 4- and 12-ppm levels of

caffeine than other doses. Good seed germination and speedy

seedling emergence are positively associated with better

performance of hydrolyzing enzymes necessary for seed

germination, such as Prot, Amy, and Gluco. These hydrolyzing

enzymes actively take part in providing energy and building blocks

to newly developing seedlings by catabolizing seed reserves, such as

starch, proteins, and larger sugar molecules (Perveen et al., 2021;

Saeed et al., 2023a). In view of the results of the present study, better

germination and fast seedling emergence, induced by seed priming

treatments, may be the function of caffeine by boosting the activities

of Prot, Amy, and Gluco. Previous studies revealed both negative

and positive influences of caffeine on the germination of seeds and

seedling emergence that were specific to caffeine concentration and

plant species. Jeephet (2021) reported that pepper seed priming

with 10 mM caffeine showed significant improvements in

germination percentage, radicle emergence, germination speed,

germination index, seedling vigor, and MET. Moreover, the

primed seeds with 20 mM caffeine showed a fast emergence of

cotyledons in comparison with non-primed ones (Jeephet, 2021).

Further, improvement in seed germination may also be attributed to

the role of caffeine in boosting the process of cell division as

reported by Sledz et al. (2017). In Bambara groundnut (V.

subterranea), lower caffeine doses, as a pre-sowing seed treatment,

significantly improved the process of seed germination, but with an
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inhibitory effect at higher doses (Mshelmbula et al., 2018).

According to Tunma (2017), caffeine treatment improved seed

germination and the proliferation of roots in riceberry plants. The

current study also revealed a positive correlation between shoot and

root growth with the absorption of caffeine, showing higher content

in shoot than root. The uptake of caffeine in the present study after

seed priming can be correlated to the earlier findings of Sledz et al.

(2017), where it was found that exogenously applied caffeine

increased the cell division that was associated with its uptake. The

higher caffeine content in shoots may be associated with its

translocation from root to shoot (Taiz et al., 2015). More caffeine

content in roots and shoots of stressed plants may be due to greater

cell density per unit area in water-stressed plants than in non-

stressed ones. The increase in translocation of caffeine from roots to

shoots and its better retention in stressed plants confirm its

beneficial impacts against long-term drought spells. This fact

needs to be explored in future studies. Earlier, it was reported

that in water-stressed maize, the induction of stress tolerance for

better yield by exogenously applied GB was associated with its long-

distance translocation and long-term retention in plant parts (Ali

and Ashraf, 2011).

The findings of the present study correlate well with studies of

Ali et al. (2020), where it was reported that priming of wheat seeds

using low doses of the extract of Cuscuta reflexa significantly

increased the seed germination and seedling emergence-related

attributes of wheat under PEG-8000-induced drought stress. The
A B

D

E

C

FIGURE 6

Shoot TPC content (E), MDA (A, B), and H2O2 (C, D) in shoot and root of wheat seedlings grown from seeds treated with different levels of caffeine
under non-stress and PEG-induced water stress (mean ± SE; n = 4). Bars with same alphabets do not differ significantly [blue for non-stressed ones
(a, b, c, etc.) and red for stressed ones (u, v, w, etc.) against a specific caffeine treatment]. * on bars showing the significant difference between stress
(red) and non-stress (blue) in a specific treatment. NS, no soaking; WS, water soaking; MDA, malondialdehyde; H2O2, hydrogen peroxide; TPC, total
phenolic content. P values for Shoot H202, Root H2O2, Shoot MDA, Root MDA, Shoot TPC are P ≤ 0.0002***, P ≤ 0.0000***,P ≤ 0.0005***, P ≤

0.0004*** and P ≤ 0.0009*** respectively.
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improvement in germination and the seedling establishment was

positively correlated with the activity of hydrolyzing enzymes.

According to another study, better germination of safflower seeds

was the function of the speedy performance of seed hydrolyzing

enzymes (Perveen et al., 2021). Another study on safflower and

maize concluded that improvement in germination and seedling

emergence was associated with high energy states of germinating

seeds in the form of bio-photon emission due to the breakdown of

large metabolites into smaller ones (Perveen et al., 2022). In the

present study, improved germination and seedling emergence in

caffeine-treated seeds may be due to enhancement in activities of

hydrolyzing enzymes, resulting in energy generation by the

breakdown of larger metabolites that were used for various

metabolic activities.

In agronomic crops, better growth and biomass of plants are

linked with early establishment of seedlings. Early seedling

establishment, along with a strong root system, increases the

nutrient and water absorption capacity of plants (Ali et al.,

2020d). Early seedling establ ishment in water-deficit

environments is of utmost importance for the survival, better

biomass production, and yield of plants (Noman et al., 2018b; Ali
Frontiers in Plant Science 13
et al., 2020d). It is well known that longer roots are capable of

extracting moisture and nutrients from the soil efficiently and hence

are helpful in early seedling establishment under drought

conditions (Taiz et al., 2015).

In the present study, seed priming with caffeine significantly

reduced the adversities of PEG-8000-induced drought stress on root

growth, shoot length, and biomass production, but the extent of

amelioration was caffeine dose- and parameter-specific, where 4-

and 12-ppm levels were found more effective in increasing the RL

and SL than other concentrations. Improvement in root and shoot

length was associated with fast germination and early seedling

emergence. In previous studies, it was found that seed priming,

with different extracts or chemicals, induced speedy germination

and early emergence with a strong root system (Ali et al., 2020d;

Perveen et al., 2021, Perveen et al., 2022), which is in line with the

findings of the current investigation. Boosting cellular metabolic

activities and rapid cell division, during germination, results in

accelerated growth, with longer roots under water scarcity

(Khursheed et al., 2009; Sledz et al., 2017). Seed priming with 10

mM caffeine positively influenced the root and shoot lengths, and

growth of newly developed plantlets over control treatment in
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FIGURE 7

SOD (A, B), POD (C, D), CAT (E, F), APX (G, H), and GR (I, J) activities in shoot and root, respectively, of wheat seedlings grown from seeds treated
with different levels of caffeine under non-stress and PEG-induced water stress (mean ± SE; n = 4). Bars with same alphabets do not differ
significantly [blue for non-stressed ones (a, b, c, etc.) and red for stressed ones (u, v, w, etc.) against a specific caffeine treatment]. * on bars showing
the significant difference between stress (red) and non-stress (blue) in a specific treatment. NS, no soaking; WS, water soaking; SOD, superoxide
dismutase; POD, peroxidase; CAT, catalase; APX, ascorbate peroxidase; GR, glutathione reductase. P values for Shoot SOD, Root SOD, Shoot POD,
Root POD, Shoot CAT, Root CAT, Shoot APX, Root APX, Shoot GR and Root GR are P ≤ 0.0016**, P ≤ 0.000***, P ≤ 0.0008***, P ≤ 0.0000***, P ≤

0.0014**, P ≤ 0.0009***, P ≤ 0.0005***, P ≤ 0.0000***, P ≤ 0.013* and P ≤ 0.0015** respectively.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1336639
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Ali et al. 10.3389/fpls.2024.1336639
pepper (Jeephet, 2021). Caffeine application in optimal

concentrations increased rooting frequency and accelerated root

growth in Logan Thornless blackberry (Muratova et al., 2020). In

Capsicum annuum, lower doses of caffeine positively influenced the

plant height, while inhibitory impacts were found at higher doses

(Kumar and Tripathi, 2004). These positive influences of caffeine on

root and shoot growth confirm that it may be due to the speedy

cellular metabolic activities (Khursheed et al., 2009). It was found

that in riceberry, seed pre-treatment with caffeine resulted in better

root length and seedling height, which were positively associated

with speedy germination (Tunma, 2017).

In the present study, better biomass production and root growth

are positively associated with fast germination, induced by caffeine

seed treatment. The improvement in growth traits may be the

function of better translocation of metabolites during germination

and absorption of water and nutrients thereafter, with longer roots.

The caffeine-induced enhancement in growth attributes of wheat

plants may be the function of stress amelioration by improving

metabolic activities. According to previous studies, caffeine

treatment improved the growth of sunflower (Khursheed et al.,

2009) and pepper (Kumar and Tripathi, 2004) by increasing cellular
Frontiers in Plant Science 14
activities that propelled the plants to better biomass production. It is

also well known that caffeine-mediated catabolism yields simple

metabolites such as uric acid, allantoin, xanthine, CO2, and NH3

(Ashihara et al., 2017), which play significant roles in nitrogen

assimilation, supportive for better growth and biomass

accumulation. Caffeine-mediated catabolism also plays an

important role in modulating plant growth under stressful

environmental conditions (Watanabe et al., 2010, Watanabe et al.,

2014). Moreover, the intermediates of ureide metabolism also

support the plants in surviving under stressful environments by

playing a role in different metabolic activities. Uric acid, a

metabolite produced during caffeine catabolism, was found

helpful in reducing the adverse effects of water deficit on the

growth of Arabidopsis (Kumar et al., 2004). Increment in biomass

production of wheat seedlings by caffeine seed treatment is also

positively correlated with fast germination, seedling emergence, and

longer roots. It shows that in the present study, caffeine catabolism

in seed or after its translocation may have played a significant role in

ameliorating the adverse impacts of PEG-induced water stress on

seed germination process and later on the growth of seedlings. It

also confirms the long-term impacts of caffeine at later growth
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FIGURE 8

Flavonoids (A, B), AsA (C, D), anthocyanin (E, F), GSSG (G, H), and GSH (I, J) in shoot and root, respectively, of wheat seedlings grown from seeds
treated with different levels of caffeine under non-stress and PEG-induced water stress (mean ± SE; n = 4). Bars with same alphabets do not differ
significantly [blue for non-stressed ones (a, b, c, etc.) and red for stressed ones (u, v, w, etc.) against a specific caffeine treatment]. * on bars showing
the significant difference between stress (red) and non-stress (blue) in a specific treatment. NS, no soaking; WS, water soaking; AsA, ascorbic acid;
GSH, reduced glutathione; GSSG, oxidized glutathione. P values for Shoot TFC, Root TFC, Shoot AsA, Root AsA, Shoot TAC, Root TAC, Shoot GSSG,
Root GSSG, Shoot GSH and Root GSH are P ≤ 0.033*, P ≤ 0.028*,P ≤ 0.0001***, P ≤ 0.0003***, P ≤ 0.0000*** , P ≤ 0.0000***, P ≤ 0.0000***, P ≤

0.0290*, P ≤ 0.0091** and P ≤ 0.0057** respectively.
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stages because there was more caffeine content in the shoot than in

the root, indicating its rapid translocation and potential utility at

later growth stages through its catabolism.

Treatment of seeds with low doses of caffeine (4 ppm and 12

ppm) significantly improved the photosynthetic pigments in both

stressed and non-stressed wheat seedlings. Improvement in

photosynthetic pigments is also positively associated with the

increase in biomass production. It is a well-known fact that

enhancement in leaf photosynthetic pigments under water stress

corresponds well to better stress tolerance (Ali et al., 2020d; Shahid

et al., 2022; Shehzad et al., 2022). Therefore, better growth of wheat

plants under water deficit may be ascribed to caffeine-mediated

improvements in photosynthetic pigments. It is a well-established

fact that exogenously applied compounds are absorbed efficiently

and translocate to different parts of plants, where they play

important roles in regulating different metabolic activities, and

the same may be true for seed treatment with caffeine in the

present study. Exogenously applied purine alkaloids effectively

reduced the adverse impacts of abiotic stresses on photosynthetic

pigments, directly or indirectly, by promoting their biosynthesis as

reported in Sedum alfredii (Chen et al., 2017), Solanum melongena
Frontiers in Plant Science 15
(Singh and Prasad, 2015), Lycopersicon esculentum (Bali et al.,

2018), and Cucumis sativus L. (Vitoria and Mazzafera, 1997).

Plants grown from caffeine-treated seeds have also maintained

better biosynthesis of cellular metabolites such as sugars, FAA, and

TSP, positively correlated with their increased biomass production.

These metabolites play important functions in maintaining cellar

water balance, necessary for optimum plant growth, by osmotic

regulation. The accumulation of these metabolites is also necessary

for the plants to tolerate water deficit stress by lowering the osmotic

potential of cells, resulting in maintaining the cellular water

contents by increased uptake, which is necessary for the

continuation of metabolic activities (Shehzad et al., 2022). In the

present study, the accumulation of these metabolites, due to pre-

sowing seed treatment with caffeine, showed its long-term role in

maintaining plant water relations by playing key functions in

cellular osmotic adjustment to maintain the cell turgidity, which

is necessary for cell division to maintain the growth. Emanuil et al.

(2022) reported that in spinach grown under osmotic stress,

exogenous application of caffeine played a significant role in

maintaining cellular osmotic adjustment for better plant water

relations through a significant increase in the accumulations of
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FIGURE 9

FAA (A, B), GB (C, D), Pro (E, F), and TSP (G, H) in root and shoot, respectively, of wheat seedlings grown from seeds treated with different levels of
caffeine under non-stress and PEG-induced water stress (mean ± SE; n = 4). Bars with same alphabets do not differ significantly [blue for non-
stressed ones (a, b, c, etc.) and red for stressed ones (u, v, w, etc.) against a specific caffeine treatment]. * on bars showing the significant difference
between stress (red) and non-stress (blue) in a specific treatment. NS, no soaking; WS, water soaking; FAA, free amino acids; GB, glycine betaine;
Pro, proline; TSP, total soluble proteins; TPC, total phenolic content. P values for Shoot FAA, Root FAA, Shoot GB, Root GB, Shoot Pro, Root Pro,
Shoot TSP and Root TSP are P ≤ 0.0001***, P ≤ 0.0000***, P ≤ 0.021*, P ≤ 0.0021**, P ≤ 0.0002***, P ≤ 0.0000***, P ≤ 0.0048** and P ≤

0.0074** respectively
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osmolytes, proteins, and sugars. Moreover, Alkhatib et al. (2016)

reported that foliar application of caffeine stimulated the

accumulation of sugars in tobacco leaves. Accumulation of sugars

improved plant water relations through osmotic adjustment to cope

with adverse conditions.

Under deficit irrigation, an increase in lipid peroxidation is a

common phenomenon. It triggers the over-production of reactive

oxygen species (ROS), which not only damages the cellular

membrane but also disturbs other macro-molecules and cellular

metabolic processes, including enzyme activities (Saeed et al., 2023a,

Saeed et al., 2023b). Increased lipid peroxidation, due to oxidative

stress, severely disturbs the biomass production and yield-related

attributes of plants. Lipid peroxidation disrupts plant water

relations through increased membrane leakage that results in loss

of cell turgidity and damage to chloroplastic membranes (Shahid

et al., 2022), which causes disturbances in photosynthetic processes

and assimilations. In the current study, the accumulation of MDA

and H2O2 in roots and shoots of plants showed an increase in

cellular lipid peroxidation. However, seedlings grown from caffeine-

treated seeds, especially with 12 ppm caffeine, showed less

accumulation of MDA and H2O2 than untreated ones. It shows

that caffeine treatment directly and indirectly reduced lipid

peroxidation in plants. Lipid peroxidation is negatively correlated

with the dry biomass of wheat seedlings. Caffeine-treated plants are

found capable of maintaining better cellular water relations and
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cellular turgidity for cell division by less leaky membranes. Caffeine

also played a role in osmo-regulation in both roots and shoots

through the accumulation of osmolytes, resulting in a better ability

of plants to uptake water and consequently improve plant growth in

terms of dry biomass. Moreover, Sledz et al. (2017) reported that

caffeine plays a role in the active mitotic division of cells of apical

meristem in broad bean. Second, caffeine-induced reduction in lipid

peroxidation is positively associated with better maintenance of

chloroplastic membranes and is directly linked with better growth

of caffeine-treated plants than non-treated ones. It means that

caffeine directly or indirectly played an antioxidative role

(Emanuil et al., 2022) in protecting the cellular membranes,

including the chloroplastic ones, which is positively correlated

with its better translocation from root to shoot.

In the present study, caffeine-induced reduction in lipid

peroxidation is also associated with increased activities of

enzymatic antioxidants (SOD, POD, APX, and CAT) and

accumulation of non-enzymatic antioxidants (AsA, TPC, TFC,

TAC, and Car). It indicates an indirect role of caffeine in the

antioxidative defense mechanism to reduce lipid peroxidation

through ROS scavenging. This antioxidative defense mechanism is

also positively associated with the better growth of caffeine-treated

plants. It shows that caffeine has a strong indirect impact on

maintaining the antioxidative defense mechanism. Improvement in

the antioxidative defense mechanism is negatively associated with
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FIGURE 10

RS (A, B), NRS (C, D), and TSS (E, F) in root and shoot, respectively, of wheat seedlings grown from seeds treated with different levels of caffeine under
non-stress and PEG-induced water stress (mean ± SE; n = 4). Bars with same alphabets do not differ significantly [blue for non-stressed ones (a, b, c,
etc.) and red for stressed ones (u, v, w, etc.) against a specific caffeine treatment]. * on bars showing the significant difference between stress (red) and
non-stress (blue) in a specific treatment. NS, no soaking; WS, water soaking; RS, reducing sugars; NRS, non-reducing sugars; TSS, total soluble sugars. P
values for Shoot RS, Root RS, Shoot NRS, Root NRS, Shoot TSS and Root TSS are P ≤ 0.0029**, P ≤ 0.0000***, P ≤ 0.0000***, P ≤ 0.0311*, P ≤

0.0000*** and P ≤ 0.0080** respectively
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TABLE 1 Pearson coefficient correlations (r2) of seed germination-related attributes, germination enzyme activities, and seedling growth parameters.

Amy Prot Gluco SL RL SFW SDW RFW RDW

1.000

0.985*** 1.000

0.990*** 0.989*** 1.000

0.941*** 0.971*** 0.963*** 1.000

0.920*** 0.945*** 0.939*** 0.981*** 1.000

0.937*** 0.971*** 0.961*** 0.999*** 0.979*** 1.000

0.947*** 0.960*** 0.946*** 0.971*** 0.976*** 0.965*** 1.000

0.923*** 0.941*** 0.937*** 0.981*** 0.995*** 0.977*** 0.982*** 1.000

0.925*** 0.938*** 0.921*** 0.965*** 0.982*** 0.959*** 0.991*** 0.990*** 1.000

ime to 50% germination; CUE, coefficient of uniformity emergence; Amy, amylase; Prot, protease; Gluco, glucosidase; SL, shoot length; RL, root length; SFW,
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G% GI GE MET E50 CUE

G% 1.000

GI 0.957*** 1.000

GE 0.999*** 0.952*** 1.000

MET −0.973*** −0.963*** −0.970*** 1.000

E50 −0.979*** −0.963*** −0.976*** 0.999*** 1.000

CUE 0.917*** 0.971*** 0.916*** −0.916*** −0.912*** 1.000

Amy 0.957*** 0.974*** 0.952*** −0.962*** −0.960*** 0.943***

Prot 0.956*** 0.978*** 0.948*** −0.982*** −0.981*** 0.925***

Gluco 0.937*** 0.962*** 0.928*** −0.958*** −0.956*** 0.918***

SL 0.890*** 0.943*** 0.880*** −0.958*** −0.951*** 0.893***

RL 0.859*** 0.932*** 0.848*** −0.919*** −0.915*** 0.870***

SFW 0.886*** 0.939*** 0.877*** −0.958*** −0.952*** 0.881***

SDW 0.925*** 0.975*** 0.919*** −0.956*** −0.954*** 0.942***

RFW 0.866*** 0.936*** 0.857*** −0.925*** −0.919*** 0.884***

RDW 0.882*** 0.952*** 0.877*** −0.931*** −0.926*** 0.913***

G%, germination percentage; GI, germination index; GE, germination energy; MET, mean emergence time; E50,
shoot fresh weight; SDW, shoot dry weight; RFW, root fresh weight; RDW, root dry weight.
*** Significant at 0.001 level.
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TABLE 2 Correlation coefficient values (r2) of physiological, biochemical, and growth-related parameters of wheat seedlings when raised from seeds
after priming with different caffeine doses under non-stress and water stress imposed by PEG-8000.

SL RL SFW SDW RFW RDW Chl. a Chl. b Chl.
a/b

T. Chl. Car. T.
Chl./Car.

Chl. a −0.848*** −0.793*** −0.861*** −0.718*** −0.759*** −0.699*** 1.000

Chl. b −0.858*** −0.824*** −0.872*** −0.730*** −0.804*** −0.727*** 0.955*** 1.000

Chl. a/b −0.384* −0.279ns −0.392* −0.194ns −0.242ns −0.171ns 0.670*** 0.604*** 1.000

T. Chl. −0.862*** −0.817*** −0.876*** −0.732*** −0.789*** −0.720*** 0.990*** 0.987*** 0.646*** 1.000

Car −0.873*** −0.865*** −0.887*** −0.764*** −0.840*** −0.776*** 0.942*** 0.973*** 0.494** 0.968*** 1.000

T.
Chl./Car.

−0.849*** −0.870*** −0.862*** −0.770*** −0.853*** −0.801*** 0.842*** 0.906*** 0.313ns 0.882*** 0.970*** 1.000

S CAT −0.802*** −0.760*** −0.815*** −0.644*** −0.735*** −0.655*** 0.942*** 0.965*** 0.688*** 0.964*** 0.951*** 0.880***

R CAT −0.797*** −0.771*** −0.811*** −0.650*** −0.736*** −0.652*** 0.956*** 0.973*** 0.659*** 0.975*** 0.969*** 0.897***

S POD −0.747*** −0.707*** −0.761*** −0.576*** −0.679*** −0.597*** 0.914*** 0.937*** 0.702*** 0.935*** 0.925*** 0.853***

R POD −0.893*** −0.865*** −0.906*** −0.780*** −0.838*** −0.774*** 0.978*** 0.984*** 0.596*** 0.992*** 0.983*** 0.916***

S APX −0.737*** −0.683*** −0.749*** −0.561*** −0.651*** −0.574*** 0.919*** 0.913*** 0.784*** 0.927*** 0.889*** 0.792***

R APX −0.901*** −0.856*** −0.911*** −0.775*** −0.835*** −0.779*** 0.967*** 0.964*** 0.657*** 0.977*** 0.957*** 0.886***

S SOD −0.692*** −0.625*** −0.710*** −0.522** −0.583*** −0.503** 0.962*** 0.923*** 0.757*** 0.954*** 0.878*** 0.749***

R SOD −0.843*** −0.776*** −0.855*** −0.701*** −0.751*** −0.684*** 0.992*** 0.962*** 0.697*** 0.989*** 0.938*** 0.839***

S MDA −0.953*** −0.927*** −0.949*** −0.969*** −0.934*** −0.938*** 0.738*** 0.735*** 0.268ns 0.745*** 0.742*** 0.728***

R MDA −0.964*** −0.931*** −0.963*** −0.965*** −0.935*** −0.936*** 0.782*** 0.774*** 0.313ns 0.787*** 0.779*** 0.758***

S H2O2 −0.974*** −0.939*** −0.971*** −0.968*** −0.948*** −0.941*** 0.786*** 0.788*** 0.324ns 0.796*** 0.790*** 0.769***

R H2O2 −0.988*** −0.957*** −0.989*** −0.961*** −0.955*** −0.937*** 0.859*** 0.859*** 0.388* 0.869*** 0.862*** 0.827***

S AsA −0.823*** −0.791*** −0.837*** −0.679*** −0.758*** −0.685*** 0.973*** 0.976*** 0.659*** 0.986*** 0.970*** 0.889***

R AsA −0.760*** −0.724*** −0.775*** −0.600*** −0.688*** −0.605*** 0.957*** 0.957*** 0.691*** 0.968*** 0.940*** 0.843***

S TAC −0.915*** −0.872*** −0.924*** −0.801*** −0.848*** −0.792*** 0.983*** 0.971*** 0.636*** 0.989*** 0.959*** 0.876***

R TAC −0.920*** −0.909*** −0.929*** −0.823*** −0.882*** −0.827*** 0.956*** 0.970*** 0.544*** 0.974*** 0.984*** 0.936***

TPC −0.808*** −0.750*** −0.822*** −0.658*** −0.713*** −0.644*** 0.989*** 0.955*** 0.744*** 0.984*** 0.930*** 0.823***

S TFC 0.931*** 0.906*** 0.925*** 0.960*** 0.936*** 0.950*** −0.646*** −0.665*** −0.135ns −0.662*** −0.689*** −0.704***

R TFC −0.928*** −0.888*** −0.938*** −0.824*** −0.865*** −0.813*** 0.982*** 0.969*** 0.592*** 0.987*** 0.965*** 0.895***

S Pro −0.853*** −0.815*** −0.864*** −0.710*** −0.794*** −0.722*** 0.946*** 0.968*** 0.673*** 0.968*** 0.959*** 0.892***

R Pro −0.823*** −0.762*** −0.837*** −0.671*** −0.740*** −0.666*** 0.977*** 0.974*** 0.689*** 0.987*** 0.948*** 0.857***

S GB −0.831*** −0.797*** −0.841*** −0.685*** −0.766*** −0.693*** 0.960*** 0.971*** 0.685*** 0.976*** 0.957*** 0.878***

R GB −0.555*** −0.498*** −0.573*** −0.360* −0.445** −0.371* 0.861*** 0.815*** 0.834*** 0.849*** 0.785*** 0.667***

S FAA −0.979*** −0.942*** −0.977*** −0.961*** −0.946*** −0.933*** 0.825*** 0.825*** 0.362* 0.834*** 0.820*** 0.786***

R FAA −0.985*** −0.959*** −0.985*** −0.969*** −0.958*** −0.944*** 0.837*** 0.835*** 0.345* 0.846*** 0.843*** 0.814***

S TSP −0.789*** −0.758*** −0.805*** −0.641*** −0.716*** −0.648*** 0.968*** 0.953*** 0.696*** 0.972*** 0.946*** 0.856***

R TSP −0.797*** −0.755*** −0.809*** −0.642*** −0.718*** −0.652*** 0.954*** 0.940*** 0.726*** 0.958*** 0.930*** 0.846***

S TSS −0.819*** −0.783*** −0.834*** −0.677*** −0.746*** −0.678*** 0.982*** 0.969*** 0.674*** 0.987*** 0.958*** 0.867***

R TSS −0.794*** −0.752*** −0.806*** −0.639*** −0.715*** −0.649*** 0.953*** 0.939*** 0.728*** 0.957*** 0.929*** 0.845***

S RS −0.732*** −0.712*** −0.748*** −0.586*** −0.662*** −0.605*** 0.937*** 0.886*** 0.643*** 0.924*** 0.916*** 0.836***

R RS −0.884*** −0.861*** −0.894*** −0.770*** −0.824*** −0.776*** 0.974*** 0.943*** 0.617*** 0.970*** 0.963*** 0.896***

(Continued)
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MDA and H2O2 levels in roots and shoots. The direct role of caffeine

in reducing lipid peroxidation is through its catabolism, which yields

a number of metabolites directly involved in reducing the membrane

lipid peroxidation by acting as ROS scavengers. It is reported that the

exogenous application of caffeine undergoes a purine catabolism

pathway that yields the xanthine and allantoin, which have ROS

scavenging activity as putative antioxidants and reduce membrane

lipid peroxidation (Watanabe et al., 2014; Takagi et al., 2016;

Nourimand and Todd, 2017). Moreover, the exogenous application

of allantoin reduces the level of reactive oxygen and H2O2 in leaves of

Arabidopsis thaliana L., accompanied by an increase in
Frontiers in Plant Science 19
photosynthetic pigment contents (Watanabe et al., 2014; Han et al.,

2020). The findings of the present study are in line with those of

previous reports, where exogenous application of caffeine decreased

the MDA and H2O2 levels and maintained better photosynthetic

pigments, resulting in improved biomass of wheat seedlings.

Recently, caffeine-induced modulation in lipid peroxidation, by

boosting up the antioxidative defense mechanism, has been

reported in osmotically stressed plants of spinach that is linked

with better chlorophyll pigments, cellular osmotic adjustment, and

better biomass accumulation (Emanuil et al., 2022).
5 Conclusions

Caffeine-mediated improvement in growth/biomass of wheat

plants is associated with rapid germination and seedling emergence

through enhancement in the activities of germination enzymes,

maintenance of chlorophyll contents, osmotic adjustment by

accumulation of biomolecules, and reduction in ROS production

through accumulation of enzymatic and non-enzymatic

antioxidants. The enhanced water stress tolerance of wheat

seedlings also seems associated with the translocation of caffeine

from root to shoot, which correlates well with maintaining the

different physio-biochemical mechanisms. Among different levels

of caffeine, 12 ppm was found to be the most effective one. The

findings of the present study are beneficial for agriculturists working

in semi-arid and arid regions to improve wheat production by

maintaining better crop stands. In the present study, the role of

caffeine in improving germination and seedling establishment is

studied on a single wheat genotype under controlled growth

conditions. Further studies are recommended in the field under

open environmental conditions, on wheat as well as other plant

species, for a clear understanding of caffeine’s role in water stress
TABLE 2 Continued

SL RL SFW SDW RFW RDW Chl. a Chl. b Chl.
a/b

T. Chl. Car. T.
Chl./Car.

S NRS −0.854*** −0.801*** −0.866*** −0.727*** −0.782*** −0.708*** 0.958*** 0.986*** 0.656*** 0.982*** 0.931*** 0.834***

R NRS 0.118ns 0.197ns 0.111ns 0.307ns 0.207ns 0.288ns 0.170ns 0.224ns 0.585*** 0.197ns 0.115ns 0.035ns

S GR −0.866*** −0.813*** −0.877*** −0.758*** −0.786*** −0.752*** 0.952*** 0.898*** 0.676*** 0.937*** 0.879*** 0.773***

R GR −0.808*** −0.742*** −0.818*** −0.655*** −0.719*** −0.660*** 0.955*** 0.924*** 0.725*** 0.951*** 0.898*** 0.794***

S GSSG −0.884*** −0.838*** −0.891*** −0.753*** −0.816*** −0.753*** 0.967*** 0.964*** 0.682*** 0.977*** 0.945*** 0.858***

R GSSG −0.817*** −0.761*** −0.825*** −0.674*** −0.737*** −0.674*** 0.962*** 0.931*** 0.676*** 0.958*** 0.916*** 0.819***

S GSH −0.826*** −0.786*** −0.838*** −0.692*** −0.759*** −0.694*** 0.957*** 0.950*** 0.579*** 0.964*** 0.954*** 0.890***

R GSH −0.829*** −0.768*** −0.842*** −0.677*** −0.743*** −0.671*** 0.976*** 0.971*** 0.706*** 0.985*** 0.945*** 0.855***
***, **, and * indicate significance at 0.001, 0.01, and 0.05 levels, respectively.
GE, germination energy; GI, germination index; G%, germination percentage; CUE, coefficient of uniformity emergence; E50, time to 50% germination; MET, mean emergence time; Prot,
protease; Amy, amylase; Gluco, glucosidase; RDW, root dry weight; RFW, root fresh weight; SDW, shoot dry weight; SFW, shoot fresh weight; RL, root length; SL, shoot length; T. Chl, total
chlorophyll; Chl. b, chlorophyll b; Chl. a, chlorophyll a; Chl a/b, chlorophyll ratio; Caro, carotenoids; S TSP, shoot total soluble protein; R TSP, root total soluble protein; R FAA, root free amino
acid; S FAA, shoot free amino acid; S TAC, shoot total anthocyanin; R TAC, root total anthocyanin; R TFC, root total flavonoid content; TPC, total phenolic content; S TFC, shoot total flavonoid
content; S TSS, shoot total soluble sugar; R TSS, root total soluble sugar; S MDA, shoot malondialdehyde; R MDA, root malondialdehyde; R H2O2, root hydrogen peroxide; S H2O2, shoot
hydrogen peroxide; R Pro, root proline; S Pro, shoot proline; R AsA, root ascorbic acid; S AsA, shoot ascorbic acid; S RS, shoot reducing sugars; R RS, root reducing sugars; R NRS, root reducing
sugars; S NRS, shoot non-reducing sugars; S GB, shoot glycine betaine; R GB, root glycine betaine; S GSSG, shoot oxidized glutathione; R GSSG, root oxidized glutathione; R GSH, root reduced
glutathione; S GSH, shoot reduced glutathione; S SOD, shoot superoxide dismutase; S POD, shoot peroxide dismutase; R SOD, root superoxide dismutase; R POD, root peroxide dismutase; S
CAT, shoot catalase; R CAT, root catalase; S CAT, shoot catalase; R APX, root ascorbate peroxidase; S APX, shoot ascorbate peroxidase; R GR, root glutathione reductase; S GR, shoot
glutathione reductase.
FIGURE 11

PCA of studied attributes of wheat under non-stress and PEG-
induced water stress. PCA, principal component analysis.
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tolerance. Moreover, further studies are also needed to find out the

possible economic outcomes in terms of seed yield increments

under deficit irrigation conditions.
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