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Fungi play a pivotal role in fermentation processes, influencing the breakdown

and transformation of metabolites. However, studies focusing on the effects of

fungal–metabolite correlations on leaf fermentation quality enhancement are

limited. This study investigated specific metabolites and fungi associated with

high- and low-quality fermented plant leaves. Their changes were monitored

over fermentation periods of 0, 8, 16, and 24 days. The results indicated that

organoheterocyclic compounds, lipids, lipid-like molecules, organic nitrogen

compounds, phenylpropanoids, and polyketides were predominant in high-

quality samples. The fungi Saccharomyces (14.8%) and Thermoascus (4.6%)

were predominantly found in these samples. These markers exhibited

significant changes during the 24-day fermentation period. The critical

influence of fungal community equilibrium was demonstrated by interspecies

interactions (e.g., between Saccharomyces and Eurotium). A co-occurrence

network analysis identified Saccharomyces as the primary contributor to high-

quality samples. These markers collectively enhance the quality and sensory

characteristics of the final product.
KEYWORDS
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Highlights
• Specific metabolites and fungi were significantly correlated with plant leaf quality.

• Saccharomyces was the main driver of plant leaf quality during fermentation.

• Eurotium was indispensable in regulating the metabolic features of plant leaves.
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Introduction

Plant leaf fermentation is increasingly recognized as an effective

method for enhancing quality and introducing unique characteristics.

Environmental factors, including optimal temperature, humidity, and

moisture conditions, along with microbial activity, significantly

influence quality enhancement during fermentation (Drobek et al.,

2019; Zhang et al., 2019; Zhu et al., 2020). For example, fermenting

medicinal herbs into Yaoqu can lower toxicity, increase effectiveness,

and satisfy the exacting standards of clinical applications (Li L. et al.,

2020). Microbial activity can alter the chemical composition of plant

leaves throughout the fermentation process (Zhu et al., 2020). Liu F.

et al. (2021) demonstrated that the aromatic substance content and

quality of tobacco leaves have been significantly influenced by

changes in bacterial and fungal communities during fermentation.

Previous studies have confirmed the positive effects of metabolites

and microorganisms on enhancing the quality of fermented plant

leaves (Zeng et al., 2019; Karim et al., 2020; Yu and Yang, 2020; Zhu

et al., 2020). However, which microorganisms and metabolites of

plant leaves dominated the fermentation processing and how they

work together to improve the quality of fermented plant leaves still

remain poorly understood. Therefore, deepening our understanding

of the variables andmechanisms involved offers a significant potential

for advancing plant leaf fermentation techniques.

It is essential to investigate the biochemical changes associated

with specific metabolites in plant leaves during fermentation, as

these alterations fundamentally determine the quality of the

fermented leaves (Li J. et al., 2020; Liao et al., 2022; Wang et al.,

2022). Several studies have demonstrated that certain beneficial

metabolites can neutralize harmful odors, degrade toxic substances,

diminish unpleasant smells, and generate distinct flavors, thereby

improving the quality of plant-based products (Liu F. et al., 2021; Jia

et al., 2023). A total of 47 compounds, including catechins,

flavonoids, and flavoalkaloids, were identified by Cheng et al.

(2021) as critical metabolites responsible for the quality of

Qingzhuan tea under age-related variations. Yue et al. (2019)

found 21 metabolites, including glycoside derivatives, flavonoids,

and phenolic acid derivatives, had the potential to serve as markers

for distinguishing distinct grades of Bai Mudan white tea.

Fungi can give fermented plant leaves distinct flavors and

advantages (Pusztahelyi et al., 2015; Shang et al., 2022).

Aspergillus and Bacillus are the predominant fungi in Qingzhuan

tea, while Aspergillus species predominate in Pu-erh tea. This leads

to notable variations in the teas’ sensory attributes and metabolic

aspects (Cheng et al., 2020). Studies have explored the dynamics of

fungal communities and metabolites in plant leaves during the

fermentation process. The fluctuations in chemical compositions

and sensory attributes are motivated by primary fungal species (Ma

et al., 2021). Eurotium greatly influenced the metabolites, phenolic

acids, and flavonoids of dark tea, which provided valuable effects in

shaping the unique characteristics of postfermented Fu brick tea

(Xiao et al., 2022). Thus, the correlations between fungi and

metabolites in plant leaves warrant increased attention during the

fermentation process.

It is well established that the composition of specialized

metabolites in plant leaves is significantly influenced by a variety of
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environmental conditions (Neilson et al., 2013; Mierziak et al., 2014;

Erb and Kliebenstein, 2020). The chemical composition of plant

leaves may be dramatically changed by variations in fermentation

conditions (Tang et al., 2018; Li J. et al., 2020). For example,

numerous studies have been done to investigate how humidity

affects the quality of plant leaves (Hirai et al., 2000; Zhao et al.,

2022). According to Zhao et al. (2022), a humidity level of 70% was

found to be ideal for enhancing the quality of tobacco leaves used to

make cigars. Therefore, we primarily identified the metabolite

signatures and associated fungi in high- and low-quality fermented

plant leaves. Subsequently, we revealed their changes over time

during fermentation at an optimal humidity of 70%.

Fermented plant leaves play a critical role in providing essential

nutrition or economic support on a global scale. It is imperative to

improve the quality of these products to benefit both producers and

consumers. Advancing our understanding of the role of metabolite

signatures and fungi in the fermentation process is key to furthering

knowledge in microbial ecology and biotechnology, offering

potential applications in quality enhancement and flavor

innovation during fermentation. In this study, the metabolite

composition and the fungal community structure of all samples

were systematically analyzed by an integrated metabolomic and ITS

analysis approach. A part of the cigar tobacco samples was

fermented at 62% humidity for 3 years to confirm the key

biomarkers of high-quality fermented samples. The conditions

(i.e., humidity and time) of the cigar tobacco fermentation were

altered to explore the changes in these key biomarkers during

fermentation processing. The correlations between metabolites

and fungi during fermentation were revealed by co-occurrence

network constriction. Our study aims to deepen our

understanding of the quality improvement of plant leaves

regulated by specific metabolites and fungi during fermentation.
Materials and methods

Sample collection and treatment

The cigar samples were derived from a reliable producer in

Sichuan, China, in November 2022. A part of the cigar tobacco

samples fermented at 62% humidity for 3 years, which were

confirmed as the quality-variable groups [low-quality (L) and

high-quality (M)] by sensory quality evaluation. The key

biomarkers of high-quality fermented samples were confirmed by

metabolic and fungal data analysis. The changes of these key

biomarkers were observed in other parts of cigar tobacco samples

that were respectively fermented at 75% humidity for 0, 8, 16, and

24 days in four time-series groups (T1, T2, T3, and T4). Overall, six

different fermentation groups were set as follows: two quality-

variable groups (L and M) and four time-series groups (T1, T2,

T3, and T4). Prior to the sensory analysis, the samples were rolled

into cigars by skilled rollers. A five-member-trained panel clarified

the quality of L and M samples by assessing flavor components and

sensory characteristic scales. A 5-point hedonic scale was used to

determine the flavor component scales, and a 9-point hedonic scale

was used to calculate the sensory characteristic scales. A higher
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score indicated that the associated index performed better. All

panelists agreed after discussing and deciding on the ratings. The

results showed that sample M was of greater quality than sample L.

The specifics of the sensory assessment were provided in the

Supplementary Material (Supplementary Tables S1, S2).

To obtain representative samples for each group, six groups were

chopped and mixed. For nontargeted metabolite analysis, 2 g of

representative samples were placed into precooled cryopreservation

tubes resistant to extremely low temperatures (−192°C), snap-frozen

with liquid nitrogen for 3 to 4 h, and stored at −80°C. For DNA

extraction and ITS rDNA sequencing, 12–15 g of representative

samples were snap-frozen in liquid nitrogen for 1 h and kept at

−80°C.
Analysis of nontargeted metabolites

Following the extraction of metabolites from plant leaf samples,

raw data were collected by metabolomic analysis of the samples

through the use of mass spectrometry (MS) in conjunction with

liquid chromatography (LC). After preprocessing the raw data, a

data matrix was created that could be utilized for additional data

analysis. The details about the particular procedure and constraints

were in line with those of Lei et al. (2023). Using the Kyoto

Encyclopedia of Genes and Genomes (KEGG) database, the

metabolites were annotated. The data were normalized by the

probability quotient normalization algorithm before analysis. For

each sample, the data were normalized using a probability quotient

normalization procedure. Quality control (QC) samples were then

utilized for batch correction using a robust QC spline. Student’s t-tests

were performed to examine the p-value, and the Benjamini–Hochberg

false discovery rate (FDR) was then employed to correct multiple tests

for variations in metabolite selection. To find more precise differences

between groups, we also used supervised partial least squares-

discriminant analysis (PLS-DA) utilizing MetaX variable

discriminant analysis statistical methods. The contribution rate of the

variations in metabolites in various groups is represented by the

variable significance in the projection (VIP) value. To identify the

key metabolites differentiating six groups, multiply the fold change

(FC) by the average value of all biological repeat quantitative data in the

comparison group. These key metabolites were finally identified by

meeting certain requirements, including FC ≥ 2 or ≤ 1/2, p-value ≤

0.05, and VIP > 1.
DNA extraction and ITS sequencing

The Plant Genomic DNA Kit (Isolate Plant DNA Minikit,

Tiangen, China) was utilized to extract the whole genomic DNA

sample. Using agarose gel electrophoresis and a NanoDrop ND-

1000 spectrophotometer (Thermo Fisher Scientific, Waltham, MA,

USA), the amount and quality of the recovered DNA were assessed.

Primers were sequenced using universal primers ITS1 (5′-
GTGARTCATCGAATCTTTG-3′) and ITS2 (5′-TCCTCC
GCTTATTGATATGC-3′), and their 5′ ends were barcoded

according to the sample. A total of 25 ng of template DNA, 12.5
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mL PCR Premix, 2.5 mL of each primer, and PCR-grade water to

adjust the volume of 25 µL were used in the PCR reactions. An

initiation phase of 30 s at 98°C was followed by 32 cycles of

denaturation (10 s at 98°C), annealing (30 s at 54°C), and

extension (45 s at 72°C) in the thermocycling process. For

10 min, a final elongation step was carried out at 72°C. Following

2% agarose gel electrophoresis to visualize the PCR products,

AMPure XT beads (Beckman Coulter Genomics, Danvers, MA,

USA) were used to purify the results. Qubit (Invitrogen, USA) was

used for the quantification of the refined PCR products. The PCR

products were then purified and ready for sequencing. The Illumina

library quantitative kits (Kapa Biosciences, Woburn, MA, USA) and

an Agilent 2100 Bioanalyzer (Agilent, USA) were used to assess the

qualified PCR products. These results were then pooled and

sequenced on an Illumina NovaSeq 6000 (PE250), which was

made available by LC-Bio Technology Co., Ltd., Hangzhou,

China. The NCBI sequencing Read Archive (SRA) contains the

ITS rRNA sequencing data.
Fungal community analysis

The samples were allocated to the raw reads obtained by the

Illumina NovaSeq platform paired-end sequencing based on their

distinct barcodes, and the primer sequence and barcode were

removed to truncate the reads. Using normal operating protocols,

all quality filtering and sequence read processing were carried out on

a publicly accessible Galaxy pipeline (http://mem.rcees.ac.cn:8080/)

(Zhou et al., 2010). To simply summarize the steps, primer fragments

were removed using Cutadapt, and low-quality sequences with a

quality score of less than 20 and a window size of 5 were removed

using Btrim (Kong, 2011). UCHIME was used to identify and

eliminate chimera sequences (Edgar et al., 2011). Sequences with ≥

97% similarity were assigned to the same operational taxonomic units

(OTUs) by using UPARSE. Singleton OTUs were eliminated from

further investigation, and each OUT’s representative sequences were

classified in the UNITE database.

The microeco package in R (Liu C. et al., 2021) (version 4.1.2)

was used for all community analysis and statistical work. Using the

Vegan package, principal coordinate analysis (PCoA) based on the

Bray–Curtis dissimilarity matrix was used to depict community

dissimilarity and ordination plots (Oksanen et al., 2013). The linear

discriminant analysis effect size (LEfSe) method (Segata et al., 2011)

was employed to identify the significantly different taxa across the

six fermentation groups. In order to determine the most noteworthy

fungal species and validate their impact on enhancing the quality of

fermented plant leaves, a logarithmic LDA score threshold of 4 (p <

0.05) was established to identify discriminative characteristics.
Co-occurrence network constriction

Using CoNet in Cytoscape, the co-occurrence correlation

network was constructed. Only the samples that appeared in the

rows at least once and had available sample counts of more than

50% were kept for further estimations. To identify fungal
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interactions, a Spearman’s correlation threshold of 0.6 (p < 0.05)

was utilized. To evaluate the most prominent significance of fungal

species and metabolites, a threshold of 0.9 (p < 0.05) was employed.

Using cytoHubba (Chin et al., 2014), the node scores were

computed based on the fungal interaction network in order to

predict important taxa. For constructing a hub network, the top 20

Hubba nodes were chosen based on their Matthews correlation

coefficient (MCC) ranking (Zhu, 2020). Each of the nodes in a

network has a size that corresponds to the number of connections

(i.e., degree). Gephi software was used to visualize all networks

(Jacomy et al., 2014).
Statistical analysis

The variations in the metabolites between the six groups were

analyzed by ANOVA. The data were displayed using the Pheatmap

(v 1.0.12) package in R (Kolde, 2019) after being normalized using

z-scores of various metabolite intensity regions. The Euclidean

distances between the main fungal taxa were then determined

(Murtagh and Legendre, 2014). Using the linkET (v 0.0.7.4)

package in R, the Mantel test was performed to find the

correlation between metabolites and fungal communities with

significant differences (p < 0.05) across six fermentation groups

by COR (method = Spearman). Using randomForest (4.7-1.1) in R,

we performed a classification random forest (RF) analysis (tree =
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2,000) to determine the main statistically important metabolite

predictors of Saccharomyces relative abundance (Altmann et al.,

2010). Using Adobe Illustrator CC 2019 (Adobe Systems Inc., San

Francisco, CA, USA), all figures were processed and illustrated.
Results

Identification of metabolites in
different fermentation

A total of 8,451 and 2,676metabolites were annotated for analysis

in the positive (POS) and negative (NEG) modes, respectively

(Supplementary Table S3; Figure 1A). These annotated metabolites

were classified into 15 superclasses, and 3,460 annotated features

exhibited significant differences between the six treatment groups

(Supplementary Figure S1). Among these superclasses (Figure 1B),

organoheterocyclic was the most abundant and variable metabolite;

the content of that increased along with fermentation days. The

contents of homogeneous nonmetal compounds, lipids, lipid-like

molecules, organic nitrogen compounds, phenylpropanoids, and

polyketides showed significant differences between L and M, which

indicated that these superclasses were the main contributors to the

high quality of plant leaves. In four series time groups, the contents of

these superclasses showed considerable change, which was increased

at 8 days (T2) and then decreased at 16 and 24 days (T3 and T4).
B

CA

FIGURE 1

Comparison of metabolites in different fermentation groups. (A) The contents of metabolites among six groups. (B) The contents of metabolites
showed significant differences among the six groups. (C) Heatmap and hierarchical cluster analysis based on the contents of metabolites with the
top 50 variable importance in projection (VIP).
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Conversely, the content of homogeneous non-metal compounds

remained relatively stable throughout the fermentation period (0 to

24 days). These results suggest that the first three superclasses should

be given special attention at the onset of the fermentation process.

The contents of the top 50metabolites with significant differences

among six groups were compared (Figure 1C), and we observed they

were enriched in L or M. A total of 15 metabolites were immensely

enriched in M group; they were (2s)-2-isopropyl-3-oxosuccinate of

organic acids and derivatives, d-(-)-quinic acid, florin and

amfepramone of organic oxygen compounds, 3,4-dihydrocadalene

and beta-ionone of lipids, lipid-like molecules, chalcone and

maritimetin of phenylpropanoids and polyketides, 5-methyl-2-

octyl-3(2h)-furanone of organoheterocyclic compounds, octisalate,

[6]-gingerol_1 and 2-(3-phenylpropyl) tetrahydrofuran of

benzenoids, and trilaurylamine and imidacloprid of organic

nitrogen compounds. This distribution of them indicated that the

conversion of these metabolites has an indispensable role in quality

enhancement. Some metabolites, such as 2-methyl-5-propyloxazole,

decreased along fermentation time and were relatively lower in the L

and M groups. This trend was similar with its classified superclasses,

organoheterocyclic compounds. The dynamics of these metabolites

require strict regulation and supervision during the initial

fermentation process.
Comparison of fungal communities

PCoA results showed significant differences (p < 0.001, Adonis

test) in the structures of plant leaf communities among six groups
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(Figure 2A). The groups of T1 and T2, T3 and T4, were slightly

overlapping with each other, respectively, while L andM groups were

entirely separate from the other groups, which suggested that the

structure of the fungal communities was prominently correlated with

the quality of plant leaves. Five phyla were identified in fungal

community across all samples, such as Ascomycota and

Basidiomycota (Figure 2B). These two phyla were the most

abundant phyla, accounting for 79.5% and 19.8%, respectively. A

comparison of the top 10 genera showed that the dominant genera

varied among the six groups (Figure 2C). For instance, Saccharomyces

(14.8%) and Thermoascus (4.6%) were most enriched in the M group,

which suggested that they were correlated with the high quality of

fermented plant leaves. Alternaria (10.5%) and Plectosphaerella

(2.7%) had a higher relative abundance than the other fermented

groups; thus, we believed these two genera were easily influenced and

reduced by fermentation processing. Noticeably, Eurotium (64.6%

and 60.6%) was the dominant genera in the T3 and T4 groups,

respectively; its relative abundance was significantly higher than other

groups, and it was regarded as the main potential factor influencing

the quality of plant leaves during fermentation.

The Chao1 and observed OTU indices showed that the alpha-

diversity was the highest in the T1 group. This indicated that the

unfermented leaves had a higher species than fermented leaves.

Conversely, the Shannon and inverse Simpson indices of the M

group were significantly (p < 0.05) higher than those of the other

groups (Supplementary Figure S2), which showed that the

fermented leaves with high quality had a higher diversity than

that of other samples. The number of unique OTUs in the T1 group

was the highest, followed by shared OTUs among all six groups
A B

D

E

C

FIGURE 2

Fungal community composition and distribution traits in six fermentation groups. (A) PcoA showing the Bray–Curtis similarities of plant leaf fungal
communities. (B) An upset diagram illustrating the numbers of shared and unique OTUs among six fermentation groups. The composition of fungal
communities in terms of phyla (C) and major genera (D) among six groups. (E) The fungal taxa were identified as biomarkers in six fermentation
groups by LEfSe (LDA < 4, p < 0.05).
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(Figure 2D). OTU475, OTU345, and OTU356 belonged to

Alternaria; these three OTUs were the most genera of the 52

unique OTUs in the T1 group. Whereas OTU12, OTU15,

OTU29, and OTU894 were part of Aspergillus, these four OTUs

were the abundant genera of 32 shared OTUs among six groups.

These findings indicated that the diversification of fungal

communities is significantly influenced by the fermentation

process, and certain specific taxa may play a pivotal role in

determining the quality of fermented plant leaves.

A total of 30 taxa (LDA > 4, p < 0.05) were identified as

biomarkers among six groups (Figure 2E). The T1 group had the

largest number of enriched taxa, which can serve as biomarkers for

distinguishing unfermented plant leaves from fermented ones. Five

of 13 genera as biomarkers (Debaryomyces, Alternaria, Wallemia,

Davidiella, and Plectosphaerella) were found in the T1 group. The

remaining eight genera were distributed more evenly among the L,

M, T3, and T4 groups. Specifically, Saccharomyces and Thermoascus

were enriched in high-quality samples of the M- group, which

indicated their relative abundance may relate to the high quality of

fermented plant leaves. These results suggested that the relative

abundance of these eight genera was actively involved in the

fermentation process, and some of them can be remarkably

correlated with the quality of fermented plant leaves.
Interaction processes of fungal
communities driven by fermentations

To explore potential microbial interaction patterns among six

groups, networks of distinct structures and topologies for the

communities of plant leaves were constructed. A broad range of edge

numbers was 164~5,117, and node numbers were 60~175 among six

groups. The network of the L group had the least number of nodes and

edges, which indicated that the network was relatively simpler than the

other groups. In contrast, the network indices for the T1 group were the

highest among the five groups studied. This includes measures such as

the average number of neighbors, clustering coefficient heterogeneity,

and centralization, as detailed in Supplementary Table S4. These results

suggested that the complexity of the network in fermented plant leaves

could be reduced during the fermentation process and that high-quality

fermented leaves were correlated with more complex networks.

Interestingly, we observed that the proportions of positive and

negative linkages were fairly equal in the L and M groups, whereas

more positive linkages were present in the T1 to T4 groups. These

findings indicated that maintaining a balance of positive and negative

relationships could contribute to a better fermentation effect and

improve the quality of fermented leaves.

We also noticed significant differences in the top 20 hub taxa

among the six groups. There are more balanced linkages in the hub

network of M (102) than in the L group (52). The linkages of the T1

group were the highest, and that was decreasing in 8 days of

fermentation time (T1) and increasing in 16 and 24 days (T3 and

T4). These findings further proved the more equally positive and

negative links with the higher quality of fermented samples. Also,

the more complex interactions were found in high-quality and/or

unfermented samples.
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Specifically, Saccharomyces, identified as one of the six

biomarker genera among the 20 hub taxa, was exclusively

observed in the M group network. Saccharomyces exhibited a

positive correlation with Eurotium and a negative correlation with

Aspergillus. Eurotium was present in the hub networks of the L, M,

and T2 groups, but it rarely appeared in the hub networks of

unfermented samples and other fermentation periods. Aspergillus

was an invariable keystone taxon in all L groups, which highlights

its indispensable role in the fermentation process. Penicillium was

absent in five fermented plant leaf hub networks, this indicated that

the fermentation process clearly inhibited this taxon (Figure 3). The

interactions between L and M communities also displayed a

proportional balance of positive and negative connections. More

than five keystone taxa were interacting with each other in the plant

leaf hub network (Figures 3E, F). These results suggested that

specific fungal species and their interactions play a crucial role in

driving the fermentation of plant leaves, and these keystone taxa

may have a significant impact on the regulation of plant leaf quality.
Changes of metabolites and associated
fungi during fermentation

Mantel tests were used to reveal the correlation between 3,460

specific metabolites, the fungal alpha-diversity, and 13 keystones

(Figure 4). The contents of lipids, lipid molecules, organic nitrogen

compounds, phenylpropanoids, and polyketides were significantly

(p < 0.05) correlated with the relative abundance of Saccharomyces,

respectively. Additionally, lipids and lipid-like molecules were

significantly correlated with alpha-diversity and other biomarkers

(e.g., Alternaria). Organic nitrogen compounds had an intensive

correlation with the inverse Simpson index and the relative

abundance of Thermoascus and Debaryomyces. Phenylpropanoids

and polyketides were associated with alpha-diversity and the

relative abundance of Thermoascus and Alternaria. The relative

abundance of Saccharomyces had a strong positive correlation with

the Shannon and inverse Simpson indices, as did the relative

abundance of Thermoascus, Mycosphaerella, and Penicillium.

Whereas, it had a strong negative correlation with the relative

abundance of Alternaria, Aspergillus, and Cladosporium. These

findings indicated that the contents of lipids, lipid-like molecules,

organic nitrogen compounds, phenylpropanoids, polyketides, and

the relative abundance of Saccharomyces were significantly

correlated (p < 0.05). Saccharomyces was influenced by the

interspecies interactions of these specific biomarkers.

Co-occurrence networks displayed distinct structure and

topology for the correlations between 13 fungal biomarkers and

variational metabolites among six groups (Figure 5). Generally, the

co-networks were established by 13 keystones and 13 superclasses.

The correlations were conspicuously dominated by different fungal

species in a co-occurrence network of six groups, which indicated

that specific fungal species and metabolites drive the fermentation

process. Saccharomyces was the dominant genus in the M group,

while Eurotium occupied the dominant position in the L group. The

nodes of Alternaria had the highest linkages in T1 and T4.

Penicillium and Cladosporium had the highest linkages in groups
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T2 and T3, respectively. The findings suggested that these genera

may play critical roles in modulating the levels of harmful or

beneficial metabolites, thereby influencing the quality of plant

leaves (refer to Figures 5E, F). Additionally, there was a

noticeable decline in network edges at the onset of fermentation.

A rising trend was exhibited at the late fermentation stages

(Figures 5A–D). In addition, the most abundant superclass was

organoheterocyclic compounds in the six networks. Lipids and

lipid-like molecules were the second dominant superclass, which

exhibited higher abundance in the M than the L group. The linked

edges of lipids and lipid-like molecules in fermented 8-day samples

(T2) were also higher than in the other three fermentation time

groups. These results suggested that lipids and lipid-like molecules

significantly correlated with the quality of plant leaves during

fermentation, and as this is changeful, it should be intently

noticed in the early fermentation stage.
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Specific metabolites and fungi
during fermentation

To explore the changes in specific metabolites belonging to

lipids, lipid-like molecules, organic nitrogen compounds,

phenylpropanoids, and polyketides, and to reveal the relevance of

specific metabolites and fungal species that were correlated with

plant leaf quality enhancement, we conducted a specific analysis of

the relative abundance of 13 key genera, the contents of pivotal

metabolite compounds, and their contribution to Saccharomyces. A

heatmap and hierarchical cluster analysis were used to intuitively

reflect the differences among key fungal genera in six groups. The

contribution of these 12 key genera to the relative abundance of

Saccharomyces was 46.32%. Thermoascus had the highest

contribution to Saccharomyces relative abundance. Additionally,

Cladosporium, Eurotium, and Aspergillus are enriched in T3 and T4.
B

C D

E F

A

FIGURE 3

Network patterns of plant leaf communities of L (A), M (B), T1 (C), T2 (D), T3 (E), and T4 (F) fermentation groups. A connection indicates a strong
(Spearman’s |r| >0.6) and significant (p < 0.05) correlation. Positive correlations are represented by red lines, whereas negative correlations are
represented by blue lines. The size of the nodes corresponds to the degree of operational taxonomic units (OTUs).
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Alternaria and Plectosphaerella were the most abundant in T1.

Saccharomyces and Thermoascus in the M group had the highest

relative abundance among the six groups. Penicillium and

Mycosphaerella were abundant in L (Figure 6A).

The top 30 contributors were obtained from the metabolites of

lipids, lipid-like molecules, organic nitrogen compounds,

phenylpropanoids, and polyketides by random forest. Their

contribution to the relative abundance of Saccharomyces was 48.41%.

A total of 20 metabolites were enriched in the M group, and they had a

significant (p < 0.05) positive correlation with the relative abundance of

Saccharomyces (Figure 6B). Five metabolites, such as maritimetin, 3-

hydroxytetradecanedioic acid, 2-monolinolenin, costunolide, and

chlorambucil, had an above 10% increase in mean squared error,

showing a remarkable influence to Saccharomyces. However,

maritimetin belonged to phenylpropanoids and polyketides, whose

content was highest in the M group and lower in the other five groups.

3-Hydroxytetradecanedioic acid and 2-monolinolenin belonged to

lipids and lipid-like molecules, the contents of which were higher in

the M than the L group. In four fermentation time groups, the content

of 2-monolinolenin was increased in 8 fermented days (T2) and

decreased in 16 and 24 days (T3 and T4). Moreover, we found that

these three metabolites had a remarkably positive correlation with

Saccharomyces, Thermoascus, and Penicillium (p < 0.01) and a strongly

negative correlation withCladosporium,Debaryomyces,Alternaria, and

Plectosphaerella (p < 0.05). Costunolide and chlorambucil were

classified under lipids, lipid-like molecules, and organic nitrogen

compounds, respectively. Their content was highest in unfermented

samples (T1) and lowest in high-quality samples (M). Furthermore, the

content of costunolide decreased progressively over the course of

fermentation. These findings indicated that Saccharomyces, as a key

taxon, regulated beneficial metabolites to improve the quality of plant
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leaves. The former mentioned three metabolites and two genera

(Thermoascus and Penicillium) that could enhance the relative

abundance of Saccharomyces. In addition, the contents of costunolide

and chlorambucil enriched in T1 with negative correlations to

Saccharomyces indicated that the presence of these metabolites could

potentially reduce the relative abundance of Saccharomyces.
Discussion

Currently, plant leaf fermentation is being favored due to its greater

controllability and efficiency (Liu F. et al., 2021). There is a growing

interest in utilizing fermentation processes to enhance the quality and

characteristics of plant leaves (Jia et al., 2023). Plant leaves possess

specialized metabolites for flavor component production, and fungi

have diverse effects on the production of these specialized metabolites

during fermentation (Pusztahelyi et al., 2015; Zeng et al., 2019; Li J.

et al., 2020). In this study, we evaluated the metabolites and fungal

species present in different quality and fermented plant leaves. The

most abundant distributions in the six groups were organoheterocyclic

compounds, which could be significantly influenced during

fermentation process. The contents of lipids, lipid-like molecules,

organic nitrogen compounds, phenylpropanoids, and polyketides

were identified as the main metabolic contributors to the high

quality of plant leaves. The variations were observed in the

composition and structure of the fungal community of plant leaves

with different quality. Alternaria dominated in T1 and T4 groups;

Penicillium, Cladosporium, Eurotium, and Saccharomyces were the

most abundant genera in T2, T3, L, and M groups, respectively. In

total, 13 genera (e.g., Eurotium, Saccharomyces) were identified as key

biomarkers differentiating six groups during fermentation. These
FIGURE 4

Correlations between metabolites and associated fungal diversity and keystones. Pairwise Spearman’s correlation matrix of the fungal community
traits was shown with block charts, and metabolites with significant differences were related to each fungal diversity and biomarkers by Mantel tests
during fermentation. Edge width means the Mantel’s statistic, and edge color means the statistical significance. *, **, *** represent p < 0.05, 0.01,
0.001, respectively.
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specific metabolites and fungal genera present promising avenues for

further exploration in plant leaf fermentation processes.

Microorganisms can regulate metabolites and control the quality of

plant leaves during fermentation (Shang et al., 2022). The highest relative

abundance of Saccharomyces, amounting to 14.8%, was observed in

high-quality plant samples. Saccharomyces emerged as a hub taxon in

fungal interspecies interactions and was also the dominant node

associated with the largest number of metabolites in the co-occurrence

network. Saccharomyces is a probiotic yeast (Pais et al., 2020), and it is

widely used as a cell factory for producing various products at high levels

from different feedstocks (Lian et al., 2018). In winemaking, grape juice is

inoculated withmixed cultures of Saccharomyces, which enhances acidity
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and improves the overall quality of wine in simultaneous and sequential

co-fermentation (Gobbi et al., 2013). The “golden flowers”were found to

be present in higher-priced tea commodities with superior product

quality, such as Liupao tea mark, and Eurotium was shown to be the

dominant genus in these “golden flowers” (Mao et al., 2017). According

to Chen et al. (2023), Eurotium plays a significant role in the synthesis of

the chemicals that give loose-leaf dark tea its distinct flavor and in

providing a chemical foundation for quality control throughout the

processing of dark tea. We found that Eurotium showed a considerable

contribution with a significant negative correlation to Saccharomyces.

The highest relative abundance of Eurotium (> 60%) was found in 16-

and 24-day fermented samples (T3 and T4), respectively, indicating that
B

C D

E F

A

FIGURE 5

Correlations between metabolites and associated fungi in plant fermentation processing. Co-occurrence network (left) and the linked nodes number
of key genera (right) under T1 (A), T2 (B), T3 (C), T4 (D), L (E), and M (F). In the co-occurrence network, the ginger nodes represent the degree of the
OTUs, which belonged to 13 key genera that differentiate fermentation. The remaining nodes represent annotated metabolite ions, marked with
different colors corresponding to the superclass level. A connection indicates a strong (Spearman’s |r| >0.7) and significant (p < 0.05) correlation.
Positive correlations are shown by the red connections, while negative correlations are shown by the blue links. A node-edge statistics summary was
provided, with numbers denoting edges.
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the control of Eurotium was significantly correlated with the

enhancement of fermented sample quality. We found that throughout

the course of the 24-day fermentation period, there were notable changes

in themetabolites and fungal markers detected in high-quality fermented

plant leaf samples. It could indicate that variations in short-term

fermentation markers can be used to forecast long-term fermentation

outcomes, which in turnmight help direct the industrial advancement of

cigar fermentation. However, the fermentation conditions are not

consistent with 75% vs. 62% humidity, and the changes in humidity

can significantly influence microbial activities and metabolic processes

during fermentation. Therefore, any predictive application of short-term

markers to long-term fermentation should consider the specific

conditions and be validated through additional studies.

The correlations between specialized metabolites and specific

fungal species in plant leaves are responsible for flavor component

production and quality improvement during fermentation. Jiang et al.

(2023) demonstrated that lipids and lipid-like molecules are closely

related to volatile metabolite formation. Li et al. (2022) revealed that

black Huangjiu (a traditional alcoholic beverage) fermented by

sequential inoculation with Saccharomyces had a taste that was

stronger, sweeter, mellower, and softer. In this study, lipids and
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lipid-like molecules (e.g., 3-hydroxytetradecanedioic acid and 2-

monolinolenin) were the most common in high-quality plant

samples. The majority of contributors to lipids and lipid-like

molecules exhibited a significant positive correlation with

Saccharomyces (p < 0.05), a result that notably contrasts with the

findings of Li et al. (2022). This may be correlated with the effect of

correlations between specific fungal species and metabolites. Gobert

et al. (2019) indicated that organic nitrogen is an essential nutrient

and volatile compound for Saccharomyces during alcoholic

fermentation. Here, we found chlorambucil, as one of the organic

nitrogen compounds, had a strongly negative correlation with

Saccharomyces. This indicated an increase in Saccharomyces with

the consumption of chlorambucil in high-quality fermented

leaves. Existing studies have demonstrated that phenylpropanoids

and polyketides interacted with helpful soil microorganisms,

encouraged secondary cell wall formation, and offered protection

against a variety of plant diseases (Yu and Jez, 2008; Fiorito et al.,

2019). Maritimetin belonged to phenylpropanoids and polyketides,

which had a remarkably positive correlation with Saccharomyces (p <

0.05). This indicated that they may work together to contribute to the

quality enhancement of plant leaves.
B

A

FIGURE 6

Contents and contribution of metabolite signatures and associated fungi of 12 key genera (A) and top 30 metabolite compounds (B) to Saccharomyces.
Heatmap and hierarchical cluster analysis based on the standardized contents (left) and bar diagram (right) based on random forest contribution. The
contents of certain taxa and metabolites increased with color. Red bars indicated positive associations, whereas blue bars indicated negative relations.
The top 30 keystone metabolite predictors of Saccharomyces were found using random forest analysis. Each tree’s accuracy measure was calculated,
and the results were averaged across the 2,000 trees in the forest. The significance of these predictors was calculated using the percentage increases in
the mean squared error (MSE) of the variables; more significant predictors were indicated by larger MSE% values. *, **, *** represent p < 0.05, 0.01,
0.001, respectively.
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Saccharomyces, as a key taxon, can regulate specific fungal species

and metabolites to improve the quality of plant leaves. Lipids, lipid-like

molecules, organic nitrogen compounds, phenylpropanoids, and

polyketides were plentifully distributed in high-quality plant samples;

they have a significant (p < 0.05) correlation with Saccharomyces.

However, our current understanding of plant fermentation is still

incomplete. Furthermore, this study demonstrates the relevance of

Saccharomyces, specific fungal species (e.g., Eurotium and

Thermoascus), and certain metabolites (e.g., maritimetin, 3-

hydroxytetradecanedioic acid, and 2-monolinolenin) to the quality of

fermented plant leaves. The part resulting from the balanced

interactions by Saccharomyces during the fermentation cannot be

neglected in the initial stages of fermentation processing. However,

the exact mechanism of how the lipids, lipid-like molecules, organic

nitrogen compounds, phenylpropanoids, polyketides, and

Saccharomyces improve fermented plant leaf quality still needs to be

deeply explored.

In conclusion, we uncovered how crucial metabolites and fungal

species drive the fermentation process to enhance the quality of plant

leaves during fermentation and their changes in four time series

fermentation groups (0, 8, 16, and 24 days). The results showed that

organoheterocyclic was susceptibly affected in plant leaves during

fermentation. It was reduced in high-quality samples and

significantly changed after four fermentation times. Lipids, lipid-

like molecules, organic nitrogen compounds, phenylpropanoids, and

polyketides were most abundant in high-quality plant samples; they

have a significant (p < 0.05) correlation with Saccharomyces.

Saccharomyces (14.8%) was the dominant genus in high-quality

samples, while Eurotium (> 60%) was abundant in 16- and 24-day

fermentation samples. The quality of fermented leaves is improved by

the correlations between these particular compounds and fungal

species. A total of 22 metabolites were found to have a significant

contribution to the relative abundance of Saccharomyces. The most

significant metabolites among them were 2-monolinolenin, 3-

hydroxytetradecanedioic acid, and maritimetin, which all had

positive correlations with the relative abundance of Saccharomyces.

These typical metabolites and fungi may be used for regulated and

effective fermentation processes. This study may offer a useful and

efficient experimental foundation for improving the quality of

fermented plant leaves and optimizing the fermentation process.
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