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Introduction: Canopy species need to shift their ecological adaptation to

improve light and water resources utilization, and the study of intraspecific

variations in plant leaf functional traits based at individual scale is of great

significance for evaluating plant adaptability to climate change.

Methods: In this study, we evaluate how leaf functional traits of giant trees relate

to spatial niche specialization along a vertical gradient. We sampled the tropical

flagship species of Parashorea chinensis around 60 meters tall and divided their

crowns into three vertical layers. Fourteen key leaf functional traits including leaf

morphology, photosynthetic, hydraulic and chemical physiology were measured

at each canopy layer to investigate the intraspecific variation of leaf traits and the

interrelationships between different functional traits. Additionally, due to the

potential impact of different measurement methods (in-situ and ex-situ branch)

on photosynthetic physiological parameters, we also compared the effects of

these two gas exchange measurements.

Results and discussion: In-situmeasurements revealed that most leaf functional

traits of individual-to-individual P. chinensis varied significantly at different

canopy heights. Leaf hydraulic traits such as midday leaf water potential (MWP)

and leaf osmotic potential (OP) were insignificantly correlated with leaf

photosynthetic physiological traits such as maximal net assimilation rate per

mass (Amass). In addition, great discrepancies were found between in-situ and ex-

situ measurements of photosynthetic parameters. The ex-situ measurements

caused a decrease by 53.63%, 27.86%, and 38.05% in Amass, and a decrease of

50.00%, 19.21%, and 27.90% in light saturation point compared to the in-situ
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measurements. These findings provided insights into our understanding of the

response mechanisms of P. chinensis to micro-habitat in Xishuangbanna tropical

seasonal rainforests and the fine scale adaption of different resultant of

decoupled traits, which have implications for understanding ecological

adaption strategies of P. chinensis under environmental changes.
KEYWORDS

canopy physiology, intraspecific variation, leaf hydraulic traits, leaf photosynthetic
physiological traits, vertical distribution, ecological adaptation
Introduction

Forests are highly diversified ecosystems that play a key role in

the carbon and hydrologic cycle (Needham et al., 2022). Some far

anthropogenic influences on global climate change have led to

longer and more frequent climate extremes, which may adversely

affect the structure and function of forest communities. In response,

plants adjust physiologically and morphologically to changes in

their surrounding climate, thereby forming specific functional

traits, reflecting adaptation strategies to different environment

stresses. Consequently, trait-based ecological research has

potential to account for plant species distribution and function,

perfect global vegetation patterns, and to predict ecosystem

processes (Wright et al., 2004; Dıáz et al., 2016; Shi et al., 2020;

Hagan et al., 2023). However, prior studies mainly consider the trait

characteristics by hypothesizing that the individuals of plant species

are the same (Anderegg et al., 2018). This approach overlooks the

fact that intraspecific variations in plant functional traits across

individuals can contribute significantly to the total trait variation of

a plant population even a forest community (Huang et al., 2023).

Intraspecific variations represent plant genetic diversity and the

different phenotypes produced by the same genotype under variable

ambient conditions, which is well known as phenotypic plasticity

(Sobral and Sampedro, 2022). The overlook in the intraspecific

variation may lead to inaccurate estimation on trait diversity (Lasky

et al., 2014; Siefert et al., 2015). In comparison with the patterns

observed at the species level, the diversity of individual traits may

provide more compelling evidence for ecological adaptation and

indicate the different axes of niche division (Koch et al., 2004; Lasky

et al., 2014; Pfautsch et al., 2018).

Prior studies focusing on functional trait variations in leaves

have greatly advanced our comprehension of plant performance

and ecological adaptation. Among various leaf-level traits, those

related to CO2 and water exchange and light capture have probably

received more attention (Li et al., 2015; Xu et al., 2021). Leaf

economics and hydraulic traits directly affect plant nutrient

absorption and carbon assimilation rate, and control water

transport to resist atmospheric drought (Wright et al., 2004). This

in turn sets limitations on key aspects of plant architecture such as

maximum height, allometry and canopy physiology (Koch et al.,
02
2004; de Bittencourt et al., 2022). Forest microenvironment is an

important driver of the intraspecific variation of leaf functional

traits (Kenzo et al., 2015; Zuleta et al., 2022). Forest ecosystems

experience notable environmental heterogeneity along vertical

gradients, with increasing light radiation and vapor pressure

difference (VPD) and decreasing atmospheric humidity (Duan

et al., 2022). Within the same forest community, changes in local

environmental gradients, which often follow the same patterns as

those found at large spatial scales, can strongly influence ecological

adaptation strategies (Kenzo et al., 2015; Lu et al., 2015; Chen et al.,

2019). Moreover, leaf also play a pivotal role in niche differentiation

(Ishii et al., 2013; Hess et al., 2022). In tropical and subtropical

regions, ecological adaptation along a fine-scale vertical gradient

can be explained by habitat filtering based on leaf traits (Kenzo

et al., 2015; Feng et al., 2022). Leaves in these regions are highly

specialised to the microenvironment conditions, exhibiting

contrasting physiological characteristics found under strong

selective pressures (Koch et al., 2004). Thus, traits related to how

efficiently plants carbon assimilation and resist drought stress are

highlighted as critical factors on the mechanism of species

coexistence in a community (Li et al., 2015).

Given that leaf economics and hydraulic traits are both related

to the process of water-CO2 exchange, the relationship of these two

sets of traits has garnered widespread attention (Li et al., 2015).

From the perspective of a single economics spectrum, there is a

strong coordination between leaf economics and hydraulic traits

across comprehensive species, implying that leaves with higher

photosynthetic rates tend to have more effective hydraulic

systems (Wright et al., 2004; Reich, 2014). Nevertheless, leaf

functional traits may not always change in this coordinated way.

Increasing evidence supports multiple dimensions of plant

functional traits (Sack et al., 2003; Sack and Scoffoni, 2013).

Recent studies in tropical-subtropical forest systems suggested

that there was a decoupling between leaf hydraulic and economics

traits among different species (Li et al., 2015). Blackman et al. (2016)

further found that leaf functional trait coordination at intraspecific

scale was also decoupled in response to environmental change. This

decoupling helps for understanding the ecological adaptation

strategies of species under climate change, because these

independent trait dimensions may be selected by different
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environmental filters (Li et al., 2015). Despite this, whether this

phenomenon also exists at the individual scale remains to be

discussed, as there is little research on the relationship between

different types of functional traits in specific species (Wright et al.,

2004). In complex forest ecosystems where resource space is

multidimensional and highly heterogeneous, to improve the

performance of whole tree performance, different combinations of

leaf functional traits at the individual species level is likely to be

necessary to adapt to various changes in fine-scale habitats

(Martinez and Fridley, 2018; Pritzkow et al., 2020).

Parashorea chinensis H. Wang, belonging to the family

Dipterocarpaceae, is the flagship species in the Asian tropics

(Tang et al., 2008; de Bittencourt et al., 2022). P. chinensis is

distributed in the tropical seasonal rainforest of China, especially

in Xishuangbanna, Yunnan Province. Adult individuals of P.

chinensis in the canopy may reach heights above 60 m (Deng

et al., 2020), which is also the tallest tree of tropical seasonal

rainforest in China and means a high proportion of aboveground

carbon storage (Tang et al., 2008). Meanwhile, P. chinensis also

plays an essential role in maintaining biodiversity and the stability

of ecological networks in community (Hu et al., 2022; Shen et al.,

2022). Data reveal that large trees are more susceptible to the impact

of drought due to changes in precipitation time and amplitude, as

well as increasing temperatures (Bennett et al., 2015; Liu et al.,

2021). Given that the structure of these forests is highly variable

across the vertical gradient (Deng et al., 2020; Shen et al., 2022), if

the adult P. chinensis fails to respond adaptively to keep up with the

increasing stresses imposed by fine spatial scales, the trees may be

rapidly at risk from the microenvironment apart from climate

change. However, to this day, there are only limited studies about

how different leaf functional traits within adult-individual-level P.

chinensis shift with microenvironmental gradients. The handful of

functional traits studies of the P. chinensis from vertical gradients in

China which measure water-use efficiency, leaf morphological

structures and nutrient allocation strategies do suggest that there

is a strong fierce pressure on plant function across vertical gradients

(Deng et al., 2020). However, these studies usually focused on

diverse size classes of trees with comparatively few leaf

photosynthetic traits, which limit our capacity to understand

intraspecific variations and niche differentiation in leaf functional

traits. Therefore, there is a need to note that the investigation on the

intraspecific variation and correlation between leaf functional traits

will enable better understanding of the trade-off between adaptive

characteristics and functional traits of P. chinensis for different

vertical gradient.

Benefiting by using the canopy crane, we can access canopy

leaves to measure leaf hydraulic and economics traits of sample

trees of P. chinensis in the forest at different vertical heights directly

(in-situ measurement). In the past, it was hard to measure

photosynthesis-related traits in-situ , and gas exchange

observations performed on branches that have been excised from

the tree are widespread (ex-situ measurement) (Santiago and

Mulkey, 2003; Missik et al., 2020), consequently. The method of

cutting branches assumes that cutting branches underwater can

minimize damage to the branches hydraulic system (Hanson et al.,
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2013; Sperry et al., 2016). However, some researchers suggest that

compared with intact branches, leaf photosynthetic traits such as

stomatal conductance and net rate of photosynthetic CO2

assimilation on detached branches are significantly distinct

(Santiago and Mulkey, 2003; Missik et al., 2020). Related excision

response could vary due to factors such as the length of the excised

branches and the canopy position (Woodruff et al., 2004; Buckley,

2005; Missik et al., 2020). Regardless of the mechanisms, there is

still less agreement about which species may be affected minimally

this measurement. Thereby, it is reasonable to expect that large trees

like the P. chinensis under greater risk of hydraulic failure may

exhibits remarkably significant divergent results by using different

measurement methods.

In this study, we assessed key leaf economics and hydraulic

traits (Table 1) of adult trees of P. chinensis at three heights (Table

S1) and addressed whether variation in leaf photosynthetic traits is

determined by tree height, different measurements and their

interaction. To achieve the above goals, we examined (i) the

variations in leaf functional traits along vertical gradients at the

individual species level; (ii) the interrelationships between different

functional traits at the individual level; (iii) the effect of different

measurement methods on photosynthetic physiological parameters

of P. chinensis.
Materials and methods

Study site and design

We conducted this study in the Xishuangbanna National

Natural Reserve (101°34’N, 21°36’E) in Yunnan Province, China,

which is a virgin tropical seasonal rainforest and P. chinensis is the

dominant canopy tree species therein (Tang et al., 2008; Deng et al.,

2020). The Xishuangbanna National Natural Reserve experiences a

tropical seasonal climate with an obvious dry season (November-

April) and a rainy season (May-October) which provides 80% of

annual precipitation; the mean annual temperature is 21°C, and the

mean annual rainfall is 1532 mm (Deng et al., 2020).

The canopy crane is located in the same tropical seasonal

rainforest (TCT7015-10E, Zoomlion Heavy Industry, Changsha,

China), which maximum operational height is 80 m and the job

length is 60 m. A dynamics plot of 1.44 ha was established in 2014,

centered around the crane base, for plant species investigation.

Among all these 6928 individuals of 217 woody tree species with a

diameter at breast height (DBH) ≥ 1 cm in this plot, P. chinensis had

the highest relative importance values and the largest basal area

(Tang et al., 2008).

In July 2022, which is the main growing season for most local

plants. We first selected 5 adult-individual P. chinensis from the plot

and divided their canopy into three equal parts from top to bottom.

Afterwards, we sampled and measured southfacing branches and

sun-exposed leaves of the canopy of these 5 trees across three

vertical gradients. Before measuring leaves when sunny days, we

operated the crane and measured every selected tree height with

a tapeline.
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Measurement of leaf photosynthetic
physiological traits

After reaching the different canopy heights (Table S1) using the

forest tower crane (TCT7015-10E, Zoomlion Heavy Industry,

Changsha, China), we used both uncut and detached branches to

inspect the influence of any height-related andmethod-related effect on

the gas exchange parameters. The light-response curve was measured

with a portable photosynthesis-fluorescence meter (LI-6800, LI-COR,

Inc, Lincoln, NE, USA) and we maintained a stable CO2 concentration

in the fluorescence leaf chamber (400-440ppm) with a CO2 buffer

bottle. The relative humidity was 75%–90% (Deng et al., 2020; Shen

et al., 2022), the air flow was 500 μmol·s−1, the leaf temperature was

approximately 30°C and the VPDwas 1.3 ± 0.2 kPa (Deng et al., 2020).

After light adaptation under 1000 μmol·m-2s-1, the PPFD gradient was

set as follows: 2300, 1800, 1300, 800, 600, 400, 200, 100, 50, 30, and 0

μmol·m-2s-1. Before measurement, the instrument needed to be

matched. At each PPFD gradient, the leaves were allowed to balance

for at least 3 minutes in view of the steadiness of stomatal conductance

(Gs). We analyze the light response curves by using the model

proposed by Ye (2007), as denoted as Ye model hereinafter,

following measurement to calculate the maximal net assimilation rate

(Amax), the light saturation point (LSP), the light compensation point

(LCP) and the respiration rate (Rd).

The maximal net assimilation rate per mass is calculated as

follows:

Amass =
the maximal net assimilation rate

Leaf mass per area
Measurement of leaf morphological and
structural traits

The Gs was recorded when measuring the photosynthetic

physiological traits of leaves. We took measurements of the leaf

thickness (LT) using a digital micrometer (SWSIWI, China) and

avoided the main leaf vein. Leaf lamina area (LA) was measured

using a leaf area meter (LI-3000A, Li-Cor, USA). We also measured

leaf relative water content by weighing fresh leaves, soaking them in

ultra-pure water for 2 hours, weighing the saturated fresh weight,

then drying at them 65°C for 72 hours and weighing the dry mass.

From these measurements, we calculated leaf dry mass per area

(LMA), leaf density (LD), and leaf relative water content (LWC).

The calculation equations are as follows:

Specific leaf weight(LMA) =
leaf dry mass
leaf area

Leaf density(LD) =
leaf dry mass

leaf area �  leaf thickness

Leaf relative water content(LWC)

=
leaf fresh mass −  leaf dry mass

saturated leaf fresh mass −  leaf dry mass
TABLE 1 Definitions of leaf traits used in this article together with
abbreviations and units.

Leaf
functional
trait

Abbreviation Unit Functional
significance

Leaf morphological and structural trait

Leaf area LA cm2 Light interception and
gas exchange in plants
(Poorter et al., 2009)

Leaf mass
per area

LMA g·cm-2 A measure of
investment in
structure, supporting
the carbon and
nutrients within leaves
(Wright et al., 2004)

Leaf Thickness LT cm Water storage and
photosynthetic
efficiency (Wright
et al., 2004)

Leaf
tissue Density

LD g·cm-3 Similar to LMA
(Poorter et al., 2009)

Leaf Relative
Water Content

LWC Water storage and the
ability to withstand
drought (Wilson
et al., 1999; Wang
et al., 2022)

Stomatal
Conductance

Gs mmol·m-2s-1 Water-CO2 exchange
(Brodribb and
Holbrook, 2003)

Leaf photosynthetic physiological traits

Maximal net
assimilation
rate per mass

Amass nmol·m-2s-1 Carbon assimilation
(Givnish, 1988)

Light
saturation
point

LSP μmol·m-2s-1 Adaptation of plants
to strong light
(Givnish, 1988)

Light
compensation
point

LCP μmol·m-2s-1 Tolerance of plant to
low light levels
(Givnish, 1988)

respiration rate
per mass

Rdmass nmol·m-2s-1 Tolerance of plant to
low light levels
(Givnish, 1988)

Leaf hydraulic traits

Leaf
osmotic
potential

OP MPa Hydraulic safety of
plants (Sack and
Holbrook, 2006)

Midday leaf
water potential

MWP MPa Hydraulic safety of
plants (Sack and
Holbrook, 2006)

Leaf chemical traits

Mass-based leaf
nitrogen
content
per mass

Nmass mg·g-1 Photosynthetic
efficiency and nutrient
status (Ripullone
et al., 2003)

Photosynthetic
nitrogen
use efficiency

PNUE mmol·m-2s-1 Carbon assimilation
(Ripullone
et al., 2003)
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Measurement of leaf chemical traits

Nitrogen content (Nmass) in the dried and ground leaves was

analyzed using an elemental analyzer (Vario ISOTOPE Cube,

Elementar Analysensysteme GmbH, Langenselbold, Germany).

Photosynthetic nitrogen use efficiency(PNUE)

=
 maximal net assimilation rate per mass 
nitrogen content per unit leaf dry mass
Measurement of leaf hydraulic traits

We measured midday leaf water potential (MWP) immediately

after collecting leaves by using a pressure chamber (Model 1505,

PMS, Albany, USA) between 12:00-1:30 PM. We also measured leaf

osmotic potential (OP) by using a vapor pressure osmometer

(Vapro 5600, Wescor, USA). For different canopy layers of each

sampled tree, we measured three to five sun-exposed leaves. All

measurements were taken on the same sunny day.
Data analysis

Leaf trait data were tested for the normality of distribution using the

Shapiro–Wilk tests. Initially multiple comparisons (ANOVA) of leaf

traits at different heights were carried out using Tukey’s test with 95%

confidence intervals. Then we conducted a principal component

analysis (PCA) to examine how leaf traits varied among the different

elevations. A permutational multivariate analysis of variance

(PERMANOVA) was used to test the difference in leaf traits at

different heights. To examine the relationships between different types

of leaf functional traits at the individual level, we conducted Pearson

correlation analysis. To investigate the impact of different measurement

methods on the parameters of leaf photosynthetic-related traits, we

employed a linear mixed model (Zuur et al., 2009), treating the

individual as a random factor and canopy height and measurement

method as fixed effects (Shi et al., 2021). We first constructed a model

including all factors and their interactions, and then compared this with

the original model after sequentially removing two-factor interactions

and single factors, to test the significance of factors or interactions (Lu

et al., 2020). Furthermore, we performed the same statistical analysis on

the functional trait parameters obtained from detached measurements

as from in-situmeasurements, to test the differences in statistical results

under different measurement methods. All data analysis and

visualizations were carried out using R v.4.2.1 (R Core Team, 2022).
Result

Response of leaf functional traits to
canopy height

In-situmeasurements revealed that most leaf functional traits of

P. chinensis at the individual level varied significantly across
Frontiers in Plant Science 05
different canopy heights. For instance, within the leaf

morphological and structural traits, the LA, LD, and Gs increased

1.16-, 1.29-, and 1.73-fold, respectively (Figures 1A–F), from the

low to high canopy, but the LT and LWC of high canopy were 1.45

and 1.13 times those at the lower canopy, oppositely. Leaf

photosynthetic physiological traits, such as Amass, LCP, and

Rdmass, showed significant difference between low and high

canopy (Figures 1G–J), whereas no obvious discrepancies were

observed in most of those parameters between the low and

middle height (Figures 1G–J). Contrary to the trends for LWC,

leaf hydraulic traits, including OP and MWP, declined with the

increasing height (Figures 1K, L). Leaf chemical traits, such as

Nmass, was less affected by the vertical gradient.
Correlation of leaf functional traits at three
vertical heights

Our PCA revealed the individual-level variation of 14 leaf traits

across multiple scales and divided them into two nearly decoupled

dimensions (Figure 2). The first leading dimension of leaf adaptation

to height, which accounted for 49.6% of the variation, was mainly

dominated by leaf carbon assimilation and hydraulic safety (loaded

traits such as Gs, PNUE, Amass, LD, MWP, OP, LSP, Rdmass, LCP,

LMA, and LWC). The second principal component of resource

acquisition, explaining 17.3% of the variation, was mainly

represented by LA, LSP and Nmass. The PCA revealed the existence

of two leading independent dimensions of the variation in leaf traits.

Along the first axis, the high height was separated from the other two

heights, with significant differences among all three heights supported

by PERMANOVA (R2 = 0.22, P = 0.036, Table S2).

Among all leaf hydraulic traits, MWP had no correlation with

OP (Figures 2, 3). Among all leaf economic traits, LT was

significantly negatively related to LD and Gs, whereas a positive

relationship was found between Amass and PNUE. Contrary to these

significant correlations, neither MWP nor OP was uncorrelated

with Amass.
Leaf photosynthetic physiological
parameters under different
measurement methods

There were significant differences in most parameters of the leaf

photosynthetic physiological traits of P. chinensis between different

measurement methods, particularly Amass and LSP (Figure 4, Table

S4). As shown in Table S4, from the lower to the upper canopy, the

ex-situmeasurements resulted in a decrease by 53.63%, 27.86%, and

38.05% in Amass, and a decrease by 50.00%, 19.21%, and 27.90% in

LSP compared to the in-situ measurements, separately. We found

that the multivariate permutation test of the differences in leaf

functional traits at different canopy heights significantly changed

when using detached branches (R2 = 0.15, P=0.12, Figure S1, Table

S2), although different methods did not substantially alter the

patterns of functional coordination between Amass and leaf

hydraulic traits (Figure S2).
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Discussion

Changes in leaf functional traits
with height

Leaf photosynthetic physiological traits such as LCP and Rdmass

are key indicators reflecting plant adaptation to light (Givnish, 1988).

As canopy height increases, light availability also promoted. The

transmittance of diffuse light varied from 0.3% to 100%, and the light

intensity varied from 2.3W·m-2 to 208W·m-2 (Deng et al., 2020; Shen

et al., 2022). The leaves of P. chinensis exhibit low LCP and Rdmass in

the low canopy layer, which help to conserve carbon better than

leaves in the high canopy and to gain carbon better at lower light

levels (Koch et al., 2004). The trade-off between low LCP, respiration

rates and high maximum photosynthetic rates of the leaves of P.

chinensis in habitat shift from low canopy to high canopy reflected its

change in ecological adaptation, which are similar to the pattern of

the strategy of different sizes of trees from understory to canopy

(Deng et al., 2020). The leaf morphological and structural trait is also
Frontiers in Plant Science 06
likely to express the responses to the resource gradients (Wright et al.,

2004; Reich, 2014), P. chinensis increased the thickness of the palisade

tissue to enhance CO2 diffusion pathways and dissolution area (Zou

et al., 2022), promoting leaf light capture ability and the

concentration of photosynthesis-related enzymes (Jiao et al., 2022),

leading to LT increased and LD declined (Poorter et al., 2009). In

general, plants will invest more nitrogen for photosynthesis on strong

light conditions to increase photosynthetic efficiency. However, in

comparison with the high canopy, although the LSP and Nmass did

not change with vertical gradients, Amass and PNUE significantly

decreased. These results are perhaps because the light conditions have

reached at the status of saturation at the canopy layer, and the plants

may allocate more nitrogen for non-metabolic functions such as light

protection mechanisms (Roig-Oliver et al., 2021).

In addition to light condition, water resource along vertical

gradient could shape the ecological adaption strategies (Koch et al.,

2004; Pfautsch et al., 2018). Shen et al. (2022) have reported that the

relative humidity above ground was obviously decreased as a result of

increasing tree height in this plot, which ranged from 53.6% at 62m to
A B D

E F G

I

H

J K L

M N

C

FIGURE 1

Differences in leaf functional traits of adult-individual level of P. chinensis at 3 vertical heights as measured in-situ. Differences for each trait were
determined using the Tukey’s test, with a confidence level of 95%. High, high canopy; Middle, middle canopy; Low, lower canopy. LA, Leaf area (A);
LMA, leaf mass per area (B); LT, leaf thickness (C); LD, leaf density (D); Gs, stomatal conductance (E); LWC, leaf water content (F); Amass, maximum
net photosynthetic rate per unit mass (G); LSP, light saturation point (H); LCP, light compensation point (I); Rdmass, dark respiration rate per unit mass
(J); OP, leaf osmotic potential (K); MWP, midday leaf water potential (L); Nmass, nitrogen content per unit mass (M); PNUE, photosynthetic nitrogen
use efficiency (N). Error bars represent standard errors. Significant differences between each height (ANOVA, P< 0.05) are indicated by
different letters.
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99.9% at 2m. Hydraulic safety, as measured by leaf water potential

like MWP and OP, is a trait linked to the degree of endurance to

drought stress (Giles et al., 2021). We found that the leaves of P.

chinensis in the low canopy adjust to being higher by decreasing leaf

water potentials, resulting in lower MWP and OP in the high canopy

(Figure 1). The unimodal pattern for leaf hydraulic traits is also

consistent with the result from Sequoia sempervirens (Koch et al.,

2004) and Eucalyptus grandis (Pfautsch et al., 2018). This indicates

that large trees compensate for increasing water stress with height by

adjusting their structures (Koch et al., 2004; Stovall et al., 2019).

Moreover, leaves had a decrease in LA with tree height, but the LT

still increased with tree height, suggesting that intraspecific variations,

in addition to adaptations in light resources, might play an important

role in adapting to maintain hydraulic safety function with increasing

vertical gradients. Decreases in LMA with height were not found

among different vertical layers, which suggests the decreases in MWP

and OP with height were driven by adjustments to LT, LD and LA.

This capacity may allow P. chinensis to have more flexibility in

maintaining a trade-off between carbon balance and longevity, all of

which change with LMA.
Coordination of functional traits in P.
chinensis at the individual species level

Leaf economics and hydraulic traits are important in plant

growth and ecological adaptation. It has been proposed that they

covary along a single axis of trait variation (Reich, 2014), which was
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based on the theory that hydraulic traits are the foundation of a key

aspect of leaf economics spectrum (Wright et al., 2004). Although

traits within each kind were closely associated, in this study, we

found that leaf photosynthetic trait (Amass) and leaf hydraulic traits

(MWP, OP) were statistically decoupled. This indicated that key

leaf functional traits could not align themselves along a single axis of

variation of P. chinensis, as recently proposed for functional trait

variation across species (Reich, 2014). Instead, it suggests that

different kinds of leaf functional trait can vary independently

from each other even within an adult-individual level, which are

consistent with studies that have observed independence among leaf

functional traits across diverse sets of species and genotypes (Sack

et al., 2003; Li et al., 2015; Blackman et al., 2016).

We found that leaf hydraulic traits such as OP were unrelated to

net photosynthesis and stomatal conductance among P. chinensis

individuals. These results support emerging reports of weak

coordination between leaf hydraulic traits and leaf gas exchange

across some sets of angiosperms (Gleason et al., 2016), which

suggest that the driving factors linking hydraulic and gas

exchange have not yet been fully understood. Yin et al. (2018)

argued that adequate water availability may be a key factor leading

to decoupling between functional traits by comparing and analyzing

the relationship between the leaf economic and hydraulic traits in

tropical-subtropical regions and the Loess Plateau. In moist area,

plants tend to have more diverse and freer trait combinations to

acclimate finely divided environmental gradients. For example, the

Amass may vary strongly with light availability (Feng et al., 2022),

while the MWP changes with drought stress (Giles et al., 2021). We
FIGURE 2

PCA analysis results of 14 leaf functional traits at different vertical heights measured in-situ. Blue, gray, and orange represent the high, middle, and
lower vertical heights, respectively. The ellipses indicate a 95% confidence interval. High, high canopy; Middle, middle canopy; Low, lower canopy.
LA, Leaf area; LMA, leaf mass per area; LT, leaf thickness; LD, leaf density; Amass, maximum net photosynthetic rate per unit mass; LSP, light
saturation point; LCP, light compensation point; Rdmass, dark respiration rate per unit mass; Gs, stomatal conductance; LWC, leaf water content;
MWP, midday leaf water potential; OP, leaf osmotic potential; Nmass, nitrogen content per unit mass; PNUE, photosynthetic nitrogen use efficiency.
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also found that Amass was related to neither LMA nor Nmass,

indicating that photosynthetic capacity can vary among vertical

gradients without covariation in key facets of total leaf investment.

These results contrast previous research showed that positive

relationships between leaf economics traits among species with

structurally similar leaves (Wyka et al., 2012). At last, stomatal

conductance was intimately related to LT and LD, implying that the

leaf morphology and structure has a potential impact on the CO2-

water exchange process (Zwieniecki and Boyce, 2014).

Among leaf functional traits comparisons across species,

decoupling may be caused by the result of physical separation of

leaf structures. Li et al. (2015) proposed that leaves typically contain

two functional modules and represent two functional subsystems.

The two may be influenced by evolutionary divergence. The upper

palisade tissue is associated with leaf photosynthetic physiological

traits, while the lower spongy tissue is associated with leaf hydraulic

traits. Both of these may be influenced by evolutionary differences

and the processes within each sublayer may not necessarily change

simultaneously or at the same rate in different growth conditions.

Such explanations are relatively limited within individual species,

yet. Within species, independent functional trait dimensions may be

caused by differential expression of genotypes, which is very

attractive for understanding how multiple trait combinations are
Frontiers in Plant Science 08
generated. Blackman et al. (2016) utilized this perspective to explain

why the lack of significant correlation between vein density and

maximum stomatal conductance across genotypes even if the

functions on both sides of the leaf are the same. However, our

results provide insight that the change in ecological adaption caused

by microenvironment discrepancy on vertical gradients at

individual scale may also alter the relationship between leaf

structure, hydraulics, and gas exchange characteristics (Brodribb

et al., 2013), which allows trees to adjust functions more freely to

adapt to the particular set of fine-scale environment and thus

maintain overall canopy performance and enhances ecological

adaption in turn. It is apparent that these results are potentially

extended to different large trees species, which have implications for

understanding biogeochemical processes in global models.
Impact of different measurement methods
on the parameters of P. chinensis

Performing on detached branches is a common practice for gas-

exchange measurements, especially for extremely tall trees like P.

chinensis. These data allow us to further study the environmental

adaptability and plasticity of plants (Missik et al., 2020), and provide a
FIGURE 3

Results of the correlation tests between different leaf functional traits of P. chinensis measured in-situ. LA, Leaf area; LMA, leaf dry mass per area; LT,
leaf thickness; LD, leaf density; Amass, maximum net photosynthetic rate per unit mass; LSP, light saturation point; LCP, light compensation point;
Rdmass, dark respiration rate per unit mass; Gs, stomatal conductance; LWC, leaf water content; MWP, midday leaf water potential; OP, leaf osmotic
potential; Nmass, nitrogen content per unit mass; PNUE, photosynthetic nitrogen use efficiency. Significance is denoted by asterisks::*P< 0.05; **P<
0.01; and ***P< 0.001.
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basis for local or even global terrestrial ecological models (Walker

et al., 2014). However, the data indicate that the conclusions drawn

from this method tend to cause significant biases (Figure 4, Table S3),

which were also reported previously (Missik et al., 2020).

In Table S3, the data suggest that canopy position may also be the

possible driver affecting measurement parameters. Species with high

photosynthetic capacity also demonstrate high water-CO2 exchange

capacity to avoid photosynthetic constraints (Xu et al., 2021). Large

trees must transport water to higher heights to resist the effects of

gravity and path length related resistance (Liu et al., 2019), thus more

prone to hydraulic challenges such as xylem cavitation and embolism

(Bennett et al., 2015; Liu et al., 2021). The leaves of the upper canopy of

the P. chinensis have lower OP andMWP (Figure 1), indicating greater

cavitation vulnerability. This to some extent explains why there is a

greater deviation in the results ex-situ measured at the upper crown

layer compared to the lower layer of the tree crown (Figure 3). Even

though branches are immediately placed in water and recut after

pruning from the tree, it may still cause xylem embolism and hydraulic

conductivity (Santiago and Mulkey, 2003), which are closely related to

Gs (Hernandez-Santana et al., 2016). Given that the Gsmeasured in ex-

situ branches are greatly affected (Table S4), which in turn affects
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photosynthesis, it is not possible to accurately reflect the differences in

leaf ecological adaptability of different canopy heights. Besides, a

decrease in water transport capacity also affects the transport of

hormones and nutrients (Santiago and Mulkey, 2003), thereby

probably inhibiting photosynthesis (Nam et al., 2021).

Our results suggest that in trait-based ecological research,

especially when it comes to leaf photosynthetic physiological

traits, in-situ measurement should be used as much as possible.

When on-site conditions are limited, we should cut branches that

exceed the length of the vessel (Santiago and Mulkey, 2003).

Theoretically longer detached branches could decrease biases,

which is partly because that if the length of the excised branch is

much longer than xylem elements, the leaves on the cut longer

branches may be farther away from the xylem elements at the distal

end of the branches, which may be less affected by embolism

(Santiago and Mulkey, 2003; Missik et al., 2020). Unfortunately,

cutting long branches is constrained by the current protection and

management policies of P. chinensis. In addition, in light of the

varying degrees of resection bias between species caused by

differences in xylem (Hacke et al., 2001, Santiago and Mulkey,

2003; Missik et al., 2020), comparisons between species that rely on
A B

DC

FIGURE 4

Parameters of light response curves of leaves at different heights under different measurement methods. Amass, maximum net photosynthetic rate
per unit mass (A); LSP, light saturation point (B); LCP, light compensation point (C); Rdmass, dark respiration rate per unit mass (D); in-situ, in-situ
measurement; ex-situ, ex-situ measurement; High: high canopy; Middle, middle canopy; Low, lower canopy. The P-value represents the impact of
measurement methods on leaf functional traits of the overall tree canopy. The significance of different canopy layers are denoted by asterisks: *P<
0.05; **P< 0.01; ***P< 0.001; and ns, not significant.
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ex-situ branch data may be unreliable. For future research, we

suggest conducting comparative tests on branches that can be used

for in-situ measurement. Previous work has also shown that

compared to observation results collected in the field shortly after

branch cutting (Niinemets et al., 2005), pre-treatment of cut

branches under low light and constant temperature for 2-3 days

may reduce bias related to cutting, which is not allowed to observe

the gas exchange rate at the in-situ stress level.
Conclusion

Our study showed that Parashorea chinensis leaf functional

traits varied substantially with different canopy heights in the same

community. The individual variation could determine the

photosynthetic capacity for P. chinensis to survive in

environments with differential light and water availability and

contributes to the evidence of ecological adaptation observed

along those fine-scale environmental gradients. We also provided

evidence that key leaf functional traits can vary independently even

at the individual level, which may allow different resultant of

adaptive traits in response to changing environments. In addition,

the data also showed that different measurement results can

significantly influence the results of the data analysis associated

with measurement parameters, so differences in measurement

methods should be weighed when determining the functional

traits of P. chinensis. In summary, understanding individual

variations in P. chinensis can contribute considerably to deeply

understood ecological adaptation strategies of canopy species under

the background of climate change.
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