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Widespread adoption of machine-picked cotton in China, the impurity content

of seed cotton has increased significantly. This impurity content holds direct

implications for the valuation of seed cotton and exerts a consequential influence

on the ensuing quality of processed lint and textiles. Presently, the primary

approach for assessing impurity content in seed cotton primarily depends on

semi-automated testing instruments, exhibiting suboptimal detection efficiency

and not well-suited for the impurity detection requirements during the purchase

of seed cotton. To address this challenge, this study introduces a seed cotton

near-infrared spectral (NIRS) data acquisition system, facilitating the rapid

collection of seed cotton spectral data. Three pretreatment algorithms, namely

SG (Savitzky-Golay convolutional smoothing), SNV (Standard Normal Variate

Transformation), and Normalization, were applied to preprocess the seed

cotton spectral data. Cotton-Net, a one-dimensional convolutional neural

network aligned with the distinctive characteristics of the seed cotton spectral

data, was developed in order to improve the prediction accuracy of seed cotton

impurity content. Ablation experiments were performed, utilizing SELU, ReLU,

and Sigmoid functions as activation functions. The experimental outcomes

revealed that after normalization, employing SELU as the activation function

led to the optimal performance of Cotton-Net, displaying a correlation

coefficient of 0.9063 and an RMSE (Root Mean Square Error) of 0.0546. In the

context of machine learning modeling, the LSSVM model, developed after

Normalization and Random Frog algorithm processing, demonstrated superior

performance, achieving a correlation coefficient of 0.8662 and an RMSE of

0.0622. In comparison, the correlation coefficient of Cotton-Net increased by

4.01%. This approach holds significant potential to underpin the subsequent

development of rapid detection instruments targeting seed cotton impurities.
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1 Introduction

China is a major cotton-producing nation, with seed cotton

production exceeding 16 million tons over the past five years (Lu

et al., 2022). Notably, the Xinjiang region commands approximately

85% of the nation’s cotton production, and within this landscape,

the prevalence of mechanically harvested cotton has surged to over

80% (Zhang et al., 2022). The level of impurity in machine-picked

seed cotton significantly exceeds that in hand-picked seed cotton

(Singh et al., 2022). Generally, the impurity content in machine-

picked seed cotton ranges from 8 to 16%, in contrast to the

approximate 3% observed in hand-picked seed cotton. The presence

of impurities in seed cotton has far-reaching consequences, affecting

not only the processing of lint cotton but also the final quality of

downstream textile products (Zhou et al., 2016). Given the widespread

cultivation of machine-picked cotton, identifying and mitigating seed

cotton impurities has become increasingly important. Furthermore,

the impurity content present in seed cotton bears a direct correlation

with the market value of the cotton. Generally, a lower impurity

content corresponds to a higher trading price. At present, the

prevailing method for assessing seed cotton impurity content

involves the utilization of semi-automated testing instruments.

Nonetheless, these instruments exhibit unwieldiness, sluggishness,

and consume considerable time, with a single cotton sample

necessitating 20 to 30 minutes for assessment. Evidently, these

instruments are ill-suited for on-site impurity content detection at

seed cottonpurchase locations.Consequently, a pressingneed emerges

for swift seed cotton impurity content detection technologies within

the contemporary cotton production and processing paradigm. Such

advancements hold profound significance inpropellingChina’s cotton

industry toward intelligent and automated growth, while concurrently

safeguarding the interests of cotton farmers.

Seed cotton impurities are mostly composed of plant-based

impurities and foreign fibers. Notably, the proportion of foreign

fibers within these impurities is significantly lower than that of

plant-based impurities, thus exerting a comparatively lesser

influence on the overall impurity content of seed cotton. In the

current landscape, a greater concentration of research endeavors are

directed towards the detection of foreign fibers within cotton. Various

technical methods, including machine vision (Zhang et al., 2011;

Zhang and Li, 2014), hyperspectral imaging (Liu et al., 2022), and

near-infrared spectroscopy (Du et al., 2023), have been harnessed to

detect foreign fibers present in both lint and seed cotton samples.

Researchers have also delved into studies focusing on the identification

of non-foreign fiber impurities, specifically plant-based impurities,

within both seed and lint cotton. These investigations have

predominantly harnessed technical tools such as machine vision and

spectroscopy techniques. Xu et al. (2023) employed machine vision in

conjunction with the lightweight YOLOV4 algorithm to achieve

impurity detection in lint cotton, yielding an impressive detection

accuracy of 98.00%. Zhang et al. (2021; Zhang et al., 2022) harnessed

image processing and the YOLOV4 algorithm to discern impurities

within seed cotton, subsequently estimating impurity content through

pixel area calculations. This approach yielded a noteworthy prediction

accuracyof approximately0.8 for impurity content.Chang et al. (2021)
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leveraged spectral data alongside machine learning algorithms to

classify impurities in seed cotton, culminating in the collection of

hyperspectral information from the seed cotton samples. This

concerted effort yielded an impressive identification accuracy of

83.40%. Fortier et al. (2011) employed Fourier transform near-

infrared spectroscopy to proficiently classify and identify impurities

within lint cotton, achieving a remarkable identification accuracy of

97%. Liu and Foulk (2013) applied visible near-infrared spectroscopy

to effectively classify leaf content in lint cotton, demonstrating a high

classification accuracy of 95% within the spectral band spanning 1105

~ 1700 nm. Gaitán-Jurado et al. (2008) employed near-infrared

spectroscopy to ascertain both the moisture and impurity content of

seed cotton. Notably, the moisture content displayed a standard

deviation of 0.44%, encompassing a range of 5.38% to 14.96%.

Furthermore, the classification of seed cotton samples based on

impurity content achieved an accuracy rate of 80%.

NIRS is a technique that achieves precise and rapid determination

of the content of one ormore constituents in a target substance. This is

accomplished by illuminating a sampleunder studywithnear-infrared

light and subsequently analyzing the pertinent information inherent in

the substance’s transmission or reflection of the light (Prananto et al.,

2021). Zumba and Rogers (2016) utilized near-infrared spectroscopy

to quantify themacronutrient value in cotton fibers. Rodgers and Beck

(2009) and Yang et al. (2022) conducted research that focused on the

utilization of NIRS for detecting cotton content within fabrics. Li et al.

(2020) employedNIRS for the discrimination between plant-dyed and

chemically dyed cotton. Suarez et al. (2017) conducted research

focused on the detection of herbicide levels in cotton utilizing

visible-near infrared spectral data. Du et al. (2022) employed NIRS

in conjunction with convolutional neural networks to successfully

discern used textiles.

Evidently, a considerable portion of the preceding

investigations pertaining to impurity detection in both seed and

lint cotton predominantly adopt a qualitative approach. Specifically,

these studies primarily revolve around the identification of

impurities, neglecting the quantification of impurity content

within the seed cotton samples. Notably, Zhang et al. (2021,

Zhang et al., 2022) stand out as the sole contributors who

employed a visual method for determining the impurity content

of seed cotton. Nevertheless, it remains apparent that there exists

potential for enhancing the precision of the detection outcomes. It is

feasible to use NIRS for the evaluation of cotton quality and the

detection of impurities. In this study, the quantification of impurity

content in seed cotton is accomplished through the establishment of

a spectral data acquisition system tailored for seed cotton

impurities. The employed techniques encompass Cotton-Net and

machine learning.
2 Methods and materials

2.1 Sample preparation

Forty-six kilogram of machine-picked seed cotton from Kuitun,

Xinjiang, was prepared for experimentation. A total of 230 test
frontiersin.org
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samples were crafted, each comprising 200 g of machine-picked

seed cotton. The samples were numbered for accurate identification.

The precision and consistency of the weighing process were ensured

by employing an electronic balance manufactured by HZ Electronic

Technology Company. The electronic balance model used is HZY-

B, with a minimum testing accuracy of 0.01g. Subsequent to the

sample preparation, the seed cotton specimens were subjected to a

controlled environment within a constant temperature and

humidity chamber. The specimens were exposed to a stable

temperature of 20 ± 1° and relative humidity of 60 ± 5%RH for a

duration of 24 hours.

Seed cotton impurity quantification is conducted through the

subsequent methodology: Initial separation involves segregating

larger impurities from the cotton fibers via a sawtooth cotton gin.

The resulting larger impurities are precisely weighed using an

electronic balance. Furthermore, the Y101 impurity analyzer

(manufactured by Shanghai Yuanqi Inspection Instrument

Company, the roller has a diameter of 57.15mm.) is deployed to

address the evaluation of smaller impurities during the ginning

process of seed cotton. This specialized equipment facilitates the

separation and subsequent weighing of minute impurities. By

collectively considering the mass data garnered from both the

larger and smaller impurities, a comprehensive assessment of the

seed cotton’s impurity content is ascertained.
2.2 Spectral data acquisition system

The seed cotton spectral data acquisition system (Figure 1)

comprises a box, a computer, and a JDSU near-infrared

spectrometer (model: JDSU MicroNIR) with a wavelength range

spanning 950~1650 nm. This spectrometer features a built-in

double-integrated vacuum tungsten lamp, offering a wavelength

range for vacuum tungsten lamps from 200 nm to 2500 nm. The

box is constructed from stainless steel metal material. The computer

is configured with the MicroNIR Pro software system, tailored

specifically for managing and analyzing spectral data. This software

system serves as a repository for storing the acquired spectral data

of seed cotton. It plays a pivotal role in safeguarding both raw and

processed spectral data. When gathering spectral data from seed

cotton, every sample was uniformly distributed across the base of

the container. Spectral measurements were taken at five distinct

points on the seed cotton (depicted as red circular zones in Figure 1)
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utilizing the JDSU near-infrared spectrometer. This approach

enabled the acquisition of five individual sets of spectral data for

each sample, subsequently allowing the computation of the mean

value derived from these five datasets. The resulting average value

was then utilized as the representative spectral data for each

individual sample.
2.3 Dataset preparation

The appropriateness of sample set division significantly

influences the subsequent reliability of constructed machine

learning or deep learning models. An imbalanced distribution

between training and test sets can significantly impact the

reliability of modeling outcomes. If the training set comprises an

excessive proportion of samples while the test set remains

disproportionately small, the representation of test set samples

becomes inadequate, thereby diminishing the credibility of

modeling results obtained from the test set. Conversely, an

inadequate representation of training set samples can lead to an

underfitting of the model. Therefore, achieving a balanced

allocation of samples between the training and test sets is pivotal

in ensuring dependable and accurate modeling outcomes. The

SPXY (Sample Set Partitioning Based on Joint X-Y Distance)

algorithm operates by segregating samples into these sets through

a rigorous assessment of their Euclidean distances within both the x

and y dimensions (Chen et al., 2021). Hence, within the scope of

this study, a total of 230 seed cotton spectral data points were

meticulously partitioned into distinct training and test sets through

the application of the SPXY algorithm. Precisely, the training set

encompasses 180 seed cotton samples, while the test set consists of

50 seed cotton samples.
2.4 Pretreatment of spectral data

During the experimental process, the considerable interstices

among the seed cotton inherently contribute to light scattering.

Additionally, variations in temperature and the presence of light

scattering, both inherent to the experimental conditions, contribute

to the introduction of noise into the seed cotton spectral data. The

existence of such noise inherently undermines the development of

subsequent spectral analysis models (Mishra and Lohumi, 2021). To
ComputerBox

JDSU Near-Infrared 

Spectrometer

Seed cotton

FIGURE 1

Spectral data acquisition system.
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mitigate the impact of this noise, this study employed the utilization

of Normalization, Savitzky-Golay convolutional smoothing (SG),

and Standard Normal Variate Transformation (SNV) techniques.

These methods were employed to effectively counteract the

introduced noise and thereby enhance the reliability of the

subsequent analysis. The objective of normalization is to achieve

an isometric scaling of eigenvalues (Wang et al., 2020). This is

accomplished by subtracting the minimum value of the sample data

from each data point and subsequently dividing it by the range

between the maximum and minimum values of the sample. This

process effectively maps all data points into the interval (0, 1). The

normalization formula is denoted as Equation 1 and is expressed as

follows.

x1 =
x�min (x)

max (x)�min (x)
(1)

The fundamental principle underlying the SG algorithm entails

the initial establishment of a window size capable of

accommodating a specific quantity of data points. This window

size facilitates the determination of the central data point within the

window. Subsequently, all data points encompassed by the window

are subjected to polynomial fitting, a process adept at retaining

pertinent spectral information while concurrently effecting

smoothing. This methodology effectively balances the

preservation of essential spectral details with the achievement of a

smoothing effect (Pokhrel et al., 2023). The SNV algorithm serves

the purpose of normalizing an individual spectrum in order to

mitigate the influence of scattering arising from particles situated on

the surface of the seed cotton (Qi et al., 2022). The SNV algorithm is

executed using the following formula, referred to as Equation 2.

y =
xi − �xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

on
i=1(xi − �x)2

n−1

r (2)

This formula y represents the outcome of a specific spectrum

subsequent to undergoing SNV processing. xi signifies the value of

the ith data point within this spectrum. �x represents the mean value

derived from all the data points within the given spectrum, n

represents the total count of wavelength points.
2.5 Data processing methods based on
machine learning

2.5.1 Feature selection for spectral data
The acquired seed cotton near-infrared spectral data in this

study encompass a dataset spanning 125 dimensions. This

voluminous dataset, in conjunction with a limited sample size of

only 230, presents a susceptibility to overfitting when employing

conventional machine learning algorithms that do not integrate

dimensionality reduction techniques (Xiao et al., 2022). To

circumvent this challenge, the study employed two distinct

methodologies, namely the successive projections algorithm (SPA)

and the Random Frog (RF) algorithm. These techniques were

employed to identify feature wavelengths within the seed cotton
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spectral data. This selection process aimed to identify a subset of

wavelength points that could effectively and accurately predict the

impurity content of the seed cotton.

The SPA is a forward variable selection algorithm that initiates

with a specific wavelength variable. In each iteration, it computes

the projection of this variable onto the remaining wavelengths. This

cyclic process facilitates the reduction of covariance between

variables, resulting in the elimination of redundant information

while retaining valuable insights. The outcome is an enhancement

in both the predictive accuracy and efficiency of the model (Ning

et al., 2022). Following the application of the SPA algorithm,

irrelevant information is effectively pruned, thereby enabling the

algorithm to identify the feature wavelengths. Within the context of

the RF algorithm, the iterative computational procedure unfolds

through three primary stages for a spectral variable X. Here, the n

rows correspond to the sample count, the p columns denote the

variables, and the corresponding target matrix Y is composed of

n×1 variables (Zhang et al., 2023). The sequence of steps is

as follows:

Random subset generation: An initial subset V0 comprising Q

variables is generated randomly.

Candidate subset proposition: A subset V* of candidate

variables, encompassing Q* variables, is proposed based on V0. V*

is accepted as V1 with a certain probability. Subsequently, V0 is

replaced by V1 and the process iterates.

Variable importance evaluation: The algorithm calculates the

probability value for each variable selection, thereby serving as an

indicator of the assessment of variable importance.

2.5.2 Modeling methods
This study employed partial least squares regression (PLSR),

support vector regression (SVR), and least squares support vector

machine (LSSVM) methodologies to construct regression

prediction models aimed at forecasting the impurity content

within seed cotton.

PLSR is a methodology employed to elucidate the linear

interplay between input variables and output variables. Its

fundamental process encompasses the subsequent steps (Shetty

and Gislum, 2011), as illustrated in Figure 2:
1. Decomposition of relationships: The intricate connection

between multiple input variables and a singular output

variable is divided into numerous subproblems. Each

subproblem corresponds to the relationship between an

individual input variable and the output variable.

2. Characterization via Least Squares: For each subproblem,

the association between input variables and the dependent

variable is established through the least squares method,

enabling a refined understanding of the interaction.

3. Variable significance evaluation: The contribution of each

input variable to the output variable is assessed, guiding the

decision to retain or eliminate variables based on their

statistical significance. Non-significant input variables are

progressively removed through an iterative process,

resulting in a streamlined model.
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Fron
4. Prediction and model evaluation: Utilizing the simplified

model, predictions for output variable values are generated.

The model’s performance is subsequently assessed through

the evaluation of prediction errors.
The fundamental tenet of SVR revolves around minimizing the

discrepancy between predicted and actual outcomes through the

identification of an optimal hyperplane, facilitating the mapping of

input data to output data. This process encompasses the

subsequent stages:
a. The input data is projected into a high-dimensional

feature space.

b. A hyperplane is constructed within this feature space,

serving as the foundation for making predictions and

facilitating the regression task.

c. The process involves the identification of support vectors—

data points lying closest to the hyperplane within the

feature space. These vectors are pivotal in determining

the position of the hyperplane.

d. The optimization of hyperplane parameters is achieved by

minimizing a designated objective function. The

minimization objective function is as Equation 3.
min
1
2
∥w ∥2 +Co

n

i=1
max (0, yi − wTFi − b) (3)

This formula wsignifies the normal vector of the hyperplane,

while b represents the intercept. Fi corresponds to the “ith” sample

point within the input space, and yi denotes the output value range

associated with that particular sample point. The notation

encapsulates the range of possible values for the output value at

the said sample point. The parameter C assumes the role of a
tiers in Plant Science 05
regularization parameter, responsible for governing the extent of

variation exhibited by the slack variable xi.

The core principle of LSSVM shares similarities with SVR,

involving the projection of input data into a higher-dimensional

space and the determination of an optimal hyperplane to facilitate

output data prediction. However, a notable distinction lies in their

respective error fitting mechanisms. In LSSVM, error fitting is

executed through the least squares method, while SVR achieves

error fitting by leveraging the support vectors. This difference

underscores the unique approach that LSSVM employs in

aligning the model with the training data, contributing to its

effectiveness in predicting output values within the context of

seed cotton impurity content analysis (Luo et al., 2023).
2.6 Cotton-Net

Convolutional neural networks possess robust feature

extraction capabilities and have witnessed successful applications

within spectroscopy in recent years (Yuan et al., 2022). A case in

point is the work by Yang et al. (2021), where a convolutional neural

network in conjunction with near-infrared spectroscopy was

effectively employed to discern the source of tea. This study

involved a substantial dataset of 480 samples. Similarly, Li et al.

(2023) harnessed the power of CNNs coupled with spectroscopy to

identify the provenance of duck eggs, utilizing a dataset

encompassing 261 samples. Furthermore, Hu et al. (2023) applied

a one-dimensional convolutional neural network in conjunction

with spectroscopy to detect pesticide residues on the Hami melon

surface. This endeavor incorporated a dataset containing 200

samples. Incorporating 230 seed cotton samples into a dataset,

the application of convolutional neural networks arises as a viable

method for the automated extraction of seed cotton-specific spectral

features. The unique attributes of the seed cotton spectral data,

encompassing a dimensionality of 1×125, form the foundation of

this study. Through iterative refinements, the construction of a

convolutional neural network architecture referred to as “Cotton-

Net”, was achieved as depicted in Figure 3.

As illustrated in Figure 3, the architecture of Cotton-Net

comprises a total of 6 layers, incorporating 3 one-dimensional

convolutional layers, 1 average pooling layer, and 1 fully

connected layer. The initial convolutional layer is equipped with

16 convolution kernels, the second layer integrates 64 kernels, and

the third employs 48 kernels. This design is strategically aimed at

extracting the salient features inherent to seed cotton spectral data.

The introduction of an average pooling layer serves the purpose of

streamlining network computations while also mitigating the risk of

model overfitting. Lastly, the fully connected layer contributes to the

ultimate prediction of seed cotton impurity content, with a single

node dedicated to this prediction outcome. This comprehensive

architectural arrangement within Cotton-Net facilitates the

intricate analysis of seed cotton spectral data, resulting in

precise predictions.

The loss function serves as a metric for quantifying the disparity

between the model’s predictions and actual values, thereby driving

the continuous refinement of the network’s parameters. The
Decompose multiple input variables into distinct 
subproblems.

For each subproblem, establish a correlation 
between the input variables and the dependent 

variable using the least squares method.

Eliminate input variables that do not significantly 
contribute to the characterization of the output 

variable.

Predict the output variables utilizing the retained 
input variables.

FIGURE 2

PLSR.
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selection of an appropriate loss function holds paramount

importance, as it profoundly influences both model convergence

and performance outcomes. Within the context of this

investigation, the chosen loss function for Cotton-Net is the mean

squared logarithmic error. The formula for the realization of the

mean squared logarithmic error is denoted as Equation 4.

MSLE = log (
o
n

i=1
(ŷ − y)2

n
) (4)

This formula, n represents the total count of samples under

consideration. y corresponds to the actual impurity content value of

the seed cotton sample, while ŷ symbolizes the network’s predicted

impurity content value for the same seed cotton sample.
2.7 Performance evaluation of models

Frequently employed metrics for assessing the efficacy of

regression models encompass the correlation coefficient and root

mean square error. Typically, higher values approaching 1 for the

correlation coefficient, alongside a smaller root mean square error

nearing 0, indicate enhanced predictive prowess and model stability

(Fan et al., 2020). These metrics collectively provide insights into

the model’s capacity to accurately capture relationships and deliver

reliable predictions within the regression context. Their formulas

are as follows: Equations 5 and 6.
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R =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o
n

i=1
(ŷ i − yi)

2

s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o
n

i=1
(ŷ i − ymean)

2

s (5)

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
no

n

i=1
(ŷ i − yi)

2

s
(6)

This formula, n denotes the count of samples within the dataset.

ŷ i signifies the predicted value for the “ith” sample, yi represents the

actual value of the same “ith” sample. Additionally, ymean stands for

the mean value computed from the actual values across all samples

encompassed by the dataset.
3 Results and discussion

3.1 Model result analysis based on
machine learning

3.1.1 Sensitive band analysis of seed cotton
Prior to the selection of seed cotton’s spectral feature

wavelength points, pretreatment procedures involving SG, SNV,

and normalization were conducted on the spectral data. As

illustrated in Figure 4, a comparison is presented between the raw

seed cotton spectral data and the data that underwent pretreatment

using the three distinct methods. Notably, the distributions of seed

cotton spectral data remain consistent with the raw dataset after

both normalization and SG pretreatment. However, a slight

alteration in data distribution is observed following SNV

pretreatment. In contrast to the raw data, the reflectance of seed

cotton spectral data after normalization pretreatment exhibited

normalization within the range of 0.05 to 0.11. The SG

pretreatment resulted in a comparatively smoother spectral

profile, and the SNV pretreatment led to a normalization of

spectral data within the range of -2 to 2.

The SPA and RF algorithms were employed to select feature

wavelengths from the pretreated seed cotton spectral data. As

depicted in Figure 5, the outcomes of the feature wavelength

selection performed by the SPA algorithm are presented (In this

study, Normalization pretreatment is taken as an example to

elucidate the process of feature wavelength selection using SPA).

The fundamental principle governing the SPA algorithm for feature

wavelength selection in seed cotton involves minimizing the root

mean square error to identify the pivotal point with the smallest

such error. This process effectively retains pertinent information

and discards redundancy leading up to the pivotal point. As evident

in Figure 5A, the SPA algorithm has discerningly chosen 15 feature

wavelength points capable of accurately reflecting the impurity

content within the seed cotton samples. Figure 5B illustrates the

distribution of feature wavelength points for seed cotton, as selected

through the SPA algorithm. The selection of feature wavelength

points following SG and SNV pretreatment mirrored that of

Normalization. Following SG pretreatment, the final number of
Input layer

Convolutional layer 1: 
Conv1D Number of kernels: 16

Convolutional layer 2: 
Conv1D Number of kernels: 64

Convolutional layer 3: 
Conv1D Number of kernels: 48

Average pooling layer

Fully connected layer nodes: 1

FIGURE 3

Cotton-Net.
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selected feature wavelength points is 17, while after SNV

preprocessing, it is 34.

The RF algorithm operates iteratively, systematically reducing

variables and assigning a probability score to each variable’s

potential for selection, ultimately achieving the task of feature

wavelength selection for seed cotton (Once more, the seed cotton

data subjected toNormalization pretreatment is employed to illustrate

the procedure offeaturewavelength selection using theRF algorithm.).

In this research, through meticulous experimentation, parameters

were optimized: iterations were set at 1000, the initial data subset

comprised 5 variables, and the chosen data preprocessing approach
Frontiers in Plant Science 07
was “center”. These parameters collectively contributed to the effective

executionof theRFalgorithm in identifyingkey spectral characteristics

pertinent to seed cotton analysis. The outcomes of the selected feature

wavelength points for seed cotton are visually presented in Figure 6.

Similarly, the reuse RF algorithm selects 8 feature wavelength points

after SG preprocessing and 9 after SNV pretreatment.

3.1.2 Regression prediction based on PLSR,
SVR, LSSVM

Upon completing the selection of feature wavelengths within the

seed cotton spectral data, separate models for predicting seed cotton

impurity content were constructed using PLSR, SVR, and LSSVM

methodologies. In this research, the PLSRmodel employed 4 principal

components, while the SVR and LSSVM models adopted the radial

basis function. Themodeling outcomes of PLSR, SVR, and LSSVMare

illustrated inTables 1–3, respectively. For the PLSRmodel, the optimal

performance was attained by employing Normalization pretreatment

followed by feature wavelength point selection through SPA. This

configuration yielded a test set correlation coefficient of 0.8001 and an

RMSE of 0.0738. Similarly, in the case of the SVR model, the most

favorable results were achieved by applying Normalization

preprocessing in conjunction with SPA for feature wavelength point

selection. This configuration yielded the best performance metrics,
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showcasing a test set correlation coefficient of 0.7512 and an RMSE of

0.0766. Regarding the LSSVMmodel, the most superior performance

was achieved by employing Normalization preprocessing followed by

the RF algorithm for feature wavelength point selection. This specific

configuration showcased the optimalperformancemetrics, including a

test set correlation coefficient of 0.8662 and an RMSE of 0.0622.
3.2 Model result analysis based on
Cotton-Net

3.2.1 Experimental configuration
The hardware and software framework employed for Cotton-

Net training comprised an Intel i9-12900K CPU, NVIDIA GeForce

RTX 3090Ti GPU, Pytorch 1.12 as the deep learning framework,

and CUDA 11.7 as the computing platform. The procedure of

training Cotton-Net involves refining the model’s prediction of seed
Frontiers in Plant Science 08
cotton impurity content to progressively align with the actual

values. In this research, the network’s parameters were optimized

through the utilization of the Adam optimizer, initialized with a

learning rate of 0.001. The training process was executed for a

maximum of 200 epochs, with a batchsize set at 8.

3.2.2 Ablation experiments based on different
activation functions

The selection of an appropriate activation function within

convolutional neural networks significantly impacts network

performance. Opting for a well-suited activation function not

only facilitates swift convergence of the network but also

enhances model prediction performance. In this research, we

explored the implementation of Sigmoid, ReLU, and SELU as

potential activation functions for Cotton-Net. The input for

Cotton-Net comprised seed cotton full-spectrum data subjected to

SG, Normalization, and SNV pretreatment. Figure 7 illustrates the
TABLE 2 The results of SVR.

Pre-Processing VN RC RMSEC RP RMSEP

SG + SPA 17 0.8216 0.1674 0.6877 0.0932

SG + RF 8 0.8649 0.1243 0.7023 0.0853

Normalization + RF 10 0.8735 0.1215 0.7286 0.0833

Normalization + SPA 15 0.8864 0.1156 0.7512 0.0766

SNV + RF 9 0.7598 0.1594 0.6866 0.0869

SNV + SPA 34 0.9384 0.0853 0.7220 0.0846
RC, Correlation coefficient of the training set; RMSEC, RMSE of the training set; RP, Correlation coefficient of the test set; RMSEP, RMSE of the test set; VN, number of variables.
TABLE 1 The results of PLSR.

Pre-Processing VN RC RMSEC RP RMSEP

SG + SPA 17 0.9172 0.0932 0.7191 0.0885

SG + RF 8 0.8845 0.1091 0.7023 0.0944

Normalization + RF 10 0.8931 0.1054 0.7698 0.0787

Normalization + SPA 15 0.9154 0.0946 0.8001 0.0738

SNV + RF 9 0.5266 0.1985 0.6584 0.0955

SNV + SPA 34 0.7733 0.1483 0.5941 0.0983
RC, Correlation coefficient of the training set; RMSEC, RMSE of the training set; RP, Correlation coefficient of the test set; RMSEP, RMSE of the test set; VN, number of variables.
TABLE 3 The results of LSSVM.

Pre-Processing VN RC RMSEC RP RMSEP

SG + SPA 17 0.9548 0.0693 0.8577 0.0684

SG + RF 8 0.9690 0.0586 0.7972 0.0791

Normalization + RF 10 0.9571 0.0685 0.8662 0.0622

Normalization + SPA 15 0.9667 0.0638 0.8543 0.0696

SNV + RF 9 0.8575 0.1304 0.7094 0.0861

SNV + SPA 34 0.9472 0.0712 0.8578 0.0683
RC, Correlation coefficient of the training set; RMSEC, RMSE of the training set; RP, Correlation coefficient of the test set; RMSEP, RMSE of the test set; VN, number of variables.
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progression of loss curves during the training of Cotton-Net with

three distinct activation functions (utilizing Normalization as the

pretreatment method). Notably, it becomes apparent that the

network employing the SELU activation function demonstrated

the swiftest convergence rate, while the network adopting the

Sigmoid activation function exhibited a more gradual

convergence. Ultimately, all three networks attained and

maintained low loss values, underscoring the model’s efficacy in

predicting seed cotton impurity content.

Ablation experiments were conducted employing three distinct

activation functions on seed cotton spectral data following different

preprocessing methodologies. The results of these experiments are

detailed in Table 4. It is evident that when utilizing SELU as the

activation function in Cotton-Net, higher correlation coefficients

between predicted and actual impurity content values for seed

cotton samples in the test set were achieved compared to

employing ReLU and Sigmoid as the activation functions.

Notably, among these experiments, the Cotton-Net with

Normalization pretreatment exhibited the most exceptional

predictive performance. It achieved a noteworthy correlation
Frontiers in Plant Science 09
coefficient of 0.9063 and an RMSE of 0.0546 for predicting test

set samples. Furthermore, the correlation coefficients for the

Cotton-Net’s predictions of the test set samples consistently

exceeded 0.8. This observation suggests that the overall predictive

performance of Cotton-Net, in terms of seed cotton impurity

content, surpasses that of PLSR. Thus, the predictive capabilities

of Cotton-Net prove to be superior compared to those of PLSR,

SVR, and LSSVM.
3.3 Comparison of optimal models

In this study, both machine learning techniques and Cotton-

Net were employed for predicting the impurity content in machine-

picked seed cotton. Among the machine learning models, the

LSSVM model constructed following Normalization + RF

processing demonstrated the highest performance in predicting

the impurity content of seed cotton samples within the test set.

This model achieved an impressive correlation coefficient of 0.8662

and an RMSE of 0.0622, as depicted in Figure 8. On the other hand,

the most optimal performance achieved by Cotton-Net for

predicting the impurity content of seed cotton samples in the test

set was attained by the model constructed after Normalization

preprocessing, with SELU used as the activation function. Notably,

this model showcased a remarkable correlation coefficient of 0.9063

and an RMSE of 0.0546, as presented in Figure 9. The comparison

reveals that Cotton-Net surpasses machine learning in predicting

the impurity content of seed cotton.
4 Discussion

To expedite the impurity content detection in machine-picked

seed cotton, this study established a seed cotton spectral data

acquisition system using near-infrared spectroscopy. Leveraging

the characteristics of seed cotton spectral data, a one-dimensional

convolutional neural network, known as Cotton-Net, was

constructed for impurity content prediction in machine-picked

seed cotton. Various researchers have undertaken investigations

into cotton impurity detection. For instance, Xu et al. (2023)
FIGURE 7

Loss curves with different activation functions.
TABLE 4 Ablation experiment results.

Model RC RMSEC RP RMSEP

SG + SELU 0.9216 0.0928 0.8236 0.0724

SG + ReLU 0.9158 0.0944 0.8017 0.0735

SG + Sigmoid 0.9237 0.0913 0.8124 0.0731

Normalization + SELU 0.9683 0.0592 0.9063 0.0546

Normalization + ReLU 0.9582 0.0657 0.8561 0.0679

Normalization + Sigmoid 0.9534 0.0699 0.8487 0.0713

SNV + SELU 0.9579 0.0658 0.8642 0.0668

SNV + ReLU 0.9325 0.0874 0.8157 0.0722

SNV + Sigmoid 0.9514 0.0701 0.8437 0.0716
frontiersin.org

https://doi.org/10.3389/fpls.2024.1334961
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Li et al. 10.3389/fpls.2024.1334961
employed machine vision to classify impurities in lint cotton,

achieving an accuracy of 98%. In contrast, the task of seed cotton

impurity detection undertaken in this study posed notably greater

challenges than lint cotton. Nevertheless, successful prediction of

seed cotton impurity content was attained. Similarly, Chang et al.

(2021) harnessed hyperspectral technology to classify impurities in

seed cotton, yielding a classification accuracy of 83.40%, yet the

prediction of impurity content was not realized. Zhang et al. (2021;

Zhang et al., 2022) utilized machine vision to predict impurity

content in seed cotton, albeit achieving a low prediction accuracy of

0.8. In comparison, the present study accomplished a higher level of

impurity detection. Hence, the approach employed in this study

proves to be more suitable for seed cotton impurity detection in

contrast to the aforementioned investigations.
5 Conclusions

The following conclusions can be inferred:
Fron
1. The experimental outcomes revealed that utilizing SELU as

the activation function enhances both the convergence

speed and the model performance of Cotton-Net. Among

these experiments, the Cotton-Net model after

Normalization preprocessing exhibited the most favorable
tiers in Plant Science 10
predictive performance, showcasing a correlation

coefficient of 0.9063 and an RMSE of 0.0546.

2. Adopting machine learning algorithms, the LSSVM model

built after Normalization pretreatment and employing the

RF algorithm for feature wavelength select ion

demonstrated the optimal performance, with a correlation

coefficient of 0.8662 and an RMSE of 0.0622.

Comparatively, the performance of Cotton-Net exhibited

significant improvement.
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