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Image recognition-based petal
arrangement estimation
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1Graduate School of Informatics, Osaka Metropolitan University, Sakai, Japan, 2Graduate School of
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Flowers exhibit morphological diversity in the number and positional

arrangement of their floral organs, such as petals. The petal arrangements of

blooming flowers are represented by the overlap position relation between

neighboring petals, an indicator of the floral developmental process; however,

only specialists are capable of the petal arrangement identification. Therefore, we

propose a method to support the estimation of the arrangement of the perianth

organs, including petals and tepals, using image recognition techniques. The

problem for realizing the method is that it is not possible to prepare a large

number of image datasets: we cannot apply the latest machine learning based

image processing methods, which require a large number of images. Therefore,

we describe the tepal arrangement as a sequence of interior-exterior patterns of

tepal overlap in the image, and estimate the tepal arrangement by matching the

pattern with the known patterns. We also use methods that require less or no

training data to implement themethod: the fine-tuned YOLO v5model for flower

detection, GrubCut for flower segmentation, the Harris corner detector for tepal

overlap detection, MAML-based interior-exterior estimation, and circular

permutation matching for tepal arrangement estimation. Experimental results

showed good accuracy when flower detection, segmentation, overlap location

estimation, interior-exterior estimation, and circle permutation matching-based

tepal arrangement estimation were evaluated independently. However, the

accuracy decreased when they were integrated. Therefore, we developed a

user interface for manual correction of the position of overlap estimation and

interior-exterior pattern estimation, which ensures the quality of tepal

arrangement estimation.
KEYWORDS

plant measurement, tepal arrangement, segmentation, meta-learning, circular
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1 Introduction

Flowers are of highly diverse shapes in their body plants, for

instance, in the number of perianth organs such as petals and sepals,

and in the symmetry of the arrangements of the organs (Endress,

1999; Tucker, 1999; Smyth, 2018; Spencer and Kim, 2018). Among

these characteristics, the arrangement symmetry changes from

species to species, where close species may differ and distant

species may not. Hence, the flower development process may

transcend the difference in species. The formation of flower

organs during flower development has been studied using

mathematical models via computer simulation to understand the

developmental bases of the flower shape diversity (Nakagawa et al.,

2020). To verify such flower development models, comparing the

positional arrangement of organs in blooming flowers with models

is useful.

This study aims to examine the positional arrangement of petal-

like perianth organs (tepals). The development order of tepals can

be estimated from the arrangement of neighboring tepals by

studying a flower not fully bloomed (Figure 1). Exterior tepals are

typically initiated earlier during the floral development in many

clades of plant species, including Anemone and Arabidopsis (Smyth

et al., 1990; Ren et al., 2010). At present, tepal arrangements are

identified manually (Endress, 2010; Ronse De Craene, 2010;

Vislobokov et al., 2014; Kitazawa and Fujimoto, 2018; Kitazawa

and Fujimoto, 2020). The visual examination of a large number of

flower images is extremely labor intensive; moreover, judging these

images unless one is a specialist is difficult. Thus, this study aims to

automate this task to reduce the burden on researchers.

We use image data for several Anemone species and cultivars

that were collected for the development of the flower shapes model.

Every image in this data was manually captured when the flowers
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were blooming and shows how the tepals are arranged. For this

reason, the number of flower images that can be used for machine

learning is small, unlike large-scale datasets such as ImageNet

(Deng et al., 2009) or Microsoft Common Objects in Context

(MS COCO) (Lin et al., 2014) that are often used in image

recognition. In addition to the small number of images included

in these data, the lack of diversity in the shapes of the tepals is a

problem when these images are used. The appearance of the tepals

is quite different for individual flowers (diversity), and due to the

small number of pictures (small quantity), there are not many

images showing flowers that have a similar appearance (Figure 2).

Therefore, it is difficult to build an end-to-end classifier that takes

images as input and then outputs tepal arrangement.

Therefore, we propose estimating the tepal arrangement from

the interior-exterior pattern of the overlap between tepals. This

method detects the overlapping parts of the tepals, extracts the

interior-exterior patterns of the tepals, and then identifies the tepal

arrangements through circular permutation matching. Considering

that there is only a small amount of training data, flower detection is

performed using the You Only Look Once (YOLO)1 algorithm,

which is capable of object detection after fine-tuning on a small

number of training images. Moreover, the recognition of flower

regions and the detection of overlapping parts are conducted by

segmentation using GrabCut (Rother et al., 2004), which does not

require training, and corner detection using the Harris corner

detector (Harris and Stephens, 1988). Additionally, meta-learning,

which is a machine learning framework that enables effective

learning using a small amount of data, is used for the

identification of interior-exterior relationships of the tepals.

Circular permutation matching, which is used to estimate the

tepal arrangement, cannot estimate correctly if even one result for

the overlapping part or the interior-exterior relationship is

incorrect. Also, due to the property of pattern recognition, the

detection of overlapping parts and the recognition of the interior-

exterior relationship are not perfect. Thus, the accuracy of the

estimation of tepal arrangement decreases due to these errors.

Therefore, we attempt to improve the estimation accuracy using

manual correction of the detection and recognition results. The

result of the study showed that with total automation, the

estimation accuracy of tepal arrangement was 0.275. However,

after manual correction, the estimation accuracy increased to 0.711.
2 Related work

Here, we introduce studies in which image processing was used

for flower image observation in plant measurement and studies

related to tepal overlapping order estimation. As a flower is a

familiar object, it is one of the commonly used image subjects in the

fields of computer vision and pattern recognition. ImageNet (Deng

et al., 2009), which is a representative common-object image

dataset, also contains a category for flowers. Moreover, species

recognition by flower appearance has been studied because flowers
1 https://github.com/ultralytics/yolov5.
FIGURE 1

Example image of Anemone flower; index on each tepal (perianth
organ) denotes the positioning, where exterior and interior organs
take lower and higher indices, respectively.
frontiersin.org

https://github.com/ultralytics/yolov5
https://doi.org/10.3389/fpls.2024.1334362
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Nakatani et al. 10.3389/fpls.2024.1334362
have diverse shapes and colors. Oxford flower datasets (Nilsback

and Zisserman, 2006, 2008), are well-known and widely used in the

field of computer vision. In this datasets, there are two categories;

one comprises 17 types of images, where each type contains 80

images; the other comprises 102 types of images, where each type

contains 40 to 258 images. Many image recognition studies have

used the Oxford flower datasets (Nilsback and Zisserman, 2006,

2008; Fernando et al., 2012a, b, 2014; Hu et al., 2014; Mabrouk et al.,

2014; Xie et al., 2014; Yang et al., 2014; Wang et al., 2020).

Additionally, segmentation has also been carried out using the

datasets (Nilsback and Zisserman, 2010; Chai et al., 2011; Chai et al.,

2012). Moreover, a method that performs recognition through the

production of a unique dataset (Guru et al., 2011) has been

proposed, as has an interactive segmentation method (Zou and

Nagy, 2004). There are studies on flower recognition that do not

analyze flower structure.

In the field of agriculture, flower detection in images is being

studied for the automation of farm work and the prediction of crop

yield. In indoor environments such as greenhouses, flower detection

methods for the automation of tomato flower picking (Rahim and

Mineno, 2020) and the automatic pollination of raspberries and

blackberries (Ohi et al., 2018) have been studied. Furthermore,

flower detection in crops grown outdoors is being done with deep

learning, which offers object detection that is robust in any lighting

conditions. Flower detection from images is currently in use for

crop prediction and the automation of tasks such as picking flowers

and pollinating strawberries (Chen et al., 2019; Lin et al., 2020),

apples (Dias et al., 2018; Wu et al., 2020), grapes (Millan et al., 2017;

Liu et al., 2018), and kiwis (Williams et al., 2020). However, these

are methods for flower location detection that do not analyze

flower structure.

Some studies modeled the shape details of flower organs such as

petals. A method that reproduces the detailed shapes of flowers,

including their petals, from computed tomography images (Ijiri

et al., 2014), methods that chronologically model the flower

blooming process (Ijiri et al., 2008; Yan et al., 2014), and a

method that reconstruct shapes of flowers in actual images using

the RGB-D image data and petal model of color and shape that was

prepared in advance (Zhang et al., 2014) have been developed.

These models were built to draw flowers using computer graphics,

and they require the measurement data for three-dimensional (3D)
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shapes and the application of 3D models. Thus, they are not suitable

for analyzing the shapes of flowers that bloom outdoors.
3 Materials and methods

3.1 Dataset

In this study, we used 3,942 flower images of several Anemone

species: A. flaccida, A. hepatica, A. x hybrida, A. nikoensis, A.

pulsatilla, and A. soyensis. These images were photographed in

locations with Shiga, Kyoto, Hyogo, Okayama, and Hiroshima

Prefecture, using an Olympus TG-5 digital camera and a Nikon

D5200 SLR camera. The image resolutions were 568 × 3,712, 4,928 ×

3,264, 4,000 × 3,000, and 4,000 × 2,672 pixels; all images were saved in

JPEG format. The size of the images was normalized to 1,000 × 662

pixels for the experiment. The images used in this study can be found

in the data repository: 10.6084/m9.figshare.25323112.

Bounding boxes to indicate the position of the flowers were

attached to all of these images. Moreover, the position of tepal

overlap in the bounding boxes, and interior-exterior relationship of

the tepals were studied and manually labeled. As the tepal

arrangement of each pair of neighboring tepals is uniquely

determined by their interior-exterior pattern, the arrangement of

tepals was correctly labeled according to the interior-exterior

relationship of the overlapping tepals. Moreover, labels to indicate

the flower region at the pixel level were manually attached inside the

bounding boxes in 420 images.
3.2 Tepal arrangement

Tepal arrangement represents the number of tepals and their

interior-exterior relationship; it is determined by the tepal

development order. The interior-exterior relations of tepals can

be represented as a circular permutation by attaching a class label to

each tepal. There are three types of class labels (Figure 3): I

(Internal), where a tepal is above both the tepals on its sides; E

(External), where a tepal is below both the tepals on its sides; and A

(Alternating), where a tepal is above the neighboring tepal on one

side and below on the other. The tepal arrangements represented as
FIGURE 2

Floral shape and color diversity in Anemone species, A. pulsatilla (left) and A. x hybrida (center, right).
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circular permutations that match with each other after rotation or

reflection transformation are treated as the same arrangement. Only

some of all the conceivable arrangements occur in nature, and one-

three types have been identified for each tepal number.

In this study, Anemone species and cultivars having 4–9 tepals

are studied. Figure 4 shows a diagram of a model that includes 13 of

the tepal arrangement types frequently observed in flowers with

these tepal counts. The color of each tepal in this diagram indicates

its class label; black, gray, and white represent I, A, and E,

respectively. Moreover, the letter shown in the lower part of the

diagram indicates the number of tepals (A–F correspond to 4–9,

respectively), and the number indicates the tepal arrangement order

for each tepal number.
3.3 Estimation of tepal arrangement

Figure 5 shows the process flow for the proposed method. Tepal

arrangement, which is the object to be estimated, can be uniquely

determined from the interior-exterior relations between all of the

overlapping tepals. Thus, the overlapping parts of the tepals and

their interior-exterior relations are estimated after the flower region

is obtained through flower detection and segmentation. Finally, the

tepal arrangement is estimated using the estimated interior-exterior

relations. In the following section, we describe the details of flower

detection, segmentation, tepal overlap detection, the estimation of

interior-exterior relations, and the tepal arrangement estimation.

3.3.1 Flower detection
For the preprocessing, the proposed method carried out flower

detection in the original image to obtain a rectangle that indicated

the position of the flower (the bounding box). The proposed

method used YOLO ver. 5 3 for flower detection. YOLO v5 has

shown good accuracy in common-object detection, and it is

expected to be highly accurate in flower detection after fine-

tuning, even if the training dataset is small. YOLO v5

simultaneously detects and classifies objects using a convolutional
2 3D movie is available at https://youtu.be/clYmer-nvO4.

3 https://github.com/ultralytics/yolov5.
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neural network, and the original model could detect and classify 80

objects. As the proposed method only needs to detect the flower

region, we fine-tune the model using flower images.

3.3.2 Flower region segmentation
Because the estimation of the tepal interior-exterior relationship

is affected by the image background, the flower region is extracted

from the detected image. As the flowers have a color that is different

from their background, the proposed method utilizes GrabCut

(Rother et al., 2004), which is a color-based segmentation

technique, to segment the flower region. GrabCut employs a

Gaussian mixture model to represent the color distribution of the

foreground and background, and it performs the segmentation

using this model. Because the model is estimated individually for

each image, no prior training is required. The color distribution

model is constructed based on a bounding box that encompasses

the user-defined foreground region. As the bounding box defined in

3.3.1 encompasses the flower region, we use this bounding box to

automatically construct the model and segment the flower region

instead of using the user-specified rectangle.
3.3.3 Overlapping tepal detection
Next, the points at which the tepals overlap are detected. The

points are detected by using the Harris corner detector (Harris and

Stephens, 1988). As the corner detector is not perfect, the detected

points contain false positives (Figure 6, left image). This image

shows that when the region around a detected point is examined,

the overlapping point is found to be concave, whereas false positives

are convex, as shown in the image on the right side of Figure 6.

Therefore, the proposed method detects the overlapping points by

using this convex/concave characteristic as follows:
1. Draw a circle around the detected point, as shown in green

in the close-up image of a corner on the right side of

Figure 6, and obtain two points that intersect with the

contour of the tepal (red points in the figure).

2. Draw a straight line that connects the two obtained points

(red broken line, Figure 6). If the entire line is above the

foreground, the point is considered to be a false positive

and is removed.

3. When the entire line is above the background, it is

determined to be an overlapping point.
BA

FIGURE 3

Class label I, E and A indicating the interior-exterior relations of tepals. (A) 2D diagram (B) 3D visualization
2.
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3.3.4 Recognition of interior-exterior relationship
between tepals

The recognition of the interior-exterior relation of tepals is

solved as a binary classification problem for images of tepal

overlapping regions. The two classes are the left-tepal-forward

class (L) and the right-tepal-forward class (R) (Figure 7). The

images of tepal overlapping regions (the patches) are cropped

from the segmented images around the overlapping points.

Each flower in the images used in this study has tepals of a

different color and shape from the other flowers. Therefore, the

appearance of the cropped patches is diverse. Moreover, the number

of patches that can be cropped from one segmented image is 6 or 7

at most. This number of patches is insufficient for training a

classification model; therefore, the model cannot achieve sufficient

classification accuracy. Thus, this study employs synthesized petal

overlapping patches (hereafter referred to as synthetic patches) and

meta-learning to achieve sufficient accuracy. Synthetic patches are

used to compensate for the small number of cropped patches and to

generate an adequate number of patches for training. Meta-learning

is used to prevent a reduction in classification accuracy due to

differences in the appearance of the flowers.

3.3.4.1 Generate synthetic patches

Figure 8 shows how the synthetic patches are generated through

image processing. First, we draw a circle with the center as the
Frontiers in Plant Science 05
position of overlap of the tepals, as shown in red on the left side of

Figure 8. Next, we crop two patches, which are shown as the green

squares centered at the intersections of the red circle and the

contour on the left side of Figure 8. These patches are called the

original patches. The radius of the red circle must be set so that the

cropped region does not contain the overlapping parts of the tepals.

Lastly, by superimposing these two patches, a synthetic patch that

simulates the overlapping of the tepals is generated. As it is obvious

whether the synthetic patches belong to L or R classes, the correct

class label can automatically be applied to the synthetic patches; this

cannot be done for the cropped patches.

3.3.4.2 Meta-learning

Next, model-agnostic meta-learning (MAML) (Finn et al.,

2017), which is one of the meta-learning methods, is used to

classify the cropped patches. Meta-learning is a framework that

optimizes the learning of new tasks through learning various tasks.

The object of optimization is different for each method. In MAML

(Finn et al., 2017), the optimization is done by learning the initial

model of a network that is capable of accommodating many

different tasks.

Figure 9 shows the meta-learning framework used in this study.

The tasks used for learning the model are called the meta-training,

and the target tasks are called the meta-testing. Each task consists of

a support set and a test set. The support set includes the training
FIGURE 4

Diagram of tepal arrangement model.
FIGURE 5

Overview of proposed method.
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data, which are used for training the model, and the query set

contains the test data for evaluating the model. In MAML, the

model is trained on the support set within a meta-training task to

derive parameters that are appropriate for the task. Next, the

performance of the model is evaluated using a query set in the

meta-training task and the model parameters are updated based on

the error of the test data. By iterating this process multiple times for

each task in the meta-training, the model is trained to rapidly adapt

to the various tasks. Finally, the model is evaluated using meta-

testing. The model parameters that were trained by meta-training

are updated using the support set for the meta-testing, and then the

performance of the updated model is evaluated using the query set

for the meta-testing.

In this study, each task consists of patches generated from a

single flower, and synthetic patches are used for the support set,

while the query set is the original patches for the interior-exterior

estimation, as shown in Figure 9. In the training process, the model

is trained using synthetic patches from a support set of a meta-

training task and evaluated using original patches from a query set

of a meta-training task. The process is iterated for the number of

meta-training tasks. Then, in the estimation process, the parameters

of the model are optimized for a meta-testing task using the support
Frontiers in Plant Science 06
set of the task, and the estimation is performed on the query set of

the task with the optimized parameters.

3.3.5 Tepal arrangement estimation
The tepal arrangement estimation is performed using the

arrangement from the interior-exterior relation recognition

results. The estimation consists of three steps.

First, we obtain the class labels (L, R) of the tepal overlapping as

a circular permutation. We set the center of gravity as the origin O

(Figure 10) and consider the angle between the red line, OX, in the

horizontal rightward direction from the origin and the line

connecting the overlapping points (light blue) and the origin. The

circle permutation is obtained by arranging the class labels in the

order of increasing angle at each overlapping point.

Next, the class labels representing the interior-exterior relation

of a pair of tepals are converted to class labels for tepals (Figure 3).

When the circular permutation of L and R labels representing the

interior-exterior relation is clockwise, a sequence of two letters, such

as LR, can be converted into one of the I, E, or A labels (Figure 11).

Following this conversion rule, the permutation represented by L

and R is converted to a permutation of tepal class labels indicated by

I, E, and A.

Finally, the tepal arrangement being estimated is compared with

the 13 known types of tepal arrangements (Figure 4). Concretely,

the class label permutations represented by I, E, and A are
FIGURE 6

Detected corners (green points) and convex/concave corners in surrounding boundaries.
FIGURE 7

Examples from left-(L) (left) and right-tepal-forward class (R) (right).

FIGURE 8

Procedure for generating synthetic patches.
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compared with the class label permutations extracted from the tepal

arrangement candidates. Edit distance (Navarro, 2001) is used as

the metric for the estimation. The edit distance is the minimum

number of single-character edits (insertions, deletions, or

substitutions) needed to change one string into another. Then,

the tepal arrangement that gives the shortest edit distance is

regarded as the estimation result.

As the class label permutations are circular permutations,

considering the rotation and flip transformations in computing

the edit distance between two permutations is necessary.

Therefore, the edit distance is calculated by rotating the circular

permutation. Additionally, the edit distance is calculated after a flip

transformation is carried out.
4 https://github.com/ultralytics/yolov5.
4 Experiments

To evaluate the accuracy of the proposed method, we executed

experiments using the original dataset introduced in Section 3.1. In

the experiments, the accuracy of each intermediate process was

evaluated. This is because the accuracy of petal arrangement

estimation is heavily dependent on the accuracy of the

intermediate processing steps. Next, the accuracy of the tepal

arrangement estimation was evaluated after all the processing

steps were combined. Lastly, the accuracy of the case was

evaluated when the results for the tepal overlap positions and for

the recognition of their interior-exterior relationship in the

intermediate processes were manually corrected. The following

sections explain each experimental condition and describe the

results. The research ethics committee of the Graduate School of
Frontiers in Plant Science 07
Informatics, Osaka Metropolitan University approved the

experiments on manual correction.
4.1 Experimental conditions

The conditions used to evaluate the accuracy of each

intermediate process are first explained. For flower detection, 200

images from the original dataset were used for training, and 3,742

images were used for testing. We used the original implementation

of the YOLO v5(m) model4, which is pretrained on MS COCO. As

the size of the input image for the YOLO v5(m) model is 256×256

pixels, the images were scaled down to 256×256 pixels using bilinear

interpolation. As described in Section 3.1, the images used in the

experiment were 1,000× 662-pixel landscape images. Therefore, in

order not to change the aspect ratio of the images, the image was

scaled down to 256 × 169 pixels. Then, black pixels were added to

the scaled image to make the image size fit to the input of YOLO v5

(m). In fine-tuning, following the original YOLO v5(m)

implementation, blur, random size cropping, and binary

histogram equalization were applied to the training data with 1%

probability to augment the data. The augmentation was performed

using the function included in the original implementation.

Training was performed by changing the number of training

epochs and batch size of the original implementation to 500 and

16, respectively. The implementation was based on the deep

learning framework Pytorch 1.9.1 on Python 3.7.7. Intersection
FIGURE 9

The meta-learning framework for this study. Each task consists of patches generated or cropped from a single flower. Support sets, which are used
to train or optimize the model parameters, consist of synthetic patches. Query sets, which are used to evaluate the model, consist of original
patches. In the training process, meta-training tasks are used to train and evaluate the model. In the evaluation process, meta-testing tasks are used
for model optimization and evaluation.
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over Union (IoU), which is commonly used in object detection, was

used as the evaluation metric for flower detection. When the

detection result region for a given object (pixel set) is set to A,

and the correct region is set to B, the IoU value is calculated using

the following Equation (1):

IoU =
A ∩  Bj j
A ∪  Bj j (1)

As the flower detection result is indicated by the bounding box,

the IoU value was calculated using the bounding boxes of the

detection result and the correct region.

Flower segmentation was evaluated on 220 images to which

flower regions were manually assigned. The 220 images were

different from the 200 images used for fine-tuning the flower

detection method. The size of the images was 1,000×662 pixels.

Segmentation was conducted by setting the flower region inside the

bounding box as the foreground. We used opencv-python 4.5.3.56,

which is the computer vision library OpenCV5 for Python, which

was used for implementing segmentation. We used the function

grabCut, which implements GrabCut. The initialization of grabCut,

which indicates the format of the foreground settings, was set to the

rectangles. The rectangles containing the flowers, which were

determined manually, were given to the function. The number of

algorithm iterations was set to 5. IoU was used to evaluate the

accuracy, as was the case for the flower detection. As the detection

result and the correct region are presented as flower regions at the

pixel level, these regions were used to calculate the IoU value.

To evaluate the tepal overlap detection, 3,742 images that were

manually labeled with the tepal overlap positions were used. The

images used for evaluation were the same as those used for flower

detection evaluation. The size of the images was 1,000 × 662 pixels.

The flower segmentation method described in Section 3.3.2 was
5 https://opencv.org.
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applied to the flower images, and the tepal overlap detection was

performed on the segmented flower regions in the images. As for

the flower segmentation, opencv-python 4.5.3.56 was used for the

implementation. We used the cornerHarris function, which

implements the Harris corner detector. The size of the circle

radius used to determine the overlap area was 15 pixels. The F1

score (F1), which is the harmonic mean of the precision ratio and

the recall ratio, was used in the accuracy evaluation. The F1 score is

calculated using the following Equation (2):

F1 = 2 ·
precision · recall
precision + recall

(2)

For the interior-exterior estimation of the tepals, 200 images

were used to determine the initial parameters (meta-training), and

220 images were used for the testing (meta-testing). As the interior-

exterior estimation method requires the use of images from which

only flower regions are cropped, it is necessary to prepare images

from which flower regions are correctly cropped for training and

testing. Therefore, we used 200 and 220 manually flower-segmented

images for training and testing, respectively. The 200 images used

for training were the same as those used for fine-tuning the flower

detection method.

Patches of size 20 × 20 pixels, whose centers were the manually

labeled positions of the tepal overlap, were cropped for the meta-

training and meta-testing for query sets. Note that each patch was

cropped so that one side was parallel to the straight line connecting

the two intersections of the circle whose center was the point of

overlap and the contour, as shown in the concave image in Figure 6.

In addition, the cropped patches were aligned so that the contour

part of the tepal was on top of each cropped patch. From a single

flower, 4 to 16 patches were cropped, and a total of 1,575 original

patches were cropped. The synthesis patches were generated

following in Section 3.3.4.1 in each flower image. The radius of

the red circle shown in Figure 8 for cropping the patches for

synthesis was set to 10 and 15 pixels. Two patches of 20×20

pixels were cropped from each point of intersection of the red

circle and the contour of the tepals. If the number of cropped

patches was less than 50, we cropped patches around the

intersections, adding perturbations, until the number of patches

was increased to 50. After the cropping was done for all the

overlapping points in a flower image, two types of patches were

cropped, 25 patches each: contour arcs that slope upward from left

to right, and contour arcs that slope upward from right to left. From

each cropped patch type, one patch was selected and superimposed

so that the contours of the tepals were intersected at the top to

create two synthetic images: left or right in front. Synthetic patches

were generated for all combinations of the cropped patches. From a

single flower image, 1250 synthetic patches were generated.

For the meta-training, 200,000 tasks were prepared, and 20

tasks were prepared for the meta-testing. To construct a meta-

training task, we randomly selected one image out of 200 training

flower images, and then we randomly sampled 20 synthetic and 2

original patches generated from the selected flower image for the

support and query sets, respectively. We iterated the above process

200,000 times, then generated 200,000 tasks for meta-training.

It was acceptable for the same flower image to be selected during
FIGURE 10

Acquisition of a circular permutation of overlapping tepal classes.
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task generation. This is because even if the same flower image was

selected, we selected the patches in such way that the combination

of the patches is different from the previously generated tasks. The

meta-testing tasks were generated from 220 flower images for the

test. Each flower image generated a task. Each task consists of a

support set of 10 synthetic patches for each class, for a total of 20

patches, and a query set of 2 original patches, one for each class.

We used the same network model as for the MAML (Finn

et al., 2017). We used the implementation with Pytorch, which is a

deep learning framework written in Python6. The code was

written in Python 3, and TensorFlow v1.0+, which is a Python

library for machine learning, was used to implement the model.

The model consisted of 4 concatenated blocks, including batch

normalization, ReLU, and 2×2 max-pooling after a 3×3

convolutional layer. As the input to the model was 84×84 pixels,

we upsampled the patches from 20×20 to 84×84 pixels using

bilinear interpolation. For training, no pretraining was executed,

and the model was trained from scratch. The meta train iteration,

meta batch size, meta learning rate, update batch size, and update

learning rate were set to 200,000, 20, 0.001, 5, and 0.01,

respectively. No augmentation was performed during the

training. Recognition accuracy, which is the ratio of correct

interior-exterior relations to the total overlap positions, was

used as the evaluation metric.

We also executed an experiment that integrated all the

intermediate processes and estimated the tepal arrangement in

the input images. A total of 3,742 flower images were used for the

evaluation; each image contained one flower. The size of the images

was 1000 × 662 pixels. For each process, unless otherwise noted, the

model and parameter settings were the same as for each

intermediate process evaluation. Detection results, which were

shown in rectangles, were given as the foreground of the flower

segmentation process. After segmentation, overlapping tepals

detection was performed on the segmentation results. The

interior-exterior estimation was performed on the detected

overlapping points. For the petal interior-exterior estimation, the

same meta-training tasks that were used to evaluate the

intermediate process were used, and the meta-testing tasks were

generated using the 3,742 flower images, which were used for flower
6 https://github.com/dragen1860/MAML-Pytorch.
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detection evaluation. The tepal arrangements were estimated using

the results of interior-exterior estimation. In the tepal arrangement

estimation, the edit distance cost of insert, delete and replace was set

to 1. Recognition accuracy, which is the ratio of correct to the total

number of flowers, was used as the evaluation metric.

To evaluate manual correction, 15 of the 3,742 images were

used. The size of the images was 1000 × 662 pixels. There were 9

participants in the experiment. All participants were graduate and

undergraduate students majoring in computer science and were not

botany experts. The experiment was conducted using a web

application we developed for the experiment. Figure 12 shows an

example of what the application displays to the user in a web

browser when it asks the user to modify intersections or estimation

results. The web application presents an image of a flower, the

position of tepal overlap detection results, and the interior-exterior

estimation relationship of the petals. One can correct the detection

and estimation results by mouse operation through the web

application. We asked the participants to find the incorrect

overlap detection results and interior-exterior relation estimation

results and correct the results by mouse operation. Then, we

estimate the tepal arrangements using the corrected results. The

application was developed using a Python web framework Django

4.1.2 7 to display images and estimation results in a browser and to

collect user mouse events. The tepal arrangement estimation results

from the images were computed in the same experimental

environment as the integrated experiments. Recognition accuracy,

which is the ratio of correctly estimated arrangements to the total

test numbers of all the experiment participants, was used for the

accuracy evaluation.

We used a GPU server to evaluate the deep learning-based

intermediate processes: fine-tuning and evaluation of YOLO v5 for

flower detection and training and evaluation of MAML for tepal

interiorexterior estimation. The GPU server was equipped with

NVIDIA TITIAN RTX and 24 GB of memory. We used a CPU

server for the evaluation of flower segmentation, tepal overlap

detection, and tepal arrangement estimation. We also used the

CPU server for the integrated experiment and the web application

server for the manual correction experiment. The CPU server was

equipped with an Opteron 6348 and 512 GB of memory.
FIGURE 11

Rule for converting tepal overlapping labels to tepal labels.
7 https://www.djangoproject.com.
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4.2 Result

Table 1 shows the results of the accuracy evaluation of the

intermediate process. The accuracy was determined to be 0.275 after

all the intermediate processes were integrated, and tepal

arrangement was estimated from the input images. When manual

correction was applied, the accuracy was 0.711. The average time for

manual correction for one flower was 48 seconds.
5 Discussion

Table 1 shows that flower detection and segmentation accuracy

was particularly high relative to the accuracy of each intermediate

process. IoU metric is sensitive to misalignment. Figure 13 shows an

example of a flower detection result when the lowest IoU was

shown, 0.906. Figure 13 shows that the segmentation is almost

perfect, as the detection result overlapped the ground truth.

However, a small deviation from the ground truth decreased the

IoU value. In PASCAL VOC challenge 38, a common-object

recognition competition, object detection was deemed to be

successful when IoU was 0.5. As IoU for flower detection in this

study was 0.939, the flower detection was quite accurate.

As the foreground and background in the most of the flower

images used for this experiment were different, as shown in

Figure 2, flower detection was a relatively easy task. In addition,

IoU value for segmentation was high at 0.974. Similar to detection,

this is assumed to be because of the difference between the

background and flower colors, making the segmentation task

easy. However, several images failed segmentation because the

background has the similar color to the foreground, as shown in

Figure 14. GrabCut used color information to determine the

foreground and background using color information.
8 http://host.robots.ox.ac.uk/pascal/VOC/.
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When using Grabcut, segmentation fails if the background has a

similar color to the foreground. To correctly segment such images,

deep learning based segmentation methods can be effective.

Figure 15 shows examples of the result of tepal overlap

detection. This result contains errors: false positives and a false

negative. In Figure 15A, the tepal indentations were incorrectly

detected as overlaps. As the overlap detection method considers the

concave points as overlaps, the overlap detection method failed on

the flower images whose tepals have indentations. In Figure 15B, the

overlap detection method missed the overlap point, shown by the

blue circle. The Harris corner detector failed to detect the

bluecircled corner. As the overlap detection method used in this

study was a rule-based method, the detection failed when an

exception occurred. To improve the accuracy, learning-based

detection could be introduced.

The accuracy of the interior-exterior estimation was not

satisfactory enough to automate the tepal arrangement

estimation. Figure 16 shows an example with incorrect interior-

exterior estimation results. In the enlarged upper two patches in

Figure 16, the shading of the tepal folds would affect the estimation.

In the lower patch, the disappearing contour of the tepal in front

would affect the estimation. These changes in the appearance of the

patches are caused by the lighting conditions when the images were

taken. The accuracy can be improved by keeping the lighting

conditions constant. However, since the flower images used in

this study were taken outdoors, it is difficult to take all the images

under constant lighting conditions.

In the integrated experiments, the accuracy was 0.275. This is

significantly less accurate than any of the intermediate processes. To

clarify the reason for the low accuracy, we theoretically calculated

the accuracy when intermediate processes are integrated using the

accuracy of the independent intermediate process evaluations. Since

the average number of tepals in the flower images used in this study

was 6.3, we consider an image of a flower with 6 tepals. The flower

has 6 tepal overlapping points. Given the high accuracy of flower

detection and segmentation in the experiments, we assume that they

are always successful. The experimental results show that the

precision and estimation accuracy for the detection of the

overlapping point detection and the interior-exterior estimation

are 0.889 and 0.849, respectively. For the sake of simplicity, we

assume that the overlapping point detection and the interior-

exterior estimation are independent. Then, the accuracy that all

overlapping point detection and interior-exterior estimation will be

successful for the flower is calculated by the 6 powers of the product

of the detection and estimation as follows:

(0:889 ∗ 0:849)6 =  0:18486585651:

The calculated accuracy is lower than the accuracy of the

integrated experiment, 0.275. This is probably due to the fact that

even though the overlapping point detection or the interior-exterior

estimation failed, some of the flowers succeeded in the circular

permutation matching of the tepal order estimation process.

However, the improvement is not sufficient.

To improve the accuracy of the tepal arrangement estimation, it

is essential to improve the accuracy of overlapping point detection

and interior-exterior estimation. Overlap point detection could be
FIGURE 12

An example of the application display used in the manual correction
evaluation experiment. The circles superimposed on the image
indicate the detected overlap points, and their colors and letters
indicate the results of the interior-exterior estimation, with the blue
circled letter L and the red circled letter R on the left and on the
right. If the user clicks on a circle in the estimation result, the
estimation result is modified.
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improved by using a learning-based detection method. However, it

would be difficult to improve the accuracy of interior-exterior

estimation because the lighting condition when the images were

taken is one of the causes of the lower accuracy of interior-exterior

estimation, and the lighting condition is not constant in the outdoor

environment. Therefore, improving interior-exterior relation

estimation is not feasible. Another possible cause of the low

accuracy is the division of the tepal arrangement estimation into

overlapping point detection and interior-exterior estimation. As

calculated above, each task can be assumed to be independent, so

even a slight decrease in the accuracy of one task will significantly

affect the accuracy when the results are integrated. A possible

solution to this problem is to estimate the tepal arrangement

directly from the flower image without splitting the task.

The manual correction experiment showed that manual

correction could significantly improve the arrangement

estimation, and the tepal arrangements can be estimated by

amateurs not used to observing flowers. When the number of

tepals is less than 10, as in this study, experts can estimate the

tepal arrangement in a few seconds without the proposed method.

Although it takes more time than with the experts, the amateurs can

estimate the tepal arrangement without any flower observation

experience using the proposed method with manual correction.

Amateurs can estimate the tepal arrangement instead of the experts,

and the experts can reduce the effort of estimating the tepal
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arrangement. As anyone who can estimate the tepal interior-

exterior relationship can be assigned to the tepal arrangement, the

estimation work can be parallelized by multiple people. Although

the time for estimating the tepal arrangement by the proposed

method with manual correction is longer than that of the experts,

parallelization can improve the efficiency of the estimation work.

Additionally, results from manually corrected intermediate

processes could be used as the ground truth data for training. If

enough manually corrected data are collected, replacing the current

rule-based method used for tepal interior-exterior estimation with a

learning-based method would be possible. As a result, the accuracy

of the estimation of tepal interior-exterior relationship would

improve. In addition, as manual correction makes it easy to

assign the correct tepal arrangement to the input flower image,

preparing a large number of flower images with tepal arrangements

would be smooth. Next, constructing an end-to-end network that

performs image input and placement estimation would be possible.

In the proposed method, tepal arrangement estimation was

performed by combining several independent intermediate

methods due to the difficulty of preparing training data to train

an end-to-end network, leading to a decrease in accuracy. If an end-

to-end network trained with sufficient training data and built by the

proposed method with manual correction could be constructed, it

would be possible to achieve highly accurate tepal arrangement

estimation automatically.
TABLE 1 Evaluation of intermediate process.

Intermediate process Number of
training images

Number of test
images

Evaluation metric Score

Flower detection 200 3742 IoU 0.939

Segmentation – 220 IoU 0.974

Tepal overlap detection – 3742 F1 score 0.870

Tepal interior-exterior
relationship recognition

200 220 accuracy 0.849
FIGURE 13

The example of the flower detection result with the lowest IoU,
0.906. The red and green rectangles show the detection result and
ground truth.
FIGURE 14

The example of the flower segmentation result with the IoU was
0.761. The light red area shows the segmented area as the
foreground. The background area, which was flowers overlapping
with the foreground flower, was also determined to be foreground.
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6 Conclusion

This study focused on tepal arrangement, an indicator of the

floral developmental process. Currently, specialists classify tepal

arrangements in flower images manually. This requires a

tremendous amount of labor. Therefore, using the image

recognition method to estimate tepal arrangement from flower

images was proposed to reduce specialists’ workload. As it was

difficult to collect a large amount of data, a segmentation method

not requiring learning and a method that could accurately recognize

the interiorexterior relationships of tepals with a small amount of

training data were used. Our experiment showed that, although

flower detection and segmentation could be performed accurately,

tepal overlap detection and the estimation of the tepal interior-

exterior relationship were inaccurate, which resulted in low

accuracy in the tepal arrangement estimation. However, the

accuracy improved significantly when the tepal overlap detection

and interior-exterior relationship recognition results were manually

corrected. The results showed that manual correction can be used to

assign the ground truth of a tepal arrangement to a large number of

images. Thus, an end-to-end network expected to be highly accurate

could be realized by using a large number of images with manually

assigned tepal arrangements.
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FIGURE 15

The examples of tepal overlap detection results. The green dots show the detected tepal overlap. (A) includes false positives, shown by the green
dots with the red arrows. (B) includes false negative, shown by the blue circle.
FIGURE 16

The example of failed for interior-exterior estimation. The red circles
and patches show the tepal overlap points and the patches that
failed to the interior-exterior estimation.
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