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Leucine-rich repeat receptor-like kinases (LRR-RLKs) can participate in the

regulation of plant growth and development, immunity and signal

transduction. Sesamum indicum, one of the most important oil crops, has a

significant role in promoting human health. In this study, 175 SiLRR-RLK genes

were identified in S. indicum, and they were subdivided into 12 subfamilies by

phylogenetic analysis. Gene duplication analysis showed that the expansion of

the SiLRR-RLK family members in the sesame was mainly due to segmental

duplication. Moreover, the gene expansion of subfamilies IV and III contributed to

the perception of stimuli under M. phaseolina stress in the sesame. The

collinearity analysis with other plant species revealed that the duplication of

SiLRR-RLK genes occurred after the differentiation of dicotyledons and

monocotyledons. The expression profile analysis and functional annotation of

SiLRR-RLK genes indicated that they play a vital role in biotic stress. Furthermore,

the protein−protein interaction and coexpression networks suggested that

SiLRR-RLKs contributed to sesame resistance to Macrophomina phaseolina

by acting alone or as a polymer with other SiLRR-RLKs. In conclusion, the

comprehensive analysis of the SiLRR-RLK gene family provided a framework

for further functional studies on SiLRR-RLK genes.
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1 Introduction

Receptor-like protein kinases (RLKs) represent numerous

transmembrane kinases that sense stimulation at the cell surface

and mediate cell signal transduction by phosphorylation in

response to the environment (Trenker and Jura, 2020). Many

duplication events of RLKs exist in terrestrial plants (Lehti-Shiu

et al., 2009), in which RLKs involved in the stress response show

duplications, while those involved in growth and development do

not (Shiu et al., 2004), suggesting that duplication events of RLKs

are important for terrestrial plants to respond to ever-changing

environments (Lehti-Shiu et al., 2012). LRR-RLKs represent the

largest family in RLKs, which consist of three protein domains: an

LRR domain sensing signal outside the cell, a single-channel

transmembrane domain anchoring proteins within the

membrane, and a kinase domain involved in signal transduction

by autophosphorylation and subsequent specific substrate

phosphorylation (Liu et al., 2017).

LRR-RLKs can widely regulate plant development and stress

responses by participating in brassinosteroid (BR) and abscisic acid

(ABA) signaling pathways. BRI1 (BR insensitive 1), a key LRR-RLK

in the BR pathway, could regulate stem elongation, vascular

differentiation, seed size, fertility, flowering time and senescence

by BR signaling in Arabidopsis by forming the BRI1/BAK1 (BRI1-

associated receptor kinase 1) complex (Li et al., 2002; Nam and Li,

2002; Wang et al., 2005). In addition, barley bri1 mutant have

multiple effects on disease resistance and plant developmental

regulation (Goddard et al., 2014). SERK2 (Somatic embryogenesis

receptor kinase 2), another component of the BR pathway, can

mediate salt tolerance in rice via BR signaling (Dong et al., 2020).

Moreover, OsSERK2 confers rice immunity to Xanthomonas oryzae

pv. oryzae by activating the resistance genes XA21 and XA3 (Chen

et al., 2014). BAK1 plays an important role in ABA signaling in

guard cells. The bak1 mutants exhibited more water loss than the

wild type and showed ABA insensitivity in stomatal closure.

Additionally, ABA can facilitate the formation of the BAK1/OST1

(Open stomatal 1) complex that mediates ABA-induced stomatal

closure in guard cells near the plasma membrane (Shang et al.,

2016). Likewise, KIN7 (Kinase 7) is essential in ABA signaling in

stomatal closure. Phosphorylation and activation of TPK1

(Tonoplast K+ channel) by the KIN7 is indispensable for ABA-

and CO2-mediated stomatal closure (Isner et al., 2018). In addition,

LRR-RLKs have been shown to be involved in plant immunity via

other phytohormone pathways. PSKR1 (Phytosulfokine receptor 1),

an antagonistic regulator between biotrophic and necrotrophic

pathogens in plant defense, can mediate plant resistance to

pathogens by suppressing salicylic acid-dependent defense while

enhancing jasmonic acid-dependent defense (Mosher et al., 2013).

However, OsPSKR1 is involved in rice resistance to Pseudomonas

syringae DC3000 in rice by activating the expression of PR genes

involved in the salicylic acid signaling pathway (Yang et al., 2019).

Furthermore, PEPR1 (Pep1 receptor 1) and PEPR2 are involved in

plant immunity due to ROS (Reactive oxygen species) production

and ethylene signaling (Ma et al., 2016).

The interaction and regulation between LRR-RLK members is

intricate during development and stress. For instance, the CLV1
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(CLAVATA 1)-CLV2-CRN (CORYNE) trimer is essential in plant

stem cell regulation (Bleckmann et al., 2010; Zhu et al., 2010), and

the BAK1-TMM (TOO MANY MOUTHS) complex is involved in

plant immunity (Jordá et al., 2016). The formation of some LRR-

RLK complexes depends on ligand stimulation, for instance, flg22

and elf18 can stimulate FLS2 (Flagellin sensitive 2) and EFR

(Elongation factor-Tu receptor) to form dimers with BAK1 and

then plant defense is initiated (Roux et al., 2011). Similarly, ligands

SCFE1 (Sclerotium culture filtrate ELICITOR1) or NLP20 (Peptide

motif) stimulate the formation of the BAK1-SOBIR1 (Suppressor of

BIR1-1)-RLP23 complex (Gao et al., 2009), which plays an

important role in plant resistance to pathogens. Moreover, there

have been fewer studies on the interactions of LRR-RLKs in other

plants, with only a few having been confirmed in tomato (Peng and

Kaloshian, 2014), tobacco (Franco-Orozco et al., 2017), rice (Chen

et al., 2014), Medicago truncatula (Crook et al., 2016) and wheat

(Singh et al., 2016).

The large number, the great diversity of structure and function

and the intricate interaction networks of LRR-RLKs present a

challenge in understanding the functions and mechanisms of

LRR-RLK genes in complex signal transduction pathways in

plants. Furthermore, the complementary functions between LRR-

RLKs indicate the importance of systematic analysis using

bioinformatics tools to understand the roles of LRR-RLKs in

plants. Recently, the LRR-RLK gene family has been reported in

Arabidopsis (Shiu and Bleecker, 2001), soybean (Zhou et al., 2016),

wheat (Shumayla et al., 2016), cotton (Sun et al., 2018), rice (Sun

and Wang, 2011) and maize (Song et al., 2015). Additionally, the

potential roles of LRR-RLKs in response to stresses have been well-

studied in Thinopyrum elongatum (Mishra et al., 2021). Sesame

charcoal rot caused by M. phaseolina is one of the most serious

fungal diseases in sesame production, and threatens the yield and

quality of sesame. Although LRR-RLKs are crucial in plant

immunity, there is still a lack of systematic studies of the LRR-

RLKs in sesame. It is of great practical significance to study LRR-

RLK gene family in sesame and their functions related to biotic

stresses. In this study, the LRR-RLK gene family in sesame was

comprehensively analyzed by phylogeny, structural evolution and

expression profile analysis. The potential functions of the sesame

LRR-RLK homologous to Arabidopsis were predicted by protein

−protein interaction (PPI) and coexpression networks. Our studies

tend to gain insight into the functions of the sesame LRR-RLK

family and provide new insights into their roles in regulation under

M. phaseolina stress at the transcriptome level.
2 Materials and methods

2.1 LRR-RLK gene discovery in S. indicum

Sesame genome and proteome sequences were provided by

Henan Sesame Research Center, Henan Academy of Agricultural

Sciences (Zhang et al., 2013; Miao et al., 2023). HMM (Hidden

Markov Model) profiles of LRRs (PF00560, PF07723, PF07725,

PF12799, PF13306, PF13516, PF13855, PF14580 and PF01816) and

Pkinase/Pkinase_Tyr (PF00069 and PF07714) were used for
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identification of putative LRR-RLKs in S. indicum through HMMER

3.1 (Finn et al., 2011) (E-value < 1 × 10−10). LRR-RLKs identified

from Arabidopsis (Shiu and Bleecker, 2001), soybean (Zhou et al.,

2016), wheat (Shumayla et al., 2016), cotton (Sun et al., 2018), rice

(Sun and Wang, 2011) and maize (Song et al., 2015) were used to

run BLASTP with the sesame proteome (E-value < 1 × 10−5). The

sum putative LRR-RLKs of the HMMER search result and BLASTP

result were used for subsequent analysis. The InterPro database

(https://www.ebi.ac.uk/interpro/) was used to confirm the presence

of the kinase domain, LRR domain and transmembrane domain in

LRR-RLKs in sesame. Sequences that met the above conditions were

regarded as LRR-RLKs.
2.2 Phylogenetic, structural and functional
analysis of LRR-RLKs

The theoretical isoelectric points (pI) and molecular weights

(MW) of SiLRR-RLKs were predicted with Expasy (https://

www.expasy.org/). CELLO (http://cello.life.nctu.edu.tw/) was used

to predict the subcellular localization while SignalP-5.0 (https://

services.healthtech.dtu.dk/service.php?SignalP-5.0) was used for

signal peptide prediction. A conserved domain analysis of the

sesame SiLRR-RLK family members was performed using the

InterPro database. The MEME online server (http://meme-

suite.org/) was used to search for conserved motifs. The

conserved domains and gene structure of SiLRR-RLKs were

visualized by TBtools (Chen et al., 2020). GO annotation was

performed on PANNZER 2 (http://ekhidna2.biocenter.helsinki.fi/

sanspanz/).

A multiple sequence alignment was performed using ClustalW

with the default parameters method based on the aa sequences of

the SiLRR-RLK proteins. MEGA 7 software (Kumar et al., 2016)

was used to construct a phylogenetic tree of LRR-RLK using the

neighbor Joining (NJ) method, and the bootstrap value was set to

1,000. Then the phylogenetic tree was visualized and edited on the

iTOL website (https://itol.embl.de/).
2.3 Chromosomal arrangement and gene
duplication of LRR-RLK genes

The sesame genome file (In fna format) and the genome

annotation file (In gff3 format) were used to visualize the

chromosome localization with TBtools (Chen et al., 2020). The

MCScanX (Wang et al., 2012) program was used to determine

collinear orthologous gene duplications (Tandem and segmental

duplications) among the sesame LRR-RLK gene family and syntenic

LRR-RLK genes between sesame and other plant species. The

genome files and annotation files of Solanum tuberosum, Glycine

max, Solanum lycopersicum, M. truncatula, A. thaliana, Vitis

vinifera, Gossypium hirsutum, Hordeum vulgare, Zea mays,

Triticum aestivum, Oryza sativa, Musa acuminata, Setaria italica

and Sorghum bicolor were downloaded from the Phytozome

database (Goodstein et al., 2012).
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2.4 In silico and in vitro expression analysis
of LRR-RLK genes

RNA-seq data PRJNA892254 was used for in silico expression

analysis of diverse sesame tissues. Flower tissues of variety S.

indicum var. ‘Zhengzhi No.13’ that showed consistent growth

were sampled, and the locations were marked. The capsules at the

markers were sampled along with all other tissues (Roots, stems,

leaves, capsules and seeds) two weeks later. For in silico expression

analysis of sesame seed development, RNA-seq data of variety S.

indicum var. ‘Wanzhi No.2’ during seed development comprising 7

days after flowering (7 DAF, S1), 14 DAF (S2), 21 DAF (S3) and full

maturity (28 DAF, S4) were used (PRJNA739094) (Zhang et al.,

2021). For in silico expression analysis, the RNA-seq data of the

disease-resistant variety S. indicum var. ‘Zhengzhi No.13’ infected

withM. phaseolina and root tissues were concomitantly collected at

0 h, 12 h, 24 h, 36 h and 48 h post inoculation (PRJNA706471). The

data above were downloaded from the SRA database. The reads

were filtered, and trimmed using fastp (Chen et al., 2018), then

clean reads were mapped to the sesame genome with HISAT2

(version:2.0.4) (Pertea et al., 2015; Pertea et al., 2016). Finally, the

FPKM value of each gene was calculated by trimmed mean of M

values method (Robinson and Oshlack, 2010).

For in vitro expression analysis of sesame leaves under

phytohormone treatment, variety S. indicum var. ‘Zhengzhi

No.13’ sesame plants were treated by spraying with 1 mM ABA,

SA and MeJA when they grew to 4 pairs of true leaves period. Leaf

tissues before treatment and treated post 1h, 3h, 6h, 12h, 24h, 36h

and 48h were taken for RNA extraction, reverse transcription and

qPCR. The primers of selected 6 SiLRR-RLK genes are listed in

Supplementary Table S1, UBQ5 gene was used as a reference gene.

There were three replicates for each treatment. The samples were

stored at -80°C.
2.5 Protein−protein interaction network of
LRR-RLK proteins

The STRING database (https://string-db.org/) was used to

analyze the interaction of sesame LRR-RLK proteins based on

orthologs in Arabidopsis with a confidence parameter set at a

0.85 threshold.
3 Results

3.1 Phylogenetic analysis and
physicochemical attributes of SiLRR-RLKs

Based on a comprehensive search of LRR-RLK genes by HMM

profiles and BlastP, 175 LRR-RLK proteins were identified in the

sesame genome. The identified LRR-RLK members were given

names with the prefix ‘Si’ indicating S. indicum. Phylogenetic

analysis of LRR-RLK protein sequences in S. indicum and A.

thaliana was carried out (Figure 1). The LRR-RLK of S. indicum
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was divided into 12 subfamilies together with those of A. thaliana.

Group IV had the most members (36), followed by 34 members in

group III and 29 members in group IX (Table 1). These three groups

comprised 56.57% of SiLRR-RLKs (Figure 1). Group I and V

comprising only one member were the smallest subfamily

(Table 1). The details about the SiLRR-RLK family, including

their accession numbers and characteristics, were given in

Supplementary Table S2.

The physicochemical properties of SiLRR-RLKs enabled us to

gain insight on their functions. The amino acid (aa) length of SiLRR-

RLKs ranged from 466 to 1304 aa. Their isoelectric points (pI) were

between 5.14 and 9.56, and their molecular weights ranged from

50.38 to 141.43 kDa (Supplementary Table S2). The summarized

information regarding each subfamily was listed in Table 1.
3.2 Gene compositions, protein structure
and functional annotation of SiLRR-RLKs

The conserved domains of proteins are closely related to their

functions. Based on subfamily classification, conserved motif of

SiLRR-RLKs were performed. Results showed that arrangement of

motifs in same subfamily were similar (Figure 2). In addition, we

identified the conserved domains of SiLRR-RLK proteins and found

that they all contain both LRR and kinase domains (Figure 2),

illustrating the accuracy of the SiLRR-RLK gene family. LRR-RLKs

play a vital role in perceiving signals. Accordingly, a total of 78.29%

of SiLRR-RLKs comprised signal peptides in our study
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(Supplementary Table S2). LRRNT_2 (PF08263) and LRR_8

(PF13855) constituted the major recognition domains in SiLRR-

RLKs, which were found in 86.29% and 87.43% of SiLRR-RLKs,

respectively. Furthermore, the brassinosteroid receptor island

(PF20141) and Malectin (PF11721) domains were found in

subfamilies III and VIII, implicating their additional roles in the

recognition of BR and other plant hormones. Analysis of conversed

motif and domain showed that kinase domains in LRR-RLKs C-

terminal were more conserved, illustrating their potential roles in

signal transduction. The structural compositions of the SiLRR-RLK

genes were also further analyzed (Figure 2). The majority of SiLRR-

RLK genes were composed of multiple exons, while only 16 SiLRR-

RLKs were intron−less. SiLRR-RLK10-3, SiLRR-RLK10-4 and

SiLRR-RLK10-6 have the most 27 exons. The exon−intron

arrangement of LRR-RLK genes was conserved in same

subfamilies while it varied in subfamilies III and X.

To further explore the potential functions of SiLRR-RLKs, GO

(Gene Ontology) annotation was carried out. The results showed

that SiLRR-RLKs were mainly involved in phosphorylation and

defense response to fungus in terms of biological processes and

functioned in kinase activity and ATP binding in molecular

function (Figure 3A). All SiLRR-RLKs were predicted to localize

to the membrane or plasma membrane. Consistently, all SiLRR-

RLKs showed the characteristics of a high aliphatic index and low

hydrophilicity (Supplementary Table S2), which further supported

the idea that they were located on the plasma membrane. KEGG

(Kyoto Encyclopedia of Genes and Genomes) enrichment of SiLRR-

RLKs illustrated that SiLRR-RLKs were mainly enriched in
FIGURE 1

Phylogenetic analysis of the LRR-RLK proteins in S. indicum and A. thaliana. Green hollow pentacles represent LRR-RLKs in S. indicum while green
solid pentacles represent those in A. thaliana.
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FIGURE 2

Conserved motifs, conserved domains and gene structures of 12 LRR-RLK subfamilies in S. indicum.
TABLE 1 Subfamily designation and physico-chemical properties of the identified SiLRR-RLKs.

Subfamily Protein Number Aa Length MW (kDa) pI Aliphatic Index

LRR-RLK I 1 1107 123.73 5.66 90.97

LRR-RLK II 12 646-908 70.9-98.99 5.38-8.75 93.07-105.15

LRR-RLK III 34 579-1042 64.21-115.06 5.53-8.88 84.06-100.3

LRR-RLK IV 36 466-1107 50.38-119.62 5.56-9.42 90.04-104.32

LRR-RLK V 1 639 71.35478 9.09 97.81

LRR-RLK VI 3 687-855 76.65-94.15 5.7-9.56 90.54-96.25

LRR-RLK VII 5 605-1075 67.11-118.71 5.61-6.81 95.85-102.94

LRR-RLK VIII 7 1099-1304 120.92-141.43 5.14-6.16 96.87-109.68

LRR-RLK IX 29 619-1145 68.77-123.81 5.18- 8.8 96.24-108.76

LRR-RLK X 9 972-1135 104.44-122.7 5.47-8.92 99.44-106.51

LRR-RLK XI 22 522-1224 57.15-134.1 5.36-7.49 103.94-111.44

LRR-RLK XII 16 932-1222 102.53-134.7 5.18-6.97 102.63-112.15
F
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thiamine metabolism, MAPK signaling pathway, plant hormone

signal transduction and plant−pathogen interaction (Figure 3B). All

these results suggest that SiLRR-RLK proteins are essential for

signaling recognition and transduction in the stress resistance,

growth and development of sesame.
3.3 Cis-element analysis of SiLRR-
RLK genes

Gene promoters in plants can regulate the expression of genes to

respond to different biotic or abiotic stresses and different growing

environments, hence, assessment of cis-elements and transcription

factor binding sites in promoters is crucial for understanding

transcriptional regulation and gene function (Biłas et al., 2016).

The upstream sequences (~2000 bp) of the promoter were obtained

to confirm the expression features of SiLRR-RLKs. The cis-elements

of the SiLRR-RLK promoters were explored using the PlantCARE

database (Lescot et al., 2002). The detailed effects of these motifs (cis-

elements) are presented in Supplementary Table S3. SiLRR-RLK

promoters contained many cis-elements in response to stresses,

illustrating their potential roles in plant responses to adverse

environments. Cis-elements of SiLRR-RLK promoters include light-

responsive elements, phytohormone-responsive elements, stress-

responsive elements and growth and development elements

(Figure 4). The most abundant element in SiLRR-RLK promoters

was the Box4 (Light) element, followed by the MYC (Drought) and
Frontiers in Plant Science 06
STRE (Stress) elements (Figure 4; Supplementary Table S3),

illustrating that SiLRR-RLKs not only had an important role in the

light response but were also crucial in the response to both biotic and

abiotic stresses. In addition, SiLRR-RLKs possessed the most

AAGAA-motif (Seed specific expression) and ERE (Ethylene)

elements in terms of growth development and hormone response.

Transcription factors (TFs) play key roles in many biological

processes by regulating the expression of target genes. To

investigate the possible regulatory relationship between TFs and

SiLRR-RLK genes, the TF binding site prediction on PlantTFDB (Jin

et al., 2017) was used. The results showed that the SiLRR-RLK genes

could be regulated by 37 TF families (Supplementary Figure S1,

Supplementary Table S4). C2H2, MIKC_MADS, MYB, AP2 and

Dof were the TFs that can regulate most SiLRR-RLK genes. These

TF families are involved in almost every aspect of plant

development, hormone signaling, plant defense and stress

response, suggesting that SiLRR-RLKs are extensively involved in

the growth and stress defense of sesame.
3.4 Duplication and syntenic analysis of
SiLRR-RLK genes

We found that 173 SiLRR-RLKs were unevenly distributed on

13 sesame chromosomes (Chr) while SiLRR-RLK3-34 and SiLRR-

RLK4-36 were distributed on an unanchored scaffold (Figure 5A).

Twenty-five SiLRR-RLK genes were mapped to Chr 2, followed by
A

B

FIGURE 3

GO annotation and KEGG enrichment of SiLRR-RLK proteins. (A) GO annotation of 12 SiLRR-RLK protein subfamilies. MF, Molecular Function; CC,
Cellular Component; BP, Biological Process. (B) KEGG enrichment of SiLRR-RLK proteins.
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15 SiLRR-RLK genes on Chr 4 and Chr 6. In contrast, minimum

SiLRR-RLK genes (9) was found on Chr 5, Chr 7 and Chr 10

(Figure 5B). A total of 48 SiLRR-RLK genes formed 21 gene clusters.

Chr 2 and Chr 4 both had maximum gene clusters with four. There

are 2-4 SiLRR-RLKmembers within the gene clusters, most of them

contain 2 SiLRR-RLK genes. The tandem duplication SiLRR-RLK

genes were identified in each cluster with a threshold of 70%

sequence similarity between two aa sequences of SiLRR-RLKs. Of

the 21 gene clusters, 12 SiLRR-RLK genes from 7 clusters were

considered to be tandem duplicated gene pairs (Figure 5A). In

addition, segmental duplication of SiLRR-RLK genes was further

analyzed within the sesame genome. 38 segmentally duplicated

SiLRR-RLK pairs made by 70 SiLRR-RLK genes were predicted

within the sesame genome (Figure 5C). A total of 46.29% of LRR-

RLK genes underwent tandem or segmental duplication events,

implying that gene duplication events were momentous in the

expansion of the SiLRR-RLK gene family.
3.5 Evolution analysis of SiLRR-RLK genes
in several plants

To infer the syntenic relationship of LRR-RLK genes in several

plants, seven dicotyledons (G. max, S. lycopersicum, S. tuberosum, G.

hirsutum, V. vinifera, A. thaliana andM. truncatula) (Figure 6A) and

seven monocotyledons (O. sativa, H. vulgare, Z. mays, T. aestivum, S.

italica, M. acuminata and S. bicolor) (Figure 6B) were used for

evolution analysis with S. indicum. The LRR-RLK genes are

homologous to genes in the dicotyledonous reference plants, and
Frontiers in Plant Science 07
the number of homologous LRR-RLK genes is 120 (G. max), 132

(S. lycopersicum), 131 (S. tuberosum), 114 (G. hirsutum), 113

(V. vinifera), 98 (A. thaliana) and 114 (M. truncatula)

(Supplementary Table S5). Nonetheless, only 36 (O. sativa), 16 (H.

vulgare), 14 (Z. mays), 20 (T. aestivum), 38 (S. italica), 16 (M.

acuminata) and 41 (S. bicolor) homologous LRR-RLK genes existed

in monocotyledons (Supplementary Table S5). More homologous

LRR-RLK genes were found in dicotyledons than in monocotyledons.

In addition, SiLRR-RLK4-27 and SiLRR-RLK10-9 were homologous

with all 14 species, suggesting that they are crucial in the evolution of

the LRR-RLK gene family. Notably, SiLRR-RLK10-9 also underwent

segmental replication events in sesame (Figure 5C).

To further investigate the evolutionary relationship of LRR-

RLK in dicotyledons, phylogenetic analysis of LRR-RLK proteins in

dicotyledons was performed (Supplementary Figure S2). The results

showed that SiLRR-RLK tended to gather with the LRR-RLKs of A.

thaliana and S. tuberosum. We also used the MEME website to

search for 10 conserved motifs of all LRR-RLK proteins. We found

that the LRR-RLKs in S. indicum shared the most similar motif

compositions with A. thaliana and S. tuberosum in the same

branch, suggesting that SiLRR-RLKs were more closely related to

those of A. thaliana and S. tuberosum.
3.6 In silico expression profiles of SiLRR-
RLK genes in diverse tissues

To gain a broader understanding of the functions of SiLRR-

RLKs, we analyzed the divergence in spatial expression among
FIGURE 4

The distribution of cis-elements in SiLRR-RLK promoters. The gradient colors represent the number of cis-elements in SiLRR-RLK promoters.
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SiLRR-RLK genes. Most SiLRR-RLKs exhibited different expression

patterns in different tissues (Figure 7A). Some SiLRR-RLK genes

were expressed tissue-characteristically. For instance, SiLRR-RLK8-

5 and SiLRR-RLK12-9 were found to be expressed only in seeds,

SiLRR-RLK3-13 and SiLRR-RLK4-6 were found to be expressed

only in flowers, SiLRR-RLK11-5 and SiLRR-RLK11-18 were found

to be expressed only in roots (SiLRR-RLK genes with FPKM values

less than 0.1 were not considered expressed) (Supplementary Table

S6). The gene expression patterns provided a preliminary clue to its

function. 86, 73, 46, 40, 53 and 65 LRR-RLK genes were highly

expressed (SiLRR-RLK genes with FPKM value more than 10 were

considered as expressed highly) in roots, stems, leaves, flowers,

capsules and seeds, respectively (Figure 7B). Of note, 14 SiLRR-

RLKs (SiLRR-RLK3-30, SiLRR-RLK3-16, SiLRR-RLK3-10, SiLRR-

RLK3-5, SiLRR-RLK10-1, SiLRR-RLK3-22, SiLRR-RLK8-6, SiLRR-

RLK6-3, SiLRR-RLK8-2, SiLRR-RLK3-26, SiLRR-RLK3-7, SiLRR-

RLK9-8 , SiLRR-RLK9-14 and SiLRR-RLK3-1) exhibited

constitutively high expression across different tissues, indicating
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their important roles in the growth and development of sesame

(Figure 7B). For example, AtTMK1 (Transmembrane kinase 1),

a homolog of SiLRR-RLK3-16, can active GTPase in auxin

sensing (Cao et al., 2019). TMK1-mediated auxin signaling

regulates membrane-associated clathrin in Arabidopsis roots

(Wang et al., 2022), suggesting the importance of SiLRR-RLK3-16

in sensing auxin.

The AAGAA motif (seed-specific expression) was found to be

the most abundant cis-element in the promoter of SiLRR-RLK in

terms of growth and development. Therefore, the expression

pattern of SiLRR-RLK in seed development was determined based

on PRJNA739094 (Zhang et al., 2021) (Supplementary Figure S3,

Supplementary Table S7). The results showed that most SiLRR-RLK

genes had a higher expression level in the early stage (S1 and S2) of

seed development and then decreased in the later stage (S3 and S4),

suggesting potential effects of SiLRR-RLK genes in early seed

development. Notably, SiLRR-RLK3-4, SiLRR-RLK3-6, SiLRR-

RLK3-17 and SiLRR-RLK9-16 possessed the most AAGAA motifs
A

B

C

FIGURE 5

Chromosomal arrangement and gene duplication of SiLRR-RLK genes. (A) 173 SiLRR-RLK genes were mapped to 13 sesame chromosomes while 2
SiLRR-RLK genes mapped to unanchored scaffolds. The orange box indicates a gene cluster and the red names represent tandem duplication genes.
(B) Number of SiLRR-RLK genes on each sesame chromosome. (C) The segmental duplication gene pairs of SiLRR-RLK genes. The gray lines
indicate all the segmental duplicated gene pairs while red lines highlight the SiLRR-RLK pairs within the sesame genome.
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with five (Figure 4). Among these, SiLRR-RLK3-6 expressed at a low

level in all stages. SiLRR-RLK3-4 were induced at early stages S1, S2

and S3. Likewise, SiLRR-RLK3-17 and SiLRR-RLK9-16 were highly

expressed during early seed development S1 and S2, implying that

SiLRR-RLK3-4, SiLRR-RLK3-17 and SiLRR-RLK9-16 might

contribute to sesame seed development. Furthermore, we found

several SiLRR-RLKs (SiLRR-RLK3-1, SiLRR-RLK3-7, SiLRR-RLK6-3

and SiLRR-RLK10-4) that were highly expressed during whole seed

development (FPKM>10), which may also function in sesame

seed development.
3.7 In vitro expression pattern of
SiLRR-RLK genes in response to
phytohormone treatment

LRR-RLK genes were functioned in plant hormone signaling

pathways. Therefore, we selected SiLRR-RLK5-1 (Homolog of

SOBIR1), SiLRR-RLK9-6 (Homolog of RLK7), SiLRR-RLK3-5

(Homolog of BAK1), SiLRR-RLK8-6 (Homolog of BRI1), SiLRR-

RLK12-13 (Homolog of PEPR1) and SiLRR-RLK7-5 (Homolog of

PSKR1) genes to investigate their expression patterns under SA,

ABA and MeJA treatments (Figure 8).

The SiLRR-RLK9-6, SiLRR-RLK3-5, SiLRR-RLK8-6, SiLRR-

RLK12-13 and SiLRR-RLK7-5 genes were down-regulated

significantly at 1 h post SA treatment and remained suppressing

within 48 h post SA treatment. However, SiLRR-RLK5-1 was

significantly down-regulated expression at 3 h post SA treatment.
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It is suggested that these genes play a negative role in the early stage

(48 h) in SA signaling pathway. Under ABA treatment, SiLRR-

RLK5-1, SiLRR-RLK9-6, SiLRR-RLK3-5, SiLRR-RLK8-6, SiLRR-

RLK12-13 and SiLRR-RLK7-5 genes were significantly down-

regulated at 1h and decreased to the lowest level at 6 h, followed

by a significant up-regulation of expression at 48 h (SiLRR-RLK3-5

restored its expression level at 48 h). Under MeJA treatment, SiLRR-

RLK5-1, SiLRR-RLK9-6, SiLRR-RLK3-5, SiLRR-RLK8-6, SiLRR-

RLK12-13 and SiLRR-RLK7-5 genes were significantly down-

regulated, followed by partial restoration of their expression levels

at 48 h. Notably, the expression trends of these six genes were

similar under phytohormone treatment, suggesting that they may

form dimers or polymers in phytohormone signaling pathway and

synergistically regulate the downstream pathways.
3.8 In silico integrative expression analysis
of SiLRR-RLKs during M. phaseolina stress

LRR-RLKs act as cell surface receptors and play a crucial role in

signal sensing and transduction. To unravel the function of SiLRR-

RLKs in response to pathogen M. phaseolina, the expression

patterns of SiLRR-RLK genes under stress were investigated

(Figure 9; Supplementary Table S8). Considering that there are

many LRR-RLK genes in sesame, we divided them into six clusters

based on their expression patterns (FPKM>0) (Supplementary

Figure S4). The results showed that the SiLRR-RLK genes in

Cluster 5 and Cluster 6 were decreased after inoculation with
A B

FIGURE 6

Synteny analysis of LRR-RLK genes between S. indicum and other plant species. The gray lines indicate all the syntenic gene pairs while red lines
highlight the SiLRR-RLK pairs between S. indicum and other plant species. (A) Synteny analysis of LRR-RLK genes between S. indicum and
dicotyledonous plants. (B) Synteny analysis of LRR-RLK genes between S. indicum and monocotyledonous plants.
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M. phaseolina, they may mediate the susceptibility in plant

immunity (Figure 9; Supplementary Figures S4E, S4F). However,

most SiLRR-RLKs were induced at different times in Cluster 1,

Cluster 2, Cluster 3 and Cluster 4 underM. phaseolina stress, which

further confirmed the widely known disease resistance of LRR-RLKs

(Figure 9; Supplementary Figures S4A-D). For instance, SiLRR-

RLK11-10 in Cluster 1 were upregulated 4.68-fold at 12 hours after

infection while SiLRR-RLK12-6 and SiLRR-RLK9-22 in Cluster 2

were upregulated 4.89- and 10.48-fold at 48 hours after infection,

respectively. SiLRR-RLK genes in Cluster 3 were upregulated 2-3

times overall during M. phaseolina treatment. Moreover, the

expression of SiLRR-RLK genes in Cluster 4 were continuously

induced by M. phaseolina (Supplementary Figures S4A-D,

Supplementary Table S8).

The duplicated SiLRR-RLK genes identified were analyzed

synchronously with their expression patterns to identify the genes

designated for novel functions. The expression patterns of 7 pairs of

tandemly duplicated SiLRR-RLK genes and 38 pairs of segmentally

duplicated SiLRR-RLK genes during M. phaseolina stress were

analyzed in a heatmap (Figure 10). We found that most tandemly

and segmentally duplicated SiLRR-RLK genes exhibited

antagonistic expression profiles under M. phaseolina stress,

suggesting a function of redundancy between SiLRR-RLK genes

during sesame disease resistance (Figure 10). There were only a few
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exceptions, the LRR-RLK11-11:LRR-RLK11-12 gene pair showed a

similar expression profile under M. phaseolina stress, that is, they

were both induced at post infection.
3.9 Molecular protein−protein interaction
network of SiLRR-RLKs

According to well-studied investigations, there are many

complex interactions within the LRR-RLK gene family. To further

gain insight into the functions of the SiLRR-RLK proteins, we

constructed a PPI network by STRING database (https://STRING-

db.org/) based on the well-studied LRR-RLKs in Arabidopsis. As

shown in Figure 11, the SiLRR-RLK members showed interactions

with some other members.

Obviously, SiLRR-RLK3-5, the homolog of AtBAK1, is the hub

functional gene in the PPI network. Studies have showed that

AtBAK1, acting as a coreceptor with other proteins, can form

complexes (Dimer, trimer or tetramer) such as SOBIR1/BAK1,

BAK1/BIR1, ER/BAK1/TMM, BIK1/BAK1/ERL1/ERL2, FLS2/

BAK/BIK1 and FLS2/BIK1/RBOHD, and these complexes are all

important in relaying signals to downstream components in plant

immunity system (Gao et al., 2009; Lu et al., 2010; Wang et al., 2011;

Li et al., 2014; Lin et al., 2014; Jordá et al., 2016). In addition, other
A

B

FIGURE 7

Expression profiles of SiLRR-RLK genes in different tissues. (A) Tissue-specific expression of SiLRR-RLK genes. The color scale shows the range of
normalized FPKM values. (B) Number of SiLRR-RLK genes highly expressed in each tissue. Orange bars show the SiLRR-RLK genes highly expressed
in each tissue while green bars indicate SiLRR-RLK genes highly expressed across diverse tissues.
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AtLRR-RLK genes in the network have also been proven to be

involved in plant biotic stress, such as SOBIR1, a homolog of

SiLRR-RLK5-1, which was reported to form a complex with

BAK1 for immunity against the fungi Phytophthora infestans and

Sclerotinia sclerotiorum (Gao et al., 2009; Liu et al., 2016). SiLRR-

RLK4-17 is homologous to ZAR1, which is a calcium-permeable

channel triggering plant immune signaling (Bi et al., 2021). Notably,

SiLRR-RLK8-6, a homolog of AtBRI1, was highly expressed in all

tissues. BRI1 acts as a BR receptor and is extensively involved in

plant growth, development and stresses (Wang et al., 2001). Recent

studies have shown that BRI1 can form a heterodimer with

SAUR15, which activates the plasma membrane H+-ATPase to

promote Arabidopsis organogenesis (Li et al., 2022). In addition,

BRI1 is another LRR-RLK that can bind to BAK1, and the BRI1/

BAK1 complex regulates stem elongation, vascular differentiation,

seed size, fertility, flowering time and senescence by BR signaling in
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A. thaliana (Li et al., 2002; Nam and Li, 2002; Wang et al., 2005).

Notably, BRI1 in cereals has been shown to contribute to disease

resistance (Goddard et al., 2014) and drought tolerance (Feng et al.,

2015) in plants, indicating that SiLRR-RLKs have complex

biological functions by participating in the crosstalk between

plant growth and development and stress.
3.10 Coexpression analysis of LRR-RLK
genes in response to M. phaseolina

Based on the sequence structure, functional annotation,

expression patterns and PPI prediction of SiLRR-RLKs, we can

conclude that SiLRR-RLKs are crucial for plant immunity. In

addition, previous studies have shown that SiLRR-RLKs are vital

components in response to M. phaseolina stress (Yan et al.,
FIGURE 8

Relative expression level of SiLRR-RLK5-1 (Homolog of SOBIR1), SiLRR-RLK9-6 (Homolog of RLK7), SiLRR-RLK3-5 (Homolog of BAK1), SiLRR-RLK8-6
(Homolog of BRI1), SiLRR-RLK12-13 (Homolog of PEPR1) and SiLRR-RLK7-5 (Homolog of PSKR1) genes at 0 h, 1 h, 3 h, 6 h, 12 h, 24 h, 36 h and 48 h
post treated by SA, ABA and MeJA.
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2021). To further understand the relationship between SiLRR-

RLK genes and sesame disease resistance, the expression patterns

of SiLRR-RLK genes under M. phaseolina stress were used for

correlation analysis. SiLRR-RLK gene pairs with a Pearson

correlation coefficient greater than 0.95 or less than -0.95

suggested a correlation between the two SiLRR-RLK genes. The

coexpression network of SiLRR-RLK genes was constructed

according to the relationship between SiLRR-RLK genes

(Figure 12). In a coexpression network, most genes interact

with only a few other genes, while a few interact with a large

number of other genes, which are the core genes in this gene

network. Core SiLRR-RLK genes in the coexpression network

might be vital in sesame resistance to M. phaseolina .

Additionally, two core gene sets in the network attracted our

attention (Figures 11, 12). One is the BAK1/PEPR1/RLK7/

SOBIR1/MIK2 signaling pathway, whose function in plant

immunity has been well elucidated in other plants. The other

is the SRF8/PXC3/IRK signaling pathway. Notably, there exist a

correlation between SiLRR-RLK10-8 and SiLRR-RLK9-20, as

well as SiLRR-RLK12-3, SiLRR-RLK12-13, SiLRR-RLK12-8 and

SiLRR-RLK9-6 (Figures 11, 12). Combined with coexpression

analysis and the PPI network, the core genes, SiLRR-RLK12-3/

SiLRR-RLK12-13/SiLRR-RLK12-8/SiLRR-RLK9-6 and SiLRR-

RLK10-8/SiLRR-RLK9-20, may be the core components of

disease resistance to M. phaseolina in sesame.
FIGURE 10

Expression patterns of tandemly and segmentally duplicated SiLRR-
RLK gene pairs during M. phaseolina infection (0 - 48 h). “_”
represents two SiLRR-RLKs are duplicated gene pairs.
FIGURE 9

Expression patterns of SiLRR-RLK genes under M. phaseolina stress (0 - 48 h). The box plot on the left represents the expression trend of SiLRR-RLK
genes in the same cluster, the heatmap in the middle indicates the expression patterns of SiLRR-RLK genes, and the annotation on the right explains
the expression trend of SiLRR-RLK genes in each cluster.
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FIGURE 12

Coexpression network of SiLRR-RLK genes in response to M. phaseolina. The larger nodes represent core SiLRR-RLKs in the network, while the
smaller nodes represent noncore SiLRR-RLKs. The size of the node circle is positively correlated with the number of SiLRR-RLKs it interacts. The
orange nodes indicate core SiLRR-RLKs that may form multimers to defend against M. phaseolina.
FIGURE 11

A protein−protein interaction network for SiLRR-RLKs based on their orthologs in Arabidopsis. SiLRR-RLK proteins are shown in brackets with
Arabidopsis orthologs.
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4 Discussion

Recently, the LRR-RLK gene family has been identified in many

plant species, and the number of LRR-RLK family members varies

greatly. The proportion of SiLRR-RLK genes was consistent with Liu

et al. (Liu et al., 2017), which showed a 0.67-1.39% proportion in

angiosperm species. In higher plants, the number of identified LRR-

RLK genes ranged from 180 (C. sativus) to 589 (T. elongatum)

(Soltabayeva et al., 2022). A recent study has identified 14 classes

resistance (R) genes, including LRR-RLK subclass, in the sesame

genome (Miao et al., 2023). In this study, 175 SiLRR-RLK genes

were identified from the sesame genome, accounting for 0.73% of

the sesame genome and 14.61% of sesame R genes. Although there

is a lack of information on the function of LRR-RLK genes in

sesame, the evolutionary diversity and function of SiLRR-RLK genes

can be inferred from phylogenetic analysis, protein structure, gene

structure and expression profiles. The phylogenetic tree revealed

that SiLRR-RLKs can be divided into 12 subfamilies. SiLRR-RLKs

occurred in almost every major branch together with the

Arabidopsis LRR-RLK subfamily (Figure 1), indicating that all

Arabidopsis LRR-RLK subfamilies share a common ancestor with

sesame. Additionally, the collinearity analysis showed that the

homologous LRR-RLK genes existed much more in dicotyledons

than monocotyledons (Figure 6). It is implied that the duplication

of the LRR-RLK gene probably occurred after the differentiation of

dicotyledons and monocotyledons, which has been consistent with

a previous investigation(Miao et al., 2023).

Segmental and tandem replication are important drivers of the

expansion of gene families, especially in the evolution of plant LRR-

RLK gene families (Lehti-Shiu et al., 2009; Lehti-Shiu and Shiu,

2012). A total of 420 (71.31%) LRR-RLK genes with replication

events were detected in T. ponticum, involving 191 segmentally

duplicated SiLRR-RLK pairs and 145 tandemly duplicated SiLRR-

RLK pairs (Mishra et al., 2021). It has been found that 73.3% and

20.3% of LRR-RLK genes in soybean were involve in segmental

duplication and tandem duplication (Zhou et al., 2016). Similarly,

in the present study, 81 (46.29%) SiLRR-RLK genes involved in 38

segmental pairs and 7 tandem pairs were perceived (Figure 5).

Therefore, it is inferred that the expansion of the LRR-RLK gene

family is mainly caused by gene segmental duplication.

Interestingly, SiLRR-RLK10-9 was found to have collinearity with

other 14 species (Figure 6), and SiLRR-RLK10-9 also underwent

segmental replication events in sesame, suggesting its key

contributions to the expansion of the SiLRR-RLK gene family.

The SiLRR-RLK IV and III subfamilies, representing the two

largest subfamilies, exhibited duplication events. SiLRR-RLKs in the

IV and III subfamilies were also syntenic with the LRR-RLKs in the

other 14 species (Supplementary Table S5). 36 and 34 LRR-RLK

members from sesame were found to form the SiLRR-RLK IV and

III subfamilies, respectively, based on the phylogenetic tree

(Figure 1). Furthermore, there were 16 genes and 12 genes

underwent segmental duplication in IV and III subfamilies,

respectively (Figures 1, 5C). Under M. phaseolina stress, 13 and

16 SiLRR-RLK genes in IV and III subfamilies were induced

significantly (Figure 10, Supplementary Table S8). Notably,

proteins from subfamilies IV and III were both assigned to the
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GO terms phosphorylation and kinase activity (Figure 3A). These

results point to the idea that the duplicated events within the SiLRR-

RLK IV and III subfamilies during evolution may contribute to the

perception of M. phaseolina stress signals in sesame.

The LRR-RLK genes are crucial in recognition and signal

transduction in biotic and abiotic stresses, as shown by the fact

that their promoters possess many phytohormone and stress

responsive cis-elements (Figure 4), hence, the ever-changing

environment may also lead to the replication and expansion of

the SiLRR-RLK gene family. On the other hand, evidence that there

are the ubiquitous redundant functions of SiLRR-RLK genes has

indicated that the diversity of SiLRR-RLK genes may also be the

result of random genomic drift (Eyüboglu et al., 2007; Albrecht

et al., 2008). After duplication, duplicated genes usually accumulate

mutations and lead to a functional diversification of LRR-RLK

proteins. Arabidopsis LRR-RLKs are primarily involved in

regulating plant growth and development and stress responses

(Biotic and abiotic stresses) or both (Li and Tax, 2013). In this

investigation, KEGG enrichment of SiLRR-RLKs revealed the

pathways involved in resistance to M. phaseolina, such as MAPK

signaling pathway, plant hormone signal transduction and plant

−pathogen interaction pathway (Figure 3B). SiLRR-RLKs may sense

extracellular signals, act as early warning genes, and then regulate

the early stress response in plants (Lin et al., 2017). In this study,

SiLRR-RLKs were shown to play a role in plant−pathogen

interactions by transmitting and amplifying signals downstream

through protein phosphorylation and kinase activity (Figure 3).

In general, the expression patterns of genes represent their

potential functions. Therefore, the expression profiles of SiLRR-

RLKs under M. phaseolina stress may help us to gain insight on the

function of SiLRR-RLKs. In our research, several genes in response

to fungal infection were identified. Many SiLRR-RLKs act as pattern

recognition receptors to initiate the PTI (Pathogen-associated

molecular pattern-triggered immunity). SiLRR-RLK3-5,

homologous to AtBAK1, can be continuously induced during M.

phaseolina infection (Supplementary Table S8), implicating its

positive function during plant immunity, which is supported by

the central position of SiLRR-RLK3-5 in the PPI network

(Figure 11). In Arabidopsis, the BAK1/BRI1 complex regulates the

cell death process to participate in the immune response by the BR

signaling pathway (Li et al., 2002). Likewise, in tobacco, NbBRI1

participates in brassinosteroid-regulated immune responses by

regulating the concentrations of H2O2 and NO (Deng et al.,

2016). In sesame, SiLRR-RLK8-6, which is homologous to BRI1,

were induced during M. phaseolina stress (Supplementary Table

S8). Their expression patterns were similar to those of SiLRR-

RLK3-5, illustrating that SiLRR-RLK8-6 may form a complex with

SiLRR-RLK3-5 and coregulate plant immunity through the

BR pathway.

SiLRR-RLK3-14 is homologs of NIK1 (NSP-interacting kinase

1), and the abundance of their transcripts was downregulated at

early stage (Supplementary Table S8), which coincides with the fact

that NIK1 acts as a negative regulator in plant immunity (Li et al.,

2019). BRL3 (BR insensitive1-like 3) in Arabidopsis not only senses

FLG22 and regulates ROS homeostasis (Tunc-Ozdemir and Jones,

2017) but also increases permeating agents such as proline in plants,
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which can improve plant drought tolerance without a penalty in

growth (Fàbregas et al., 2018). In sesame, SiLRR-RLK8-7, as a

homolog of BRL3, exhibited a upregulation trend during M.

phaseolina infection, suggesting that SiLRR-RLK8-7 may play a

crucial role in disease resistance (Supplementary Table S8).

The previous results of functional annotation, KEGG

enrichment, promoter analysis, expression pattern and PPI

network of SiLRR-RLKs all showed that SiLRR-RLKs are crucial

in plant immunity. Thus, a coexpression network of SiLRR-RLKs

under M. phaseolina stress was constructed. Interestingly, two

coexpression immune modules were inferred in the core gene set

based on PPI and coexpression network (Figures 11, 12). They are

the SiLRR-RLK12-3/SiLRR-RLK12-13/SiLRR-RLK12-8/SiLRR-

RLK9-6 module, which is homologous to the Arabidopsis BAK1/

PEPR1/RLK7/SOBIR1/MIK2 complex, and SiLRR-RLK10-8/SiLRR-

RLK9-20 module, which is homologous to the Arabidopsis SRF8/

PXC3/IRK complex. In Arabidopsis, the function of the SOBIR1/

BAK1 complex has been well studied, and exogenous NLP20

treatment stimulates the formation of the BAK1/SOBIR1/RLP23

complex and initiates immunity (Gao et al., 2009). Furthermore, the

SOBIR1/BAK1 complex could enhance the resistance of

Arabidopsis to the fungi P. infestans and S. sculrotiorum (Liu

et al., 2016). In addition to BAK1, the function of SOBIR1 in

other species has also been studied in detail. In tomato, the homolog

of SOBIR1 interacts directly with the disease resistance genes CF-4

and VE1, which mediated the resistance to the fungi Cladosporium

fulvum and Verticillium dahliae (Liebrand et al., 2013). SOBIR1 in

cotton was reported to interact with bHLH171, phosphorylate

bHLH171 and confer resistance to the fungus V. dahliae (Zhou

et al., 2019). In tobacco, SOBIR1 can fine-tune ROS production

involved in the immune response to the fungus Cladosporium

fulvum (Huang et al., 2021). These results suggest that the SiLRR-

RLK12-3/SiLRR-RLK12-13/SiLRR-RLK12-8/SiLRR-RLK9-6 module

might be important in resistance to the fungus M. phaseolina

(Figures 11, 12). They might mediate resistance to the fungus M.

phaseolina independently or form dimers or polymers with each

other to mediate the immune response to M. phaseolina jointly,

which needs further study. However, studies on the immune

function of the SRF8/PXC3/IRK (Inflorescence and root apices

receptor kinase) module are not clear. In Arabidopsis, PXC3

(Phloem intercalated with xylem-correlated 3) has been shown to

interact with BAK1 to regulate vascular development (Xu et al.,

2021), but whether it has a function in plant immunity is unknown.

Arabidopsis SRF3 (Strubbelig receptor kinase 3) could coordinate

immune responses, growth and development in plants (Platre et al.,

2022), but the function of SRF8 is uncharted. Therefore, the role of

the SiLRR-RLK10-8/SiLRR-RLK9-20 module resistance to M.

phaseolina in sesame is not clear, and further experiments are

needed to solve this issue.
5 Conclusions

Whole genome identification and comprehensive analysis of the

SiLRR-RLK gene family were carried out in this study. Phylogenetic,

structural, evolutionary and expression profile analyses of SiLRR-
Frontiers in Plant Science 15
RLKs revealed the complexity and diversity of the LRR-RLK gene

family in sesame and its potential roles under M. phaseolina stress.

Furthermore, we found several SiLRR-RLK genes that contributed

to resistance to M. phaseolina. Altogether, the results provided a

framework for further functional study of SiLRR-RLK genes.
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SUPPLEMENTARY FIGURE 1

Statistics of SiLRR-RLK genes regulated by TFs (Genes with TF binding sites
were considered to be regulated by TFs).
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SUPPLEMENTARY FIGURE 2

Phylogenetic analysis and motif compositions of LRR-RLK proteins in six
dicotyledons. Green hollow pentacles highlight SiLRR-RLK proteins.

SUPPLEMENTARY FIGURE 3

Expression profiles of SiLRR-RLKs during seed development (S1, S2, S3

and S4).

SUPPLEMENTARY FIGURE 4

Expression profiles of SiLRR-RLKsofCluster 1 (A), Cluster 2 (B), Cluster 3 (C), Cluster
4 (D), Cluster 5 (E) and Cluster 6 (F) during M. phaseolina infection (0 - 48 h).
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