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Tobacco is a valuable crop, but its disease identification is rarely involved in

existing works. In this work, we use few-shot learning (FSL) to identify

abnormalities in tobacco. FSL is a solution for the data deficiency that has

been an obstacle to using deep learning. However, weak feature

representation caused by limited data is still a challenging issue in FSL. The

weak feature representation leads to weak generalization and troubles in cross-

domain. In this work, we propose a feature representation enhancement network

(FREN) that enhances the feature representation through instance embedding

and task adaptation. For instance embedding, global max pooling, and global

average pooling are used together for adding more features, and Gaussian-like

calibration is used for normalizing the feature distribution. For task adaptation,

self-attention is adopted for task contextualization. Given the absence of publicly

available data on tobacco, we created a tobacco leaf abnormality dataset (TLA),

which includes 16 categories, two settings, and 1,430 images in total. In

experiments, we use PlantVillage, which is the benchmark dataset for plant

disease identification, to validate the superiority of FREN first. Subsequently, we

use the proposed method and TLA to analyze and discuss the abnormality

identification of tobacco. For the multi-symptom diseases that always have

low accuracy, we propose a solution by dividing the samples into

subcategories created by symptom. For the 10 categories of tomato in

PlantVillage, the accuracy achieves 66.04% in 5-way, 1-shot tasks. For the two

settings of the tobacco leaf abnormality dataset, the accuracies were achieved at

45.5% and 56.5%. By using the multisymptom solution, the best accuracy can be

lifted to 60.7% in 16-way, 1-shot tasks and achieved at 81.8% in 16-way, 10-shot

tasks. The results show that our method improves the performance greatly by

enhancing feature representation, especially for tasks that contain categories

with high similarity. The desensitization of data when crossing domains also

validates that the FREN has a strong generalization ability.
KEYWORDS

tobacco disease identification, few-shot learning, feature representation, instance-
embedding, task-adaptation, cross-domain
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1 Introduction

Tobacco is a valuable crop that has a significant economic

impact in many countries, such as China, India, and the USA, where

it serves as an important tax resource for government revenue.

Diseases and pests always lead to the degradation of the quality and

yield (Strange and Scott, 2005). For tobacco plants, diseases or pests

always cause serious damage to tobacco leaves, which are the main

harvest of tobacco plants. Even if the leaves are not destroyed, the

quality will be greatly reduced by the infection. Due to the high

incidence of diseases, disease control in tobacco cultivation is

heavily dependent on pesticides that threaten the safety of

humans, animals, soil, and the environment (World Health

Organization, 2017; Kahl et al., 2018). The traditional diagnosing

methods rely on biochemical experiments or experts that are

expensive and untimely. Farmer experiences sometimes are

inaccurate. Therefore, an autodiagnosing system that can provide

fast and easily accessible services for farmers is required in the

agriculture industry (Kamilaris and Prenafeta-Boldú, 2018).

With the boom in deep learning, image-based recognition

methods have been greatly improved. Computer vision-based

deep learning methods rely on large-scale data to achieve good

performance. For plant diseases, the collection of data is not only

time-consuming but also requires the involvement of experts. Date

deficiency has been the barrier to taking advantage of deep learning

methods for plant disease identification (Kamilaris and Prenafeta-

Boldú, 2018). Few-shot learning (FSL) has been proposed in recent

years to target the problem of data shortages. By mimicking human

perception, FSL methods do not need large amounts of data to learn

new concepts.

The metric-based methods, as a mainstream method of FSL, are

widely studied due to their intuitive underlying theory and good

performance (Li et al., 2021). The query sample should be classified

into the category that is the nearest one in support categories (Wang

et al., 2020). Many classical methods in this branch have been

proposed from different perspectives: feature extraction (Salau and

Jain, 2019), distance metrics, etc., such as the siamese network

(Koch et al., 2015), matching network (Vinyals et al., 2016),

prototypical network (Snell et al., 2017), relation network (Sung

et al., 2018), CoveMNet (Li et al., 2019), meta-baseline method

(Chen et al., 2021), etc. Due to the fact that many scenarios cannot

meet the high requirement of data, many related types of research,

such as meta-transfer learning (Sun et al., 2019), cross-modal zero-

shot hashing (Song et al., 2022), etc., were conducted actively to

improve the identification performance.

Because FSL meets the small data scenarios, it raises high

concerns in studies of plant disease identification (Yang et al.,

2022). The siamese network, triplet network, baseline, baseline++,

DAML, matching network, FEAT (Ye et al., 2020), etc., were used

for plant disease identification (Argüeso et al., 2020; Jadon, 2020;

Zhong et al., 2020; Afifi et al., 2021; Li and Chao, 2021; Li and Yang,

2021; Nuthalapati and Tunga, 2021). The most commonly used
Abbreviations: FSL, few-shot learning; TLA, tobacco leaf abnormalities dataset;

PV, PlantVillage; GAP, global avg-pooling; GMP, global max-pooling; GC,

Gaussian-like calibration; PT, power transform; TA, task adaptation.
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dataset is PlantVillage (PV). Moreover, citrus, bananas, coffee, rice,

cucumber, etc., were studied. These methods were tried from

various perspectives and made important progress.

Although FSL has the advantage in scenarios of data deficiency,

it still has some challenging issues that need to be addressed. We

argue that the weak feature representation is the most fundamental

issue that needs to be addressed urgently. As is well known,

traditional deep learning methods rely on large-scale data in

training to obtain rich feature representation. While in FSL, the

network has never been trained by the target categories. Hence,

feature extraction ability is weak. The weak feature representation

directly leads to low accuracy. In FSL, the basic idea is that the

model can generalize previous knowledge to new concepts. Hence,

the weak feature representation naturally causes troubles in the

generalization of the model. Generalization refers to the ability of a

trained model to perform well on unseen or previously unseen data

in deep learning. It is a crucial purpose of training deep learning

models as it determines if they can make accurate predictions

beyond the training data. In the problem definition of FSL,

generalization has a higher requirement since it requires

generalizing to unseen categories in training. When the unseen

categories are from another domain, it is called cross-domain,

which demands stronger generalization capabilities of the model.

Cross-domain generalization is a more challenging issue in FSL,

while it is common in applications. Taking tobacco disease

identification as an example, suppose that all categories of

tobacco diseases are required to be identified and only a few

images are available for each category, which means that these

data cannot be used in training according to the definition of FSL.

Here, cross-domain, which uses data from domain A for training

and data from domain B for testing, is inevitable.

For most of the current metric-based FSL methods, the

framework generally includes an embedding and a distance

measurement module. Enhancing the feature representation

means getting a better embedding. In the pipeline of most

networks, the CNN backbone is used for embedding an image

into feature space. Generally, at the end of the CNN, a global

average pooling (GAP) is used to vectorize the feature maps. Under

the data-limited condition, we try to mine more features from

embedding. For this reason, we propose to use global max pooling

(GMP) and GAP together to enhance the feature representation. In

addition, we found that instead of a Gaussian distribution, the

feature vectors have a right-skewed distribution in our previous

work (Lin et al., 2022a). Gaussian-like calibration (GC) is used to

make the distribution of features close to the normal distribution.

The data distribution affects the performance of the distance

measurement. Power transform (PT) is one of the methods

adopted in this work for calibrating the skewness. Hence, in our

design, we also adopt PT to calibrate features. The GAP, GMP, and

PT are used for the instance embedding.

In addition to instance embedding, task adaptation is a

popular method to improve the feature representation. In the

FSL paradigm, because the classification relies on the given

support set, the context of the support set significantly affects

the identification result. The difficulty of the classification greatly

depends on the identification range in which the object is
frontiersin.org
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classified. Specifically, it is a challenging issue for tasks with high

similarity categories. For example, given two tasks as shown in

Figure 1, task 1 contains three different diseases of grape, and task

2 contains three different diseases belonging to grape, apple, and

peach. Now the query sample is a kind of grape disease. The stars

are the embeddings after going through the encoder

independently. Obviously, the identification of the query sample

is quite difficult in task 1 but much easier in task 2 due to the

context. However, cases like task 1 occur more frequently because

users are concerned with the identification of diseases belonging

to the same species than those belonging to different species. The

images of the same species always share many common features,

which makes the classification difficult. That is the reason that in

(Lin et al., 2022a, Lin et al., 2022b), the identification of the 10

categories of tomatoes is the most difficult task. For cases like task

1, an independent and static embedding without contextualization

is not enough. If the embeddings can be adapted according to their

current context, such as these circles, the features will be more

discriminative. The dynamic contextual adaptation and the

classification will be easier and more flexible.

Yoon et al. (2019) proposed TapNet by using feature linear

projection for task adaptation. Baik et al. (2021) proposed a task-

adaptive loss function. Zhao et al. (2021) proposed a cross-nonlocal

neural network for capturing the long-range dependency of the

samples and the current task. Lichtenstein et al. (2020) proposed

TAFSSL in transductive and semisupervised cases when some

additional unlabeled data accompanies them. In Huang et al.

(2022), a task-adaptive transformer module was proposed to

automatically establish links between support and query images.

Some methods concerning the relationship of the context, such as

transformer (Vaswani et al., 2017), LSTM (Shi et al., 2015), deep set

(Zaheer et al., 2017), graph convolutional network (Zhang et al.,

2019), can also be used. For example, the FEAT proposed in Ye et al.

(2020) uses a transformer to adapt the support set.

Based on the above analysis, we propose a feature representation
Frontiers in Plant Science
 03
enhancement network (FREN) that intends to improve the feature

representation not only in instance embedding but also in task

adaptation. We use the meta-baseline (Chen et al., 2021) as the

baseline network, which is a metric-based FSL network. For instance,

in embedding, we use GAP, GMP, and PT to enhance the feature

representation. For task adaptation, we get inspiration from FEAT

and adopt self-attention for contextualization. Different from their

works, our method adapts the support feature vectors and the query

feature vectors both to keep them in a consistent feature space.

Another difference is that they adapt the centroids, but we adapt the

support feature vector first before calculating centroids to preserve

more features.

In brief, the main contributions of this work are summarized in

three ways:
1. We propose the network FREN, which integrates double

pooling, self-attention, and Gaussian-like calibration for

enhancing feature representation.

2. We create the dataset TLA, which fills the gap in tobacco

disease data.

3. We demonstrate that FREN outperforms the other related

works and has good generalization. The identification of

tobacco abnormalities is discussed, and some solutions for

the application are proposed. These solutions also can be

applied to other plants.
The rest of this paper is organized as follows: Section 2 is the

details of our method. Section 3 introduces the materials used in

this work, including hardware and data. Three datasets are Mini-

Imagenet, PV, and TLA. The settings for data are also introduced in

this section. Section 4 is about the experiments and results.

Identification of 10 categories of tomato of PV and 16 categories

of tobacco abnormalities are illustrated in this section. Section 5 is

the discussion, including the motivation, contributions findings,

and limitations of this work. Section 6 is the conclusion.
FIGURE 1

An example indicating the significance of task adaptation.
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2 Method

2.1 Problem definition

FSL is the method by which the categories appearing in the test

are never seen in training. For the identification of the unseen

categories, only a few samples are given as supporting materials.

The data are organized as tasks denoted as T, defined in Equation 2.

Each task Ti includes a support set and a query set, which are

denoted as S and Q. The S contains n categories, and each category

contains k samples, which is denoted as n-way, k-shot. The

categories of Q should be covered in the range of S, and the

number of samples w in Q is not limited. The objective is to

classify the w samples into the n categories. It is a supervised

learning method, which means the samples used in training are

given labels. It is denoted by (x,y), which is a (image, label) pair. The

problem can be formulized as follows:

Ctrain ∩ Ctest = ∅ (1)

T =  (S(n − way, k − shot),Q(n − way,w � samples)) (2)

where Ctrain is the category in training, Ctest is the category in

testing; Equation 1 means there is no intersection between them.

The pair of (n-way, k-shot) indicates the difficulty of the task. The

increase of n indicates the increase in the complexity of the task, and

the increase of k indicates that the task gets more support.
Frontiers in Plant Science 04
2.2 Framework

The training contains two steps, which are pretraining and

meta-learning. In pretraining, a linear layer is used as the classifier,

and data are used image-wise. In meta-learning, the network is

initialized by the trained model from pretraining. The linear layer is

replaced by a distance measurement module. The data are used

task-wise. The purpose of pretraining is to provide a pretrained

encoder for meta-learning. This stage mimics the human cognitive

mechanism, in which humans already have prior knowledge before

doing a specific task. While the goal of meta-learning is to learn to

learn, a linear layer maps features to a specific set of categories,

while a distance measurement module is used to distinguish

between the different categories, whatever they may be. A well-

trained, pretrained encoder can be seen as a solid foundation that

facilitates subsequent meta-learning.

The architecture is still the classical format: embedding +

distance measurement module, as shown in Figure 2. In this

work, the embedding includes two parts, which are instance

embedding and task adaptation (TA). Each task goes through the

encoder to be a set of feature vectors, which includes VS and VQ.

Each feature representation is concatenated by the results of GMP

and GAP. GC is a component used to calibrate the skewed

distribution of the vectors from GMP and GAP, respectively.

After GC, the outputs of instance embedding are VS0and VQ0
.

Subsequently, the two sets are contextualized by self-attention,
FIGURE 2

The architecture of FREN.
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respectively, to be VS00and VQ00
. The mean vectors of VS00by

categories are calculated as centroids, which are defined as

Equation 3:

CS
i =  

1
k
 o
j∈k

fq(xij))   (i ∈ n,   x ∈ S) (3)

where CS
i denotes the centroid of the ith category in S, fq

includes instance embedding and task adaptation, as shown in

Figure 2, the xij denotes the jth sample of the ith category in S, the n

is the number of ways, and the k is the number of shots in the task.

At the end, the distances of each vector VQ00
from the centroids

are calculated to determine the classification. Cosine similarity is

used to calculate the distances to determine the classification (Han

et al., 2012) defined in Equation 4:

< A,  B >   =  
A · B

jjAjj jjBjj =
on

i=1AiBiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

i=1A
2
i

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

i=1B
2
i

q (4)

The probability that sample xQ belongs to category Ci is

calculated with Equation 5:

p(y = CijxQ,   S) =  
exp ( < fq(x

Q),    Ci > )

oi∈nexp( < fq(xQ),  Ci > )
(5)

where p(y = Ci|x
Q,S) is the softmax possibility of the sample xQ

belonging to the category Ci by given S, and<.,.> denotes the

distance of two vectors. Due to the fact that it is a classification

task, we use cross-entropy loss defined in Equation 6:

L(y,  Ci) =  −
1
q
 o

q

i=1
Ci log (P((y = Ci)jxQ,   S)) (6)

where q is the number of query samples of a task. The objective

is defined in Equation 7:

q← argmin
q

−
1
w
 oxQ∈Qoc∈Cllog (P(y = cjxQ,   S)) (7)

where q is trainable parameters; w is the number of samples in

Q, C is the category set of S; l is a sign value, it is 1 when y = c, it is 0

when y ≠ c; y is the prediction category; and P(y = c|xQ,S) is the

possibility of query sample xQ supporting S belongs to class c.

2.2.1 Instance embedding
In this work, we adopt Resnet12 as the CNN encoder, which

includes four residual blocks. The output from the last residual

block is a set of feature maps with the shape of c × h × w (c is the

channels, h and w are the height and weight of each feature map).

The shape of a tensor from the last residual block of Resnet12 is 512

× 5 × 5. Global pooling is adopted to reduce the dimension of each

feature map to a value. By using global pooling, the shape of the

tensor becomes 512 × 1 × 1, which can be seen as a vector. A vector

is much easier for subsequent computing. The GAP is the most

common operation for downsampling. Each feature map is seen as a

5 × 5 matrix. For a matrix, besides the mean value, the max value,

the min value, and the standard deviation are also feature values.

These feature values have different purposes. Generally, the average

value is commonly used to represent a set. The maximum value and
Frontiers in Plant Science 05
the minimum value, to some extent, represent significant features.

Only using GAP is crude, as many useful features are lost. More

features should be mined from these feature maps, especially under

the few-shot condition. Therefore, besides GAP, GMP is used to

vectorize the feature maps. The outputs of GAP and GMP are

concatenated into one feature vector.

For the vectors from double pooling, GC is executed to make

these vectors close to a normal distribution and it does not change

the dimension of the feature vector. The subvectors of GAP and

GMP should be calibrated, respectively, and then concatenated

together. The dimension of the feature vector output from the

instance embedding is 1,024 × 1 × 1. The GC is arranged before the

self-attention because both the two modules change the vectors, and

the effectiveness of task adaptation could be weakened or destroyed

by calibration.

PT is a family of functions applied to create a monotonic

transformation of data using power functions, which makes the

data a more Gaussian-like distribution. As a method of Gaussian

calibration, PT can adjust the distribution shape of data to some

extent, making it more consistent with modeling assumptions and

improving modeling accuracy. It is described by Tukey in Tukey

et al. (1977) as Equation 8:

v0 =

(v + 1e − 6)b if b > 0

log(v + 1e − 6) if b = 0

−((v + 1e − 6)b ) if b < 0

8>><
>>:

(8)

where v = [v1,…, vi,…,vd] ∈Rd is a d dimension vector, 1 ≤ i ≤ d,

vi denotes its value in the ith position, ϵ = 1e−6 is used to guarantee

that fq(x) + ϵ is strictly positive in every position, and b is a

hyperparameter to determine the skewing degree. Note that b = 1

leads to no effect, and decreasing b can phase out the right-skewed

distribution. It has been demonstrated that when b is 0.5, the feature
distribution gets closest to the Gaussian distribution, and the results

are the best (Lin et al., 2022a). We also use b = 0.5 in our

experiments. We designed a GC module that consists of four steps:
• Nonnegative processing: the raw feature vector contains

negative values. A nonnegative processing is needed before

calculating the square root (b = 0.5). We lift all values of a

vector until no negative values exist by changing the

data distribution.

• PT.

• Euclidean normalization: it is used to scale the features to

avoid the large variance feature vectors that predominate

the others (Hu et al., 2021).

• Centralization: it makes all values symmetrical on the

y-axis.
2.2.2 Task adaptation
In task adaptation, the desired outputs from self-attention are two

sets of contextualized feature vectors ofVS0andVQ0
, denoted asVS00and

VQ00
. The self-attention does not change the dimension of each input

element. Hence, the dimension of each feature vector VS00 remains at

1,024 × 1 × 1. In FSL, the context mainly means the support set.
frontiersin.org
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However, if only adapting VS0without VQ0
, the adaptation may cause a

gap between VS00and VQ00
. Hence, VS0and VS0are both adapted. After

adaptation, VS00 is used to calculate centroids.

The self-attention, also known as an intra-attention mechanism,

is designed to capture dependencies and relationships between

different elements within a sequence of data. Self-attention has

several advantages, including the ability to capture long-range

dependencies, handle variable-length inputs, and model

relationships between distant elements in the sequence. Also, it

has the permutation-invariant property to keep the output sequence

in the same order as the input. This is an important attribute to

guarantee that a certain output vector corresponds absolutely to the

input vector. Because the vectors belonging to the same category are

used to calculate the mean vector after adaptation, it is important to

ensure that these vectors remain in the same order without causing

any confusion. These characteristics are very suitable for us to use

self-attention for task adaptation.

In the implementation of the self-attention, for the input set X,

three vectors, Q, K, and V are generated by linear projection with

three learnable matrixes,WQ,WK, andWV. TheQ is seen as a query,

the K is the key, and the V is the value of each element in the set.

The relevance of a query element to the other elements is calculated

by a scaled dot product of the Q with each K. The output is a set of

values called attention score, which will be used as the weight to

extract features from each V. A higher score means stronger

relevance of the two elements. The transformed vector is not itself

but the summation of the attention score weighted values, which

means the output has already been contextualized. The matrix

representation can be described in Equations 9, 10:

Attention(Q,  K ,  V) = softmax(
QKT

ffiffiffiffiffi
dk

p )V (9)

Q  =  X  � WQ;K   =  X  � WK ;V   =  X  � WV (10)
3 Materials

3.1 Hardware

The configuration of hardware used in this work is: graphics:

Tesla V100-DGXS-32 GB; video memory: 32 G; processor: Intel(R)

Xeon(R) CPU E5-2698 v4 @ 2.20 GHz; and operating system:

Ubuntu 18.04.6 LTS. The deep learning framework is PyTorch.
3.2 Data

In this work, we use three datasets in experiments, which are

Mini-Imagenet, PV, and TLA. The settings and purposes of use are

described below.

3.2.1 Mini-Imagenet
As a subset of Imagenet, Mini-Imagenet includes 100 categories

and 600 images per category. This dataset is a general dataset that
Frontiers in Plant Science 06
includes categories in a wide range. In this work, it is used as

pretraining material and also as testing material for cross-domain.

3.2.2 PlantVillage
PV (Hughes and Salathé, 2015) is a dataset of plant diseases. It

was released in 2015 by Pennsylvania State University. It is the most

frequently used dataset in academic research up to now for plant

disease recognition. It includes 50,403 images crossing over 14 crop

species and covering 38 categories, as shown in Figure 3. This

dataset is used for two purposes: (1) to verify the superiority of our

method by comparing it with related works; and (2) to be the

material in cross-domain testing. We use the data after

augmentation and select 1,000 images per category.

3.2.3 Tobacco leaf abnormality dataset
All the images of TLA were collected in July and August, which

is the mature period of tobacco. These images were taken in the field

at the location (N25.75, W100.13). The temperature was in the

range of 16°C–28°C. It is the rainy season in this location. The

photographic equipment is a Canon digital camera (Canon D200).

The original resolution of the image is 5,184 × 3,456. To maintain

the practical significance of this dataset, we try to include all

abnormalities found during the fieldwork. The tobacco

agronomists undertake the labeling work to guarantee the

accuracy of labels. This dataset contains the most common

infections of tobacco and can be extensively used for

identification in other tobacco cultivation areas (ITAS, 2020).

Finally, we classified 16 categories, which include 10 infection

diseases from bacteria, fungi, and viruses, three nonparasitic

diseases, two pest-trace left, and a healthy category. Two settings

are included in TLA: raw setting and processed setting.

In this work, only single-disease identification is involved.

Multidisease identification is discussed in Section 5. We try to

select the images where only one disease occurs in each image to

raw setting. The raw data show the long-tail distribution, obviously.

Some diseases are very common in this field, such as wildfire, frog

eye, tobacco mosaic virus (TMV), weather fleck, etc., and some

diseases are rarely found, such as anthracnose, tomato spotted wilt

virus (TSWV), etc. The raw setting meets the requirement of up to

seven-shot testing because the least number of samples is eight. The

information on raw setting is listed in Table 1, and the samples are

shown in Figure 4. Meanwhile, a processed setting is provided in

TLA. We preprocess the images by slicing them so that only one

disease is included in each image. There are still 16 categories in the

processed setting. The number of samples is listed in Table 1, and

the samples are shown in Figure 5.

There are three reasons for the segmentation of the raw images.

First, the segmentation can help reduce the effects of surroundings,

such as other leaves, soils, etc. Second, segmentation can help

highlight the spots. Because some disease spots are very small,

such as frog eye, resizing and downsampling cause significant loss to

these small spots. Third, the segmentation can help increase the

number of samples of these uncommon diseases. After

segmentation, the number of these categories is increased, such as

TSWV, anthracnose, black shank, and genetic abnormality. The
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images of TSWV and anthracnose are increased more than black

shank and genetic abnormality because the lesions of the first two

diseases are smaller than the last two; the segmentation operation

does not destroy the intact lesion features. Again, the segmentation

can guarantee that each image includes a single disease.

By using computer vision for disease identification, the key is to

identify the discriminative features without any biochemical testing.

Hence, the visible symptoms of different diseases are very critical. In

fact, many diseases show very similar symptoms initially and then

show some different characteristics as they progress. The typical

symptoms are summarized below.
Fron
1. Wildfire. The spots are initially very small and greasy and

later on become necrotic and quickly turn brown. Lesions

may conflate on the lamina, and altered tissues may rot

and fall. With tabtoxine-producing strains, the spots are

surrounded by a more or less marked yellow halo.

2. Brown spot. The spots first are small wet spots and become

brown and circular rapidly, often containing discrete

concentric rings and surrounded by a halo of chlorotic

tissue. In humid conditions, it has a black, velvet-like

conidial layer on the surface of spots.

3. Frog eye. The lesions are small, circular, light beige, and

parchment-like. Some spots are covered by tiny black dots

composed of clusters of conidiophores and conidia.

4. Anthracnose. This lesion is initially dark and oily, then

becomes greyish, parchment-like, and surrounded by a

brown border. The acervulus can be observed in the center

of the enlarged spots.

5. Target spot. The first symptoms of the target spot are

small white or tan-colored primary lesions. Next, a series
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of necrotic rings around the primary lesion are created as

the spot spreads outward. It has a yellow-colored halo of

chlorotic tissue bordering the outermost necrotic layer.

The necrotic tissue in the center will split or fall out when

the spot grows large enough.

6. Black shank. The typical features of this infection are on the

roots and stems. Foliar infections occur during rainy periods.

They are large brown or black spots on the lower leaves.

7. TMV. Mottling and, more or less importantly, “vein

banding” are observed. The lamina is sometimes heavily

deformed by the presence of blisters. Leaves can curl up

and become filiform.

8. Cucumber mosaic virus (CMV). More or less severe

mosaic patterns, vein banding, or interveinal yellowing.

It causes various anomalies of the lamina, such as blisters,

filiform shape, or curling. Following the veins, localized

necrotic lesions consisting of small beige to brown etches

are observed. The chlorotic or necrotic lines give lamina

an “oak leaf” appearance sometimes.

9. Potato virus Y (PVY). Mottling, vein yellowing (vein

clearing), or greener lamina areas along the veins (vein

banding) can be observed. Browning of the midrib or

secondary veins shows on the lamina. When the infections

are very severe, necrosis tissues with a beige to brown color

may appear close to the veins.

10. TSWV. Zonate necrotic spots and concentric necrotic

rings on the leaves can be observed. They are yellow at

first but quickly turn to a reddish-brown color. The apex

leaves are also distorted. Brown to black elongated lesions

are observed on the veins, petioles, and stems. The top of

the plant sometimes bends toward the ground.
FIGURE 3

The samples of 38 categories in PV.
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11. Weather fleck. It is induced by ozone (O3), which is an air

pollutant. After exposure to high levels of atmospheric

pollutants, leaves may develop dark green water-soaked

spots. Within hours, the spots turn dark brown, sometimes

remain brown, but often turn white within 48 h, and the spots

may coalesce.

12. Sunscald. Wide parts of tissues turning brown and gradually

drying up are particularly observed on the leaves exposed to

sunlight during periods of extreme heat.

13. Genetic abnormality. The plant modified the habit, color, and

shape of some of its organs.

14. Phthorimaea operculella. The affected tobacco leaves were

caved into wide submerged channels, leaving only the upper

and lower transparent epidermis, which later turned into

irregular yellow-brown or russet patches.

15. Nematodes. The distinctive features of root-knot nematodes

are found mainly in the roots, and damage to the leaves is

mainly wilt along the leaf margins and leaf tips.
Frontiers in Plant Science 08
4 Experiment and result

In total, we conducted 17 experiments to verify the proposed

methods and the identification results of the TLA. These

experiments were conducted with different data settings in

pretraining, meta-learning, and testing. For different experiments,

the results with different n-way and k-shot are reported. The

configurations are summarized in Table 2 for better understanding.
4.1 Implementation details

In our experiments, Resnet12 is adopted as the backbone

network. The Resnet12 includes four residual blocks. The

channels of kernels in the four blocks are [64, 128, 256, 512].

Each block contains three 3 × 3 convolutional layers with one stride,

a ReLU activation function, and a max pooling for downsampling.

All images are resized as 3 × 80 × 80. After going through the four
TABLE 1 The categories and number of samples in TLA.

Super category ID Category Raw setting Processed setting

Bacteria

1 Pseudomonas syringae pv. tabaci (wildfire) 89 89

Airborne fungi

2 Alternaria leaf spot (brown spot) 50 50

3 Cercospora nicotianae (frog eye) 50 50

4 Colletotrichum tabacum (anthracnose) 8 27

Soil-borne fungi

5 Target spot 50 50

6 Phytophthora nicotianae (black shank) 11 12

Virus

7 Tobacco mosaic virus (TMV) 66 66

8 Cucumber mosaic virus (CMV) 51 51

9 Potato virus Y (PVY) 35 35

10 Tomato spotted wilt virus (TSWV) 8 24

Nonparasitic

11 Pollution spots (weather fleck) 59 59

12 Sunburn/sunscald 68 68

13 Genetic abnormality 9 13

Pest-trace left

14 Phthorimaea operculella 50 50

15 Nematodes 41 41

Others

16 Healthy 50 50
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residual blocks, each image is parsed into feature maps of 512 × 5 ×

5. In pretraining, the batch size is 128, training epochs are 100, the

optimizer is SGD, the learning rate is 0.1, weight decay is 5e-4, and

milestones are 90. In meta-learning, the batch size is 200, each

contains four tasks, training epochs are 20, the optimizer is SGD,

the learning rate is 0.001, and weight decay is 5e-4.
4.2 Experiments on PV

All the identification accuracies are average accuracy values

(ACC (%)) of 10 epochs. First, we conduct a group of experiments

to show the improvement of our method by comparing it with the

baseline and FEAT. In e1 to e7, the most difficult also the most

meaningful setting of PV is used. Ten categories (ID: 29-30)

belonging to tomato are used for testing, and the remaining 28
Frontiers in Plant Science 09
categories (ID: 1-28) covering 13 species are used for training

(category ID refer to Figure 3).

As shown in Table 3, we conducted experiments on baseline,

FEAT, and FREN, and a group of ablation experiments on FREN.

The e1 is the baseline in this work. In baseline, only a GAP is used to

vectorize the feature maps. The e1, e3, e4, e6, and e7 are the ablation

experiments. On the baseline, we add the TA module in the e3.

Compared with the e1, the accuracy of the 1-shot setting has been

improved from 57.46% to 62.50%. It indicates the effectiveness of

the TA module. In the e4, we add the GMP on the baseline, and the

accuracy of the 1-shot setting has been improved from 57.46% to

62.62%. It validates that the GMP also enhances feature

representation. In e6, we add GMP and TA to the baseline. The

accuracy of e6 is higher than e4 and e4, which means that the two

components both make contributions to the improvements. It also

indicates that self-attention works well with the double-pooling
FIGURE 4

The 15 abnormalities and a healthy category in TLA.
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vectors. The e2 and e5 are two experiments to compare the FEAT

with the proposed FREN. In FEAT, they also use a task-adaptation

module. We got inspiration from their work, but our design is

different from theirs. Compared with e2 and e3, the results of e3 are

better than e2, which indicates that our task adaptation is more

effective than theirs. Comparing e2 with e1, the FEAT is more

powerful than e1, which indicates that task adaptation is critical for

the FSL method. Compared with the e2 and e5, the improvement of
Frontiers in Plant Science 10
GMP is again validated. Compared with e4 and e5, the two groups

of results are very close, which indicates that the contribution of the

task adaptation is weak. While comparing the e5 to the e6, the

superiority of the TA proposed in our work has again been verified.

In the e7, the FREN achieves the best performance by using the

GAP, GMP, and GC together to be the independent embedding and

using the TA for task adaptation. It improves the accuracy by about

10% on the 1-shot and 5-shot tasks compared with the baseline. The
FIGURE 5

The images of the processed setting in TLA.
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training loss, training accuracy, validation loss, and validation

accuracy of pretraining and meta-learning are shown in Figure 6.

We use t-SNE (Van der Maaten and Hinton, 2008) to visualize

the results of baseline and FREN, as shown in Figure 7. It is obvious

that the feature vectors parsing by the baseline are interlaced

without a clear classification border. By using FREN, the feature

vectors are clustered more tightly in each category, and the distance

between categories is expanded.

Multi-head self-attention is an extension of the self-attention

mechanism in the transformer architecture. By employing multiple

attention heads, the model can capture different types of

information and learn more complex relationships within the

input sequence. The Q, K, and V are linearly projected for h

times. The independent attention outputs are then concatenated

and once again projected to obtain the final values. We conducted a

group of comparative experiments to show the effect of h heads. The

results are listed in Table 4. It shows that the performance does not

improve with the increase in heads. For a lightweight CNN (e.g.,

Resnet12), the self-attention module accounts for a large proportion

of the overall model. When increasing the number of heads, the size

of self-attention also increases sharply. The lightweight deep

networks perform better than larger or deeper networks in FSL

(Lin et al., 2022b). This finding is demonstrated in this work again.

In the rest of the experiments, we use one-head self-attention.
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4.3 Compared with related works

In order to show the superiority of our method, we compare it with

some recent related research. As mentioned, various data settings for

PV have been used in existing works. In them, the setting of 10

categories of tomatoes is the most difficult setting for testing. The

reason is that when the categories are very similar to each other, the

classification becomes challenging. However, this setting is more

concerning for farmers because they are concerned with identifying

the different diseases of the same plant. So, here, we compare with

recent work that also conducted experiments with the same data setting

and used the FSL methods, which are close to our research. These

works are semisupervised method (Li and Chao, 2021), transformer

contextualization + Mahalanobis distance (Nuthalapati and Tunga,

2021), multiscale feature fusion + channel attention (Lin et al., 2022b),

frequency feature representation + Gaussian calibration (Lin et al.,

2022a). The semisupervised method by Li and Chao (2021) is an early

work to utilize a semisupervised learning strategy in FSL. It is a new

attempt that follows the saturation of traditional FSL methods for plant

disease identification. In the work of Nuthalapati and Tunga (2021),

the authors also use self-attention to contextualize the support set and

use squaredMahalanobis distance to calculate the distance of the query

samples to the support samples. This is a typical example of task

adaptation in this research field. The works onmultiscale feature fusion
TABLE 3 The ACC (%) of baseline, FEAT, and the ablation experiments of FREN.

ID Method Module k-shot

GAP GMP FEAT TA GC 1 5 10 20 30 40 50

el Baseline ✓ 57.46 75.12 79.32 81.41 82.48 83.32 83.50

e2 FEAT ✓ ✓ 61.57 79.67 83.57 85.51 86.43 86.93 87.01

e3 ✓ ✓ 62.50 81.28 85.29 87.21 88.24 88.57 88.75

e4 ✓ ✓ 62.21 79.52 83.00 84.74 85.62 86.29 86.57

e5 ✓ ✓ ✓ 62.17 80.09 83.77 85.66 86.71 87.14 87.45

e6 ✓ ✓ ✓ 64.27 83.04 86.62 88.54 89.33 89.78 89.75

e7 FREN ✓ ✓ ✓ ✓ 66.06 84.22 87.52 89.48 90.35 90.48 90.82
frontier
Experiment configuration: data (10 categories of tomato of PV for testing, the remaining 28 categories of PV for training), Resnet12, 5-way, one-head, lr (pretraining: 0.1, meta-learning: 0.001),
epoch (pretraining: 100, meta-learning: 50).
Bold font indicates the highest results.
TABLE 2 The configuration of our experiments.

ID Pretraining Meta-learning Testing n-way k-shot

e1, e2, e3, e4, e5, e6, e7 PV-28 PV-28 PV-10-T 5 1, 5, 10, 20, 30, 40, 50

e8, e9 PV-28 PV-28 PV-10-T 5 1, 5, 10

e10, e11, e12, e13, e14, e15 Mini-100 PV-38 TLA-raw 16 1, 5

e16 Mini-100 PV-38 TLA-pro 16 1, 5, 10

e17-A, e17-B Mini-100 PV-38 TLA-pro 20 1, 5, 10
The PV is separated into two parts: PV-28 and PV-10-T.
PV-10-T, the 10 categories of tomatoes in PV; PV-28, the remaining 28 categories of PV; PV-38, the full 38 categories of PV; Mini-100, the full 100 categories of Mini-Imagenet; TLA-raw, the raw
setting of TLA; TLA-pro, the processed setting of TLA.
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+ channel attention (Lin et al., 2022b) and frequency feature

representation + Gaussian calibration (Lin et al., 2022a) do not use

task adaptation but feature enhancement. In the work of Lin et al.

(2022a), they use a Gaussian calibration that has positive effects on the

performance. The results are shown in Table 5. We can see that the
Frontiers in Plant Science 12
proposed FREN outperforms these works on 1-shot to 20-shot settings.

The results demonstrate that the enhancement of instance embedding

and task adaptation are both significant, and the Gaussian calibration is

not only effective for the frequency feature representation but also

useful for spatial feature representation.
B

C D

A

FIGURE 7

The t-SNE visualization of 10 tomato disease identification results. (A) The result of baseline 10-way, 1-shot task. (B) The result of baseline 10-way, 1-
shot task. (C) The result of FREN 10-way, 1-shot task. (D) The result of FREN 10-way, 1-shot task.
BA

FIGURE 6

(A) The loss and accuracy of training and validation in pretraining. (B) The loss and accuracy of training and validation in meta-learning.
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4.4 Experiments on TLA

4.4.1 Group 1
In this section, we use FREN and TLA to discuss the

identification of tobacco abnormalities. In this group, baseline,

FEAT, and FREN are compared, Mini-Imagenet and PV are used

as training data, and the raw setting of TLA is used as testing data.

The goal is to identify the 16 categories in TLA. In pretraining,

Mini-Imagenet is used. In meta-learning, Mini-Imagenet and PV

are used to evaluate the generalization of FREN. In our previous

work (Lin et al., 2022b), we found that a similar dataset used in

meta-learning is more beneficial for cross-domain identification. In

this work, we still use Mini-Imagenet as the general dataset and PV

as a similar dataset of TLA.

The 5-way is the standard configuration in current research on

FSL, which means that just five categories are selected in each task.

In application, 5-way is not reasonable because it is hard to predict

the category of the test data sample in the current five ways. Hence,

for application purposes, the n-way is set as the full category (16

categories) in our experiments. The results of two configurations,

16-way, 1-shot, and 16-way, 5-shot, are reported, as shown in

Table 6. The results of 1-shot are also shown in the confusion

matrix in Figure 8. Each category is queried 1,000 times.

In meta-learning, e10, e12, and e14 use 100 categories of Mini-

Imagenet, and e11, e13, and e15 use 38 categories of PV. All

experiments use TLA for testing. In this group of experiments, we

found that:
Fron
1. FREN outperforms the baseline and FEAT significantly.

2. In all three methods, the performance of using PV is better

than using Mini-Imagenet in meta-learning. It verifies that

using a similar dataset in meta-learning is a better choice

for cross-domain.
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3. Although using similar data is better than using general

data in meta-learning, we found that the tendency is

obvious in baseline and FEAT, but the performance gets

very close in FREN. It means that FREN has better

generalization in more complex cross-domain situations,

such as from general datasets to TLA.

4. In the confusion matrix in Figure 8, it clearly shows the

interplay between the categories. In the confusion matrix,

the TP and TN indicate a right identification, which is

located at the diagonal. The FP and FN indicate

false identifications.
For wildfire, many categories, such as anthracnose, TSWV,

sunscald brown spot, etc., have close features with it, as shown in

Figure 9A. The reason for this is that wildfire is an infection that

exhibits very different symptoms in its evolutionary phases. The

diverse symptoms lead to confusion in identification.

Frog eye, anthracnose, and weather fleck are similar to each

other, as shown in Figure 9B (1). The common pattern the three

categories is the many small, independent white spots. The

difference exists in details, as shown in Figure 9B (2); frog eye

always has a dark brown or black border, anthracnose has the

acervulus in the center of the spot, and weather fleck does not have

an obvious border or acervulus.

Brown spots, target spots, and sunscalds have a similar

appearance and are brown-colored lesions. The same as the target

spot, the concentric ring is the most typical feature of the brown

spot, as shown in Figure 9C (1). The difference between the two

diseases is that the brown spot has a velvet-like conidial layer on the

surface of the spot, but the target spot does not have it. Sunscald

does not have an infection trace around the border and in the center

of the lesion. The burned area is smooth and with a clear edge. The

differences are as shown in Figure 9C (2).
TABLE 5 The ACC (%) of FREN compared with the related works.

ID Method 1-shot 5-shot 10-shot 20-shot

Iterative SS (Li and Chao, 2021) 34.0 53.1 68.8 75.6

Transformer + Mahalanobis (Nuthalapati and Tunga, 2021) 46.6 63.5 –a –a

CMSFF + CA (Lin et al., 2022b) 60.7 78.1 82.2 84.5

Frequency + GC (Lin et al., 2022a) 64.5 80.9 84.1 85.9

e7 FREN 66.1 84.2 87.5 89.5
fr
Testing data: 10 tomato categories in PV.
aNot applicable, bold font indicates the highest results.
Experiment configuration: data (training: ID 1-28 of PV10, test: ID 2938 of PV), Resnet12, 5-way, one-head, lr (pretraining: 0.1, meta-learning: 0.001), epoch (pretraining: 100, meta-learning: 50).
TABLE 4 The ACC (%) of different heads of the self-attention.

ID Head Parameter Time 1-shot 5-shot 10-shot

e7 1 12.2 M 27.1 m 66.06 84.22 87.52

e8 2 16.4 M 31.4 m 65.78 84.06 87.43

e9 3 20.6 M 32.6 m 66.02 84.16 87.47
o

Experiment configuration: data (10 categories of tomato of PV for testing, the remaining 28 categories of PV for training), Resnet12, 5-way, one head, lr (pretraining: 0.1, meta-learning: 0.001),
epoch (pretraining: 100, metalearning: 50).
Bold font indicates the highest results.
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TABLE 6 The ACC (%) of raw setting of TLA using FREN.

ID e10 e11 e12 e13 e14 e15

Method Baseline Baseline FEAT FEAT FREN FREN

Meta-learning data Mini-100 PV-38 Mini-100 PV-38 Mini-100 PV-38

16-Way, 1-shot ACC (%)

Avg-acc 34.5 36.1 25.5 36.1 45.0 45.5

1 Wildfire 17.2 15.1 13.3 18.9 25.5 27.5

2 Brown spot 31.2 26.5 3.9 27.6 42.9 32.5

3 Frog eye 38.8 36.1 26.0 25.7 66.2 47.3

4 Anthracnose 25.0 28.7 20.3 26.5 29.3 26.2

5 Target spot 25.0 31.2 7.5 32.3 42.2 38.7

6 Black shank 63.0 62.5 20.9 50.9 48.5 55.3

7 TMV 51.5 56.6 51.2 78.5 65.4 79.7

8 CMV 29.1 32.5 21.8 33.0 30.9 36.1

9 PVY 22.7 23.0 30.9 23.7 23.7 25.9

10 TSWV 33.1 36.8 29.6 24.3 33.2 56.7

11 Weather fleck 57.3 61.4 59.3 81.7 64.0 65.1

12 Sunscald 24.5 28.0 20.1 33.2 48.7 41.3

13 Genetic abnormality 27.2 25.1 21.0 46.0 42.7 54.5

14 Phthorimaea operculella 19.4 22.5 17.5 21.6 56.4 43.5

15 Nematodes 34.3 36.6 27.3 21.8 43.8 47.0

16 Healthy 53.4 54.2 37.6 32.3 56.8 50.1

16-way, 5-shot ACC (%)

Avg-acc 51.3 53.8 37.7 49.9 66.7 64.4

1 Wildfire 25.9 20.6 20.1 37.5 47.4 44.1

2 Brown spot 42.5 40.5 4.3 42.1 63.5 50.7

3 Frog eye 54.0 52.9 28.9 32.3 82.1 59.0

4 Anthracnose 35.1 38.3 26.3 31.7 34.4 25.5

5 Target spot 41.7 48.4 8.1 45.9 63.9 57.0

6 Black shank 88.9 94.3 29.6 78.7 79.4 86.4

7 TMV 77.3 80.4 77.0 95.1 88.8 93.6

8 CMV 44.1 47.6 24.4 46.9 45.8 52.1

9 PVY 28.6 30.1 53.0 32.6 34.0 35.7

10 TSWV 51.8 59.3 61.9 31.0 63.6 87.2

11 Weather fleck 76.1 79.1 84.4 94.2 83.7 87.9

12 Sunscald 37.5 46.0 35.6 47.2 70.8 58.7

13 Genetic abnormality 63.4 52.8 27.2 77.6 81.2 82.5

14 Phthorimaea operculella 32.4 38.0 24.2 28.0 80.9 69.4

15 Nematodes 51.7 57.5 44.4 26.1 64.5 63.4

16 Healthy 70.3 75.0 53.9 50.9 82.9 77.8
F
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Mini-100, 100 categories of Mini-Imagenet; PV-38, 38 categories of PV.
Experiment configuration: data (pretraining: 100 categories of Mini-Imagenet, meta-learning: 38 categories of PV, test: raw setting of TLA), Resnet12, 16-way, one-head, lr (pretraining: 0.1, meta-
learning: 0.001), epoch (pre-training: 100, meta-learning: 50).
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The confusion matrix shows that TMV, CMV, PVY, and TSWV

have a high degree of similarity, which coincides with the property

that they all belong to virus infections. Specifically, CMV and PVY

both have lightning-like patterns and look similar to each other, as

shown in Figure 9D (1). The difference is that PVY has vein

necrosis, but CMV does not have this symptom, as shown in

Figure 9D (2).

The two pest-trace left symptoms are similar to each other and

have irregular brown patterns, as shown in Figure 9E (1). The

typical difference is that the trace of Phthorimaea operculella has a

translucent film, as shown in Figure 9E (2).

Another unexpected result is that the healthy category is highly

confused with TMV. TMV is a systemic disease with green islands

and chlorotic symptoms that spread throughout the leaves and even

the entire plant. Healthy leaves are not completely flat and smooth.

In high humidity conditions, such as during the rainy season, the

mesophyll grows faster than the veins, resulting in wrinkles. The

shadow of wrinkles leads to the mottled pattern, which is similar to

the mottled pattern of the green island of TMV.

4.4.2 Group 2
In the second group of experiments, Mini-Imagenet is still used

in pretraining, PV is used in meta-learning, and processed setting of

TLA is used for testing.

In Table 7, e16 is conducted with the processed setting. The

results of 16-way, 1-shot, 5-shot, and 10-shot tasks are reported.

The accuracy is improved by about 10% in 1-shot and 5-shot tasks,

respectively, from 45.5% to 56.5% and from 64.4% to 73.7%. The

accuracy of frog eye is improved from 38.8% to 68.3%, the accuracy

of anthracnose is improved from 25.0% to 71.5%, and the accuracy

of weather fleck is improved from 57.3% to 98.3%, which shows that

the effectiveness of segmentation to those diseases with small spots

are prominent.
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However, even using a processed setting, the accuracy of wildfire

is still low at 30.4%. In Figure 10, it is easily found that many diseases

affect the identification of wildfires. The reason is that wildfire has

many widely varying symptoms, which means that the centroid loses

its representativeness. For 1-shot, if the query sample and the support

sample happen to be not the same symptom, the support sample loses

the meaning of support. For n-shot, varying symptoms lead to the

meaninglessness of the centroid. In our opinion, the support samples

should be highly representative of a certain symptom. Based on this

point of view, we classify the samples of wildfires into five categories,

as shown in Figure 11. Hence, the 16 categories are enlarged to 20

categories, named as processed setting 20. The results of this setting

are listed in Table 7 (e17-A).

As the way increases from 16 to 20, the avg-acc drops to 53.9%.

As shown in Figure 12, wildfire 1 has a high ratio to be classified into

the rest symptoms of wildfire, which is the same as the rest of the

symptoms. Because they are all wildfires, they all have more or less

the same characteristics. If a case of wildfire 1 is predicted to be

wildfire 2, it is seen as a correct identification because wildfire 1 and

wildfire 2 are both wildfires. Therefore, from the perspective of an

application, all the cases of wildfire 1 classified from wildfire 2 to

wildfire 5 can be counted into wildfire 1 (263 + 187 + 61 + 132 + 99 =

742). The accuracy of wildfire 1 is counted as 74.2%. All the

predictions belonging to the subsymptoms can be counted into the

super category. Even if the increase in ways will cause a decrease avg-

acc, it is worth using this solution from an application perspective.

All five wildfire symptoms can be used to calculate the accuracy of

wildfires. The sum of the pink area divided by 5,000 is seen as the

accuracy of wildfire. By using this solution, the accuracy of wildfire has

been improved from 30.4% to 73.0%, and the avg-acc of 16 categories is

improved from 56.5% to 60.7%. The recalculated accuracies are italic

numbers listed in the column of e17-B in Table 7. The avg-acc of 20-

way, 10-shot achieves 81.8%, which is an acceptable result.
FIGURE 8

The confusion matrix of e15, using the raw setting of TLA and 16-way, 1-shot task.
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5 Discussion

5.1 Motivation

Although FSL has raised great concern in plant disease

identification, weak feature representation and demanding

requirement of cross-domain are two pressing issues that hinder its

application. These issues motivate us to make some efforts toward the
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method. Meanwhile, given that tobacco is a valuable crop and related

studies are rare, it is worth studying and filling up this gap.

5.2 Our work and contribution

From the perspective of the method, we proposed FREN. In this

network, the feature representation is enhanced by using double-

pooling for vectorization, removing the skewness of distribution by
B

C

A

D E

FIGURE 9

The similar symptoms of TLA. (A) Four diseases similar to wildfire. (B) The group of frog eye, anthracnose, and weather fleck, as well as the details of the
lesion. (C) Two pest-trace left of similar symptoms. (D) The group of brown spots, target spots, and sunscalds, as well as the details of the lesion. (E) The
group of CMV and PVY, and the details of the lesion.
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PT, and task-adapting by self-attention. In experiments, we compared

FREN with related works on the public dataset PV to show

its superiority.

In addition, we created the dataset TLA, which includes 16

categories, two settings, and 1,430 images in total. In experiments,

we analyzed the characteristics of different diseases and the factors

affecting their performance. From the perspective of application, we

proposed some solutions to promote FSL in practical scenarios. In

brief, our contributions can be refined as follows:
Fron
1. The network FREN for FSL is proposed.

2. The dataset TLA has been created. It is published for

researchers who are interested in it.

3. The superiority of FREN is verified, the identification of the

16 categories of TLA is conducted and discussed, and some

solutions that can be used for other plants or for any other

classification task are proposed.
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5.3 Findings

5.3.1 About method
1. GAP is the most frequently used method to downsample a

set of feature maps to a feature vector. Actually, except for the

average value, a matrix has many feature values, such as the

max value, min value, standard deviation value, etc. In our

experiments, we tried many combinations, such as tmax

only, max+avg+min, max+min, avg+(max-min), avg+std,

and avg+std (after GC to each feature map), etc. Finally,

we have found that using only GMP produces the closest

results to GAP, while using both GAP and GMP achieves the

best results. This means that the mean and max values are

the key features of the feature map. In those special

conditions that suffer from limited feature representation,
TABLE 7 The ACC (%) of processed setting of TLA using FREN.

ID Category e16 (16-way) e17-A (20-way) e17-B (20-way)

1-shot 5-shot 10-shot 1-shot 5-shot 10-shot 1-shot 5-shot 10-shot

Avg-acc 56.5 73.7 79.0 53.9 73.3 77.6 60.7 78.2 81.8

Wildfire 1 –a –a –a 26.3 41.1 51.0 74.2 82.8 85.5

Wildfire 2 –a –a –a 33.9 54.2 63.0 74.2 91.6 92.3

Wildfire 3 –a –a –a 44.2 68.7 74.3 52.9 74.4 81.6

Wildfire 4 –a –a –a 75.1 93.2 93.1 90.7 98.2 98.9

Wildfire 5 –a –a –a 48.4 81.4 87.4 73.1 89.8 94.8

1 Wildfire 30.4 48.8 58.7 –a –a –a 73.0 87.4 90.6

2 Brown spot 47.3 63.5 71.3 47.9 66.9 71.9 47.9 66.9 71.9

3 Frog eye 68.3 84.4 89.4 63.4 79.2 80.7 63.4 79.2 80.7

4 Anthracnose 71.5 94.2 97.8 69.2 94.8 95.6 69.2 94.8 95.6

5 Target spot 45.6 64.8 69.6 44.2 60.9 69.9 44.2 60.9 69.9

6 Black shank 42.4 64.9 79.1 48.6 81.3 88.4 48.6 81.3 88.4

7 TMV 90.5 96.5 97.3 91.1 96.2 96.1 91.1 96.2 96.1

8 CMV 42.7 58.9 62.4 38.4 54.7 63.6 38.4 54.7 63.6

9 PVY 46.7 60.4 66.3 46.9 61.3 66.6 46.9 61.3 66.6

10 TSWV 40.8 54.0 63.3 39.7 48.4 48.6 39.7 48.4 48.6

11 Weather fleck 98.3 97.2 99.1 84.6 97.2 97.4 84.6 97.2 97.4

12 Sunscald 39.2 60.0 66.4 34.2 53.9 57.3 34.2 53.9 57.3

13 Genetic abnormality 74.2 93.6 94.6 75.0 94.8 95.6 75.0 94.8 95.6

14 Phthorimaea operculella 53.7 81.2 86.1 55.4 81.2 86.4 55.4 81.2 86.4

15 Nematodes 55.0 73.5 77.7 51.8 72.8 79.3 51.8 72.8 79.3

16 Healthy 57.9 82.8 85.6 59.1 83.4 86.4 59.1 83.4 86.4
fro
aNot applicable, italic font indicates recalculated results.
e16 uses processed setting. e17-A uses processed setting 20. e17-B is the same experiment as e17-A but recalculated.
Experiment configuration: data (pretraining: 100 categories of Mini-Imagenet; meta-learning: 38 categories of PV; test: processed setting of TLA), Resnet12, 16-way (e16), 20-way (e17), one-
head, lr (pretraining: 0.1; meta-learning: 0.001), epoch (pretraining: 100, meta-learning: 50).
ntiersin.org

https://doi.org/10.3389/fpls.2024.1333236
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Lin et al. 10.3389/fpls.2024.1333236

Fron
such as the few-shot condition, this is an easy and

worthwhile approach to enhance feature representation.

2. Our design is called task adaptation because FREN

implements adaptation to the entire task, including the

support set and query set, in training and testing and also

keeps the independence of context of the support set. We

argue that the use of self-attention in Ye et al. (2020) is not

reasonable. In their work, the support feature vector of a

category is concatenated with the group of query feature

vectors of the same category and then fed into self-attention

to calculate a part of the loss in training. This means that

the categories of the query samples have been known and

leaked even if it is in training.

3. In our previous work (Lin et al., 2022a), we proposed a

Gaussian-like calibration module to remove the skewness

of distribution of frequency feature representation. In this

work, this module is verified to be still efficient in the

spatial domain.

4. No matter whether in application or in academic research,

cross-domain means the domain in training is open for a

certain target domain. In this work, we found that the
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baseline and FEAT still follow this rule but FREN shows

different performance. In 1-shot tasks, the performance of

using a general dataset and a similar dataset gets very close,

and even in 5-shot tasks, using a general dataset is better

than using a similar dataset. This indicates that FREN

desensitizes from data used in training. In other words,

FREN has stronger generalization crossing between

different domains, and the choice of data used in training

can be more free.
The opposite side of generalization is overfitting, where the

model excessively learns the training data and fails to generalize well

to unseen examples. Some regularization techniques, such as L1 or

L2 regularization, batch normalization, etc., are employed to help

prevent overfitting by adding constraints or introducing noise

during training. For example, L1 and L2 regularization, also

known as weight decay, penalizes large weights by adding the

absolute values of weights or the squared values of weights to the

loss. The smaller and more evenly distributed weights are

encouraged to be prioritized. The batch normalization makes the

model less sensitive to the scale and distribution of the inputs.
FIGURE 11

The five different symptoms of wildfire.
FIGURE 10

The confusion matrix of e16, processed setting of TLA and 16-way, 1-shot task.
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The GC module can also be seen as a kind of regularization.

Different distributions are harmful for the deep learning network to

learn patterns. By using the GC module, firstly, the data are

uniformed into the same distribution. For a metric-based method,

it is better and more balanced to compare the distance of vectors

that follow the same distribution. The principle of PT is the same as

batch normalization which can reduce the sensitivity of the model

to different distributions. Also, for the data coming from different

domains, it can shrink the big gap caused by the differences between

different domains. In the GC module, the Euclidean normalization

and the centralization can be seen as a kind of regularization. They

uniformize the values into the same range, forbidding the influence

of large values dominating the others. The GC module obviously

greatly contributes to the improvement of generalization.

The added GMP is used for enriching the feature representation

of samples. It can be seen as adding a dimension to the feature.

More diverse features can reduce the mapping dependency of the

features only to the results of GAP. Hence, the GMP also

contributes to improving generalization.

The task-adaptation module is used to discuss the relationship

between the categories. It is more inclined to extract the

relationships of the different categories instead of extracting the

solid features of a specific category. Therefore, it is more flexible to

generalize to the categories and domains that are different from

training. The underlying task adaptation makes the method more of

a higher-level abstraction than a specific classification task since it

can better cope with the problem of generalization.

5.3.2 About application
Some existing works studied the attention of the CNN and used

visualization methods to show the attention areas. Even for images
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of conditions, the area of attention is sometimes not focused on the

lesion, let alone on the images taken in a field with complicated

surroundings. Multidisease also leads to the confusion in the

attention area. A deeper network is required if one expects to

automatically focus on the lesion through the network. However,

the paradox is that smaller-size networks (e.g., Resnet12) perform

better than deeper networks in FSL, which has been verified by Lin

et al. (2022b). Therefore, finding the lesion automatically is not

realistic right now. That is the reason we conduct segmentation of

the raw images. This may be questioned as it is a manual operation.

In our point of view, the user, as part of the interactive application,

should clearly indicate the areas of interest. The involvement of

users can greatly reduce the complexity of the system and increase

its accuracy. Most cell phones have a basic function to edit images

nowadays, and the segmentation is easy to accomplish.

When creating TLA, we found that symptoms are complex and

variable. Many factors, such as different phases in the life cycle,

species (the tobacco plant has many varieties), weather conditions

(sunlight, moisture, air, etc.), location (longitude, latitude),

nutritional conditions (nitrogen, potash, etc.), etc., can lead to

different symptoms of the same disease. By using traditional deep

learning methods, this issue can be fixed by using large-scale data in

training. However, this problem always leads to low accuracy in

FSL. For these cases, 2. we propose creating categories not only by

disease but also by symptom. Users do not care about the avg-acc of

all subcategories. The accuracy of super-categories is improved and

provided to users by the user interface. In this work, we use wildfire

as an example. Not just wildfire, this solution can be used for other

diseases having this problem and can also apply to any other plants.

Especially for the concerned problem of identifying the phases of

disease, this solution is worth trying.
FIGURE 12

The confusion matrix of e17-A, processed setting 20 of TLA and 20-way, 1-shot task.
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5.4 Limitations
Fron
1. Although plant experts are involved in the labeling work of

TLA, incorrect labels may exist because only images of the

leaves were provided to the experts. However, sometimes

the other information, such as the images of the back side of

the leaf, stem, and root, or the location of the leaf (top leaf

or the bottom leaf), etc., is the basis for judgment, which is

not provided to experts.

2. All the images were taken during the mature period of

tobacco; the other phases of the tobacco life cycle are not

discussed in this work. The phases of the disease are also

not classified in TLA. In fact, many diseases show the same

symptom in the initial infection and then gradually become

different. The identification of the phases of disease is still a

challenging problem.

3. Multidisease classification is not involved in this work.

When creating a dataset, we found that more than half of

the images are multidisease. The plant is easily infected by

other diseases after the first infection because the immune

system is attacked and becomes weak. Hence, multidisease

commonly occurs, especially in the mature period. Using

classification methods for multidisease is not reasonable for

two reasons: (1) feeding an image containing several

diseases may make the network confused and obtain

meaningless results; and (2) multiple diseases generate so

many combinations that it is hard to collect samples. For

example, three diseases can generate seven combinations.

Hence, we think it is not reasonable to solve the problem by

using classification methods.

4. When taking photos in the field, we found that the sunlight

affected the quality greatly. Many details disappear in the

strong sunlight. Hence, in sunshine weather, we use

umbrellas to block out the strong light without

preprocessing the light.
6 Conclusion and recommendation

In this work, we create a dataset TLA and propose FREN for

image-based tobacco abnormality identification. For the data, TLA

includes 16 categories and 1,430 images, covers 10 infection

diseases, three noninfection diseases, two pest-trace left, and a

healthy class. For the method, we argue that a good embedding

not only depends on the instance embedding of the sample itself but

also relies on the internal relationship of the support set in FSL.

Therefore, we proposed the FREN, which improves the embedding

by integrating the GMP in instance embedding and self-attention in

task adaptation. By using PV, we demonstrated the superiority of

our FREN. The accuracy is achieved at 66.04%, which has been

lifted 8.6% from the baseline method and 4.49% from FEAT in a 5-

way, 1-shot task of tomato identification. On the TLA, the FREN

achieves 45.5% and 56.5% for the two settings, respectively.
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Meanwhile, we proposed a multisymptom solution from the

perspective of application. By using this solution, the best

accuracy can be lifted to 60.7% in 16-way, 1-shot tasks and

achieved at 81.8% in 16-way, 10-shot tasks. The solution can be

used for other plants. The results of our method give us the

confidence to advance few-shot learning into applications,

although it still has a lot of room for improvement in the future.

For the research direction in the future, we think the

identification can be executed in a tobacco field environment.

Different from the identification in the lab, the raw image needs

various preprocessing, such as background processing, light

processing, etc. Users are more concerned with disease

identification in the early stages. So, the phase identification of

diseases is an important research direction. For multidisease

identification, the classification method is not an optimal choice.

Semantic segmentation is a good solution and worthy of study.
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