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For a long time, human activities have been prohibited in ecologically protected

areas in the Ebinur Lake Wetland National Nature Reserve (ELWNNR). The

implementation of total closure is one of the main methods for ecological

protection. For arid zones, there is a lack of in-depth research on whether this

measure contributes to ecological restoration in the reserve. The Normalized

Difference Vegetation Index (NDVI) is considered to be the best indicator for

ecological monitoring and has a key role to play in assessing the ecological

impacts of total closure. In this study, we used Sentinel-2, Landsat-8, and

Moderate Resolution Imaging Spectroradiometer (MODIS) remote sensing data to

select optimal data and utilized Sen slope estimation, Mann-Kendall statistical tests,

and the geographical detector model to quantitatively analyze the normalized

difference vegetation index (NDVI) dynamics and its driving factors. Results were

as follows: (1) The vegetation distribution of the Ebinur LakeWetlandNational Nature

Reserve (ELWNNR) had obvious spatial heterogeneity, showing low distribution in

the middle and high distribution in the surroundings. The correlation coefficients of

Landsat-8 and MODIS, Sentinel-2 and MODIS, and Sentinel-2 and Landsat-8 were

0.952, 0.842, and 0.861, respectively. The NDVI calculated from MODIS remote

sensing data was higher than the value calculated by Landsat-8 and Sentinel-2

remote sensing images, and Landsat-8 remote sensing data were the most suitable

data. (2) NDVI indicated more degraded areas on the whole, but the ecological

recovery was obvious in the localized areas where anthropogenic closure was

implemented. The ecological environment change was the result of the joint action

of man and nature. Man-made intervention will change the local ecological

environment, but the overall ecological environment change was still dominated

by natural environmental factors. (3) Factors affecting the distribution of NDVI in

descending order were as follows: precipitation > evapotranspiration > land use type

> elevation > vegetation type > soil type > soil erosion > slope > temperature > slope
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direction. Precipitation was the main driver of vegetation change in ELWNNR. The

synergistic effect of the factors showed two-factor enhancement and nonlinear

enhancement, and the combined effect of the driving factors would increase the

influence on NDVI.
KEYWORDS

Ebinur Lake Wetland National Nature Reserve, geographical detector, multisource
remote sensing, NDVI, vegetation trend
1 Introduction

The Ebinur Lake Wetland National Nature Reserve (ELWNNR)

is a typical representative of inland lake wetlands in Xinjiang.

ELWNNR is rich in salt mines, Artemia parthenogenetica,

Cistanche deserticola, and shrub forests (Zhang et al., 2021a). For

the management of the protected area, the state stipulates that no

human activities should occur in its core. However, we learned from

the local forestry department that before 2017, ditch digging, brine

worm fishing, and aquaculture were still occurring in the core area of

ELWNNR, which may have destabilized the local ecosystem. In 2017,

China carried out a comprehensive environmental protection

inspection of protected areas, including ELWNNR, which required

conducting ecological restoration work as soon as possible and

prohibiting all human and animal activities in the core area. Under

the supervision of several departments, including forestry, natural

resources, and ecology, production and living in ELWNNR were

completely banned. Generally, the protection methods for nature

reserves include expansion, promotion, and closure, among which

closure protection is a management method that excludes all human

activities and maintains the original ecology of the reserve, which has

the advantages of conforming to the laws of nature and is easy and

inexpensive to manage (Peng et al., 2006). However, local scholars

have learned that appropriate human production and living activities

can help in local ecological recovery. Such activities include catching

brine worms and collecting salt minerals, which can purify the water

quality and improve the water environment, thus aiding the growth

of vegetation. Scholars are more in favor of maintaining a balance

between economic development and ecological protection. Therefore,

whether the implementation of total closure protection is effective for

the ecological recovery of ELWNNR is worth exploring.

Vegetation is an important part of terrestrial ecosystems, and its

growth can reflect the quality of the regional ecological environment,

so monitoring vegetation is a reliable means to evaluate the

effectiveness of closure protection. The normalized difference

vegetation index (NDVI) can reflect the growth of vegetation, and

it is the best indicator for evaluating vegetation coverage and

monitoring the ecological environment (Gao et al., 2021). NDVI is

widely used in arid zones. Potential relationships between vegetation

and anthropogenic drivers can be identified through dryland

ecosystem testing in northwestern Ethiopia (Worku et al., 2017).
02
Rising temperatures and evapotranspiration in Asia were major

factors contributing to the greening of vegetation in northeastern

and central China (Lamchin et al., 2018). In terms of wetland

ecosystems, a number of scholars have conducted research on

ecological restoration on the basis of NDVI. At the Ebinur Lake

watershed, quantitative evaluation of vegetation dynamics can

characterize the dynamics of the surface (Zhang et al., 2020). In the

study of monitoring vegetation changes in alpine wetlands on the

Tibetan Plateau, some scholars explored the dynamic changes of

NDVI in wetlands and its correlation with temperature, precipitation,

and solar radiation (Chen et al., 2023). In exploring the long-term

spatiotemporal pattern of vegetation change in the Dongting Lake

wetland and its response relationship to climate change and human

activities, human activities promoted the restoration of wetland

vegetation, and climate change threatened the wetland vegetation

(Zhang et al., 2021b). In the study of vegetation cover change and

migratory bird distribution in the Poyang Lake wetland, the

correlation coefficients between vegetation and different types of

migratory birds were obtained by NDVI as an indicator to reveal

the change in wetland vegetation (Wu et al., 2014). Satellite remote

sensing observation technology, with its unique advantages, provides

data on different spatial scales for monitoring vegetation growth,

which helps assess climate change and anthropogenic changes in

vegetation. Currently, abundant and diverse remote sensing datasets

are available in the international arena, including considerable data

suitable for calculating the NDVI. Compared with other remote

sensing datasets, Sentinel-2, Landsat-8, and Moderate Resolution

Imaging Spectroradiometer (MODIS) remote sensing data have

different spatial, temporal, and spectral resolutions; specifically, they

have finer spatial and temporal resolutions (Shen et al., 2021). They

can better reflect vegetation growth from multiple spatial resolutions,

temporal perspectives, and directions and can provide diverse

information for monitoring vegetation cover and health. Scholars

have examined the surface area of Ebinur Lake through Landsat and

Sentinel data and explored the drivers of its dynamic changes (Wang

et al., 2019a). The detection of soil salinity in ELWNNR has been

conducted to explore the difference between Landsat-8 and Sentinel-2

detection accuracy (Wang et al., 2020). However, studies on

vegetation are lacking, and the three types of data have diverse

spatial and temporal resolutions, with differences in the

performance effects on sparse vegetation in arid zones. Therefore,
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selecting optimal data to reflect the sparse vegetation in arid zones on

the ELWNNR scale is important for ecological quality assessment.

Vegetation changes can directly reflect changes in ecosystems

and their impacts on the environment under the influence of

anthropogenic and natural factors (Guo et al. , 2021).

Understanding not only the status of vegetation growth and

change but also the drivers of vegetation change is important

(Chang et al., 2022). In the context of global climate change, the

analysis of vegetation status, driving factors, succession patterns,

trend prediction, and overall regulation have become indispensable

topics. Numerous scholars have proposed traditional research

methods, such as principal component analysis (Mberego et al.,

2013), trend analysis (Sandra et al., 2015), support vector machines

(Su et al., 2007), random forests (Schonlau and Zou, 2020), and

other models and algorithms to explore the diversity of the dynamic

change and complexity of vegetation drivers. However, there is a

key shortcoming in these methods: they assume a certain linear

relationship between vegetation and drivers at the time of use, but a

strict linear relationship does not necessarily exist in this

transformation process. The geographical detector is a novel

spatial statistical method that, independent of any assumption of

linearity, can quantify the spatial heterogeneity of vegetation and its

drivers, as well as the interactions between the factors (Wang and

Xu, 2017). In arid and semi-arid zones, the effects of natural and

human factors and their interactions on the spatial and temporal

changes of vegetation cover in the Ebinur Lake Watershed can be

investigated, and the suitable range of each influence factor to

promote vegetation growth can be analyzed (Ren, 2022). Playing an

important role in oasis-desert ecotone hydrological climate change

and anthropogenic impacts on NDVI (Chang et al., 2022).

Ecological restoration, through the evaluation of the impact of

natural vegetation, can combat desertification and soil erosion

(Wang et al., 2021b). The main drivers of spatial and temporal

desertification changes in the Northwest Arid Zone can be analyzed

based on multiple meteorological and spatial attribute datasets

(Hua and Hao, 2021). Precipitation and land use were the main

drivers influencing vegetation change in the Black River basin (Zhu

et al., 2020). The effects of anthropogenic activities on NDVI in the

oasis-desert interface zone were found to be more important than

environmental factors in the vegetation changes at the southern

edge of Dunhuang City and the northern side of Mingsha Mountain

(Zhang et al., 2019). Therefore, the geographical detector has strong

applicability and obvious advantages and has been widely used in

arid and semi-arid zones.

Although scholars have analyzed the ecological changes in the

Ebinur Lake watershed, evaluation of the effectiveness of ecological

restoration management measures, especially excluding the impact

of human activities (after 2017) on ecological restoration in the

region, is lacking. Therefore, the objectives of our study were (1) to

analyze the changes in vegetation dynamics in ELWNNR by

comparing the optimal remote sensing data (Sentinel-2, Landsat-

8, and MODIS remote sensing data) selected from 2016 to 2022; (2)

to evaluate the spatial and temporal trends of NDVI, the trends of

temperature, precipitation, and evapotranspiration, and the reasons

for the changes in NDVI in the areas where human activities have

existed and to discuss the effectiveness of closure and protection and
Frontiers in Plant Science 03
the effectiveness of the restoration of the vegetation cover of

ELWNNR; (3) to assess the driving force of the factors of

ELWNNR vegetation changes and the effects of interactions. This

study is a scientific reference for the multisource dynamic

monitoring of vegetation change in ELWNNR, which is

conducive to improving the continuity and accuracy of ecological

restoration monitoring, evaluating the effectiveness of the

implementat ion of comprehensive closure protect ion

management measures, and providing a basis for research on the

monitoring and protection of the ecological restoration of

vegetation in other protected wetland areas.
2 Datasets and methods

2.1 Study area

ELWNNR is located in the lowest depression at the southwest

margin of the Junggar Basin in Xinjiang (82°36′–83°50′ E, 44°30′–45°
09′N) (Yue et al., 2017) with an area of 2670.85 km2 and is distributed

with the Toto River Wetland and the Hudong Wetland (Figure 1). It

has a temperate continental arid climatewith abundant sunshine and a

dry climate all year round, with an average annual precipitation of

105.17 mm, an average annual evaporation of 1,315 mm (Yang et al.,

2009), and an average annual temperature of 5°C. ELWNNR contains

the largest brackish water lake in Xinjiang, Ebinur Lake, which is the

convergence center of surface water and groundwater from Bortala,

Jinghe, Kuitun, and Achiksu rivers (Zhang et al., 2013) and is a closed

inland lake. Soil types aremainlygraydesert soils, graybrownsoils, and

wind-blown sand. The vegetation types are desert, meadow, and

cultivated vegetation (Qin et al., 2016), primarily Populus euphratica,

Haloxylon ammodendron, Ebihuye, Tamarix chinensis, and C.

deserticola (Fu et al., 2009). In recent years, secondary salinization of

soil has been widely distributed under the influence of the natural

environment and human activities, posing a serious threat to

ELWNNR and its surrounding ecological environment (Wang

et al., 2019b).
2.2 Data source and preprocessing

From 2016 to 2022, when the vegetation was growing

vigorously (from July to August) (Zhang et al., 2011), we

conducted remote sensing observations of vegetation to gain a

comprehensive understanding of vegetation growth in ELWNNR

(Table 1). Landsat-8 images were obtained from the US Geological

Survey (https://earthexplorer.usgs.gov/) and the Geospatial Data

Cloud website (http://www.gscloud.cn/), column number 146, row

number 29, and cloudiness less than 10%. The MODIS datasets

were obtained from MOD13Q1-NDVI data provided by the NASA

(National Aeronautics and Space Administration) Data Center

(https://ladsweb.modaps.eosdis.nasa.gov/), with a total of 14

images. The MODIS ReProjection Tools were used to format and

project the images, and the maximum value composite (MVC)

method was used to convert the 16-day MODIS NDVI data into

monthly average data. Sentinel-2 was provided by the ESA Data
frontiersin.org
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Center (https://scihub.copernicus.eu/dhus/#/home). Atmospheric

corrections, resampling, and mosaicing were performed using

Sen2cor and SNAP software (Table 1). Various types of data were

also collected to determine the driving factors affecting the

vegetation distribution. These included ten representative and

easily quantifiable factors of elevation, slope, aspect, precipitation,

temperature, evapotranspiration, land use type, vegetation type, soil

type, and soil erosion. Elevation, slope, and aspect can change the

hydrothermal conditions to change the vegetation distribution

(Feng et a l . , 2021) . Prec ipi tat ion , temperature , and
Frontiers in Plant Science 04
evapotranspiration were important factors directly affecting

vegetation change (Pang et al., 2017). Vegetation type, soil type,

and soil erosion were important environmental factors for

vegetation growth (Peng et al., 2019b). Land use type can be used

as an indicator of economic development and ecological change

(Nie et al., 2021). The elevation data were downloaded from the

Geospatial Data Cloud (http://www.gscloud.cn), and the slope and

aspect were calculated from the elevation data. Soil type, vegetation

type, and soil erosion data were obtained from the Chinese

Academy of Sciences Resource and Environmental Science and

Data Centre (https://www.resdc.cn/). Temperature, precipitation,

and evapotranspiration data were obtained from the National

Tibetan Plateau Science Data Center (https://data.tpdc.ac.cn/

home) (Peng et al., 2019a). Land use data were obtained from

Esri Land Use Data (Esri Land Cover (arcgis.com)). The above data

were divided into corresponding categories according to the existing

classification system (Figure S1). ArcGIS was utilized to create a

fishing net, and 266 fishing net points of 3 km × 3 km were set up

based on the scope of the study area, the spatial attribute values of

each factor were extracted.
TABLE 1 Data sources used in the study.

Sensor
Spatial

Resolution
(m)

Temporal
Resolution

(days)

Coverage
(years)

Sentinel-2 10, 20, 60 5 2016-2022

Landsat-8 30 16 2016-2022

MOD13Q1 250 16 2016-2022
FIGURE 1

Location of the study area.
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2.3 Methods

2.3.1 NDVI classification
In order to characterize the changes in vegetation growth

dynamics more visually, we used ArcGIS to classify ELWNNR-

NDVI into five classes according to the equidistant spacing method

(Bai et al., 2019), which were: low vegetation coverage (<0.2),

medium low vegetation coverage (0.2–0.4), medium vegetation

coverage (0.4–0.6), medium high vegetation coverage (0.6–0.8),

and high vegetation coverage (0.8–1.0).

2.3.2 Sen slope estimation and Mann-Kendall
trend test

The Sen slope estimate is insensitive to data measurement errors

and is computationally efficient (Militino et al., 2020). Applicable for

analyzing ELWNNR-NDVI trends with the expression (Liu et al.,

2015). The (Equation 1) is as follows:

b=median(
ndvij−ndvii

j−i
),1<i<j<n (1)

Where b is the estimated value of the trend slope in the data

series, b > 0 indicates that the time series presents an upward trend,

and b < 0 indicates that the time series presents a downward trend.

The Mann–Kendall trend test is widely used in hydrology and

meteorology to test trends in long time series data, does not require

that the sample points follow a specific pattern, is not disturbed by

outliers, and is suitable for testing the significance of trends in

ELWNNR-NDVI changes (Li et al., 2022). Given the significance

level ɑ = 0.05 in MATLAB, when the absolute value of Z is 1.65,

1.96, and 2.58 nodes, the trend of change is divided into 8 classes.

2.3.3 Geographical detector
The geographical detector is a statistical method used to detect

spatial heterogeneity and its driving factors (Wang and Xu, 2017).

The relationship between the independent and dependent variables

is more reliable than in classical regression, and colinearity between

the independent variables is avoided. The optimal spatial

discretization function of the “GD” package in R was used to

implement the geodetector model.

(1) Factor detector: It is used to calculate the spatial

heterogeneity of different factors and detects how much a certain

factor X explains the spatial heterogeneity of attribute Y. The

Equations 2–4 is as follows (Wang and Xu, 2017):

q=1−o
L
h=1Nhs 2

h

Ns 2 =1−
SSW
SST

(2)

SSW=oL
h=1Nhs 2

h (3)

SST=Ns 2 (4)

In this formula, q is the explanatory power of the independent

variable X on the dependent variable Y, with a value range of [0, 1]. The

larger the q value, the more obvious the spatial heterogeneity and the

stronger the explanatory power of X on Y. The study area is divided
Frontiers in Plant Science 05
into h = 1, 2,…, L regions; Nh and N are the number of units in layer h

and the whole region, respectively; sh2 and s2 are the variances of the
Y values of layer h and region, respectively; SSW and SST are the sum

of variance within layer and total variance of region, respectively.

In this study, the independent variable X is denoted as Xi (i = 1,

2, 3, 4, 5, 6, 7, 8, 9, and 10), and the optimal grading method is

selected to grade it (Liu and Li, 2017). The dependent variable Y is

NDVI (Table S1).

(2) Interaction detection: It is used to detect the interaction

between two different factors and to evaluate whether the two

factors increase or decrease the explanatory power of Y when

acting together or independently of each other (Table S2).

(3) Ecological detector: It is used to determine whether there is a

significant difference between two factors. Equations 5, 6) is as

follows (Wang and Xu, 2017):

F=
NX1(NX2−1)SSWX1

NX2(NX1−1)SSWX2
(5)

SSWX1=oL1
h=1Nhs 2

h, SSWX2=oL2
h=1Nhs 2

h (6)

Where NX1 and NX2 represent the sample number of two

factors, respectively. SSWX1, SSWX2 represent the sum of intra-

layer variance formed by two factors, respectively. L1, L2 represent

the number of stratifications of variables X1 and X2, respectively.

(4) Risk detection: It is used to compare whether there is a

significant difference between the mean values of the dependent

variables in the two regions. The Equation 7 is as follows (Wang and

Xu, 2017):

t=
�Yh=1−�Yh=2

Var(Yh=1)
nh=1

+ Var(Yh=2)
nh=2

h i1=2 (7)
3 Results

3.1 Spatial-temporal distribution of NDVI

The original spatial resolutions of Sentinel-2, Landsat-8, and

MODIS remote sensing images were 10 m, 30 m, and 250 m,

respectively. Sentinel-2 and Landsat-8 remote sensing images were

resampled to be consistent with the spatial resolution of the MODIS

remote sensing images to obtain the average NDVI values of multi-

source remote sensing from 2016 to 2022. ELWNNR vegetation

growth distribution had significant spatial differences, all showed

similar spatial variation patterns, with more areas of low values

overall that presented low in the middle and high in the surrounding

distribution characteristics (Figure 2). High vegetation coverage areas

weremainly located in a small part of theAchiksuRiver and accounted

for the smallest area of thewhole region,with 0.14%, 0.05%, and0.03%,

respectively. Medium high vegetation coverage and medium

vegetation coverage areas were mainly located around the Bortala

River, theKuitunRiver, theAchiksuRiver, and the JingheRiver,which

accounted for 2.77%, 3.08%, and 3.61% of the area of the whole region,

respectively. Medium low vegetation coverage areas were mainly
frontiersin.org
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located in thenortherndeserted area, the edge area of theKuitunRiver,

Hudong wetland, the Achiksu River, Toto River wetland, and part of

the Bortala River confluence area, which accounted for 5.04%, 7.01%,

and 12.97% of the whole area, respectively. The proportion of low

vegetation coverage areas was the largest, and there were a large

number of distributions in various parts of the whole area, and all of

them were more than 80%, which were 92.05%, 89.86%, and 83.40%,

respectively. The difference between the three remote sensing images

was that, compared with the MODIS remote sensing images, the

feature areas with a high vegetation index appeared clearer and

occupied a larger area in Sentinel-2 and Landsat-8, while the lower

vegetation areas occupied a smaller area and had a lower degree of

refinement in the MODIS remote sensing images compared with the

other remote sensing images. This indicated that the higher spatial

resolution of remote sensing datawasmore effective in recognizing the

fine features of remote sensing images, and it also played an auxiliary

role in the recognition of low spatial resolution pixels.
3.2 Standard deviation and trend analysis
of NDVI

The standard deviation of NDVI can reflect the degree of

concentration as well as the stability of the data at a certain time
Frontiers in Plant Science 06
and spatial scale. The standard deviation of NDVI was calculated

based on Sentinel-2, Landsat-8, and MODIS remote sensing

data. The spatial distribution of the standard deviation was

similar and mostly lied between 0.0 and 0.1, and the

fluctuation of the NDVI was relatively stable (Figure 3). The

mean value of the standard deviation of Landsat-8 remote

sensing images was the smallest at 0.023, and most of the

standard deviation was close to 0.01, while that of Sentinel-2

and MODIS was slightly larger at 0.029, which indicated that the

concentration of the Landsat-NDVI data was high and the

representation was strong. This indicated that the Landsat-

NDVI data were highly concentrated and representative.

Sen-MK trend analysis can reflect the changes of NDVI in a certain

time space. The NDVI obtained by Sentinel-2, Landsat-8, and MODIS

remote sensing imagery all showed similar spatial trends, and the area

occupied by decreasing regions was larger than that occupied by

increasing regions, which indicated that in the last seven years,

ELWNNR vegetation showed a degradation trend (Figure 4).

Overall, the proportion of NDVI obtained by Sentinel-2, Landsat-8,

and MODIS sensors with a decreasing trend was 52.57%, 58.10%, and

64.66%, respectively, and the majority of the area was occupied by no

significant decreasing. NDVI showed an increasing trend for 13.31%,

28.80%, and 31.32% of the total area, respectively, with no significant

increasing occupied most of the area.
A B C

FIGURE 3

The standard deviation of NDVI in (A) Sentinel-2, (B) Landsat-8, and (C) MODIS.
A B C

FIGURE 2

Normalized Difference Vegetation Index (NDVI) values at 250 m spatial resolution in (A) Sentinel-2, (B) Landsat-8, and (C) MODIS.
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Specifically, the Sentinel-2, Landsat-8, and MODIS sensors

differed in their sensitivity to NDVI trends. The no change area

occupied a larger area in the Sentinel-2 remote sensing image, 20%

more than the other datasets, which was due to the higher raw

resolution of the Sentinel-2 remote sensing image and the sensor’s

greater sensitivity to the area around the lake, which better

identified the no change area around the lake. In Landsat-8 and

MODIS remote sensing images, the trend change of no significant

decreasing occupied the largest area, which was 10% more than

other datasets, followed by no significant increasing occupied a

larger area, which was 10% more than other datasets. This indicated

that when the data with different spatial resolutions were resampled

to the same spatial resolution, the lower spatial resolution decreased

the larger area, while the higher original spatial resolution instead

increased the smallest area.

In conclusion, among the three sensors mentioned above, the

Sentinel-2 remote sensing image showed the smallest trend of

vegetation greening, MODIS showed the largest trend of greening,

and the Landsat-8 remote sensing image showed the middle degree of

performance. This further reflected that the spatial distribution of
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NDVI trends in ELWNNR in the past 7 years was highly variable,

and ecological problems still needed to be emphasized.
3.3 Comparative analysis of linear fitting
of NDVI

The fishing net was created by ArcGIS to form 266 fishing net

points for linear fitting analysis to obtain the conversion equation and

the coefficient of determination between the sensors. From the fitting

of ELWNNR fishing net points, it can be seen that NDVI was most

densely distributed between 0 and 0.4, with a better fitting effect, and

sparsely distributed between 0.4 and 1, with a relatively poor fitting

effect (Figure 5). The NDVI under the monitoring of Landsat-8 and

MODIS sensors was closely aligned near the fitted curves (R2 = 0.905,

Pearson’s = 0.952) with high correlation, and the NDVI values under

Landsat-8 monitoring were lower than those under MODIS

monitoring because the coefficient of the conversion equation was

greater than 1. The NDVI under Sentinel-2 and MODIS monitoring

were relatively poorly fitted (R2 = 0.710, Pearson’s = 0.842), the fit of
FIGURE 5

Comparative analysis of linear fitting of NDVI based on grid points for Sentinel-2, Landsat-8, and MODIS.
A B C

FIGURE 4

Significance Analysis in (A) Sentinel-2, (B) Landsat-8, and (C) MODIS.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1332788
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Xia et al. 10.3389/fpls.2024.1332788
NDVI values under Sentinel-2 and Landsat-8 sensor monitoring was

intermediate (R2 = 0.742, Pearson’s = 0.861), and NDVI values under

Landsat-8 monitoring were higher than Sentinel-2 monitoring.

Compared with Landsat-8 and MODIS, Sentinel-2 data had high

resolution, which required multiple images to be spliced and

processed, and the inconsistency in the acquisition time of remote

sensing images will lead to a decrease in their correlation.
3.4 Analysis of the spatial pattern change
of NDVI

The analysis of NDVI by Sentinel-2, Landsat-8, and MODIS

remote sensing images showed that Landsat-8 data were more

representative, so Landsat-8 remote sensing data were selected for

vegetation dynamics analysis. 2016 and 2022 ELWNNR low

vegetation cover areas and high vegetation cover areas accounted

for 82.97% and 89.57%, 0.02% and 0.13%, respectively. Of the total

area of the whole area, medium and low vegetation cover areas

accounted for less than 15%, while medium and high vegetation

cover areas accounted for less than 1%. The difference in vegetation

cover in the whole region was obvious (Figure 6). Between 2016 and

2022, the area of medium low and medium vegetation cover areas

showed decreasing trends; the area of medium high, high, and low

vegetation cover areas showed increasing trends, but the amount of

increase and decrease did not change much.

The spatial transfer matrix can quantitatively reflect the area

change of different grades of NDVI as well as the transfer into and

out of the area over a period of time, and it has been widely used in
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the study of vegetation cover. In this study, based on the 2016–2022

ELWNNR-NDVI for spatial distribution data statistics, the spatial

change transfer matrix of NDVI of different grades was calculated

(Figure 7). The transitions in NDVI grades were obvious. On the

whole, NDVI in the whole region was characterized by a scarcity of

high values and a wide range of low values.

Specifically, both the transferred-out and transferred-in areas

were dominated by low vegetation cover and medium low

vegetation cover, while 30.13 km2 of medium vegetation cover

area was also transferred out. Prior to this, the vegetation

ecosystem of ELWNNR was severely damaged, the restoration

project was complicated, and the current vegetation situation was

still not optimistic.

ELWNNR vegetation showed different degrees of improvement

and degradation during the 7 years of change (Figure 8). There were

areas of significant improvement and degradation in the northern

part of the ELWNNR (Figures 8A, B, E, F), which were the

KokeBastao area and the northern pre-mountain floodplain. In

the area where houses were demolished after the ecological

migration in KokeBastao, the population recovered naturally on a

large scale, and the ecological environment was significantly

improved by the crackdown on poaching and mining. 51.75 km2

of vegetation has been effectively improved, representing 65% of the

area of the region. The changes in the NDVI vegetation in the last 7

years once again confirmed that the ecological migration was

effective. In the northern pre-mountain floodplain, wind erosion

had intensified, soil desertification was serious and unsuitable for

vegetation growth, and the fragile ecological environment had led to

vegetation degradation. 27 km2 of vegetation has been degraded,
A B

DC

FIGURE 6

NDVI in 2016 (A). Distribution of NDVI numbers as a percentage in 2016 (B). NDVI in 2022 (C). Distribution of NDVI numbers as a percentage in
2022 (D).
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representing 33.8% of the area of the region. In addition, in the

northeastern part of the area around the Kuitun River (Figures 8C,

D, G, H), due to climate change in Xinjiang, water sources were

decreasing, and the water source of the Kuitun River Basin was also

decreasing or even cut off, which led to the destruction of the

environment for the growth of the surrounding vegetation. Soil

salinization and insufficient water sources cannot improve the

ecological environment of the region, and the vegetation was

obviously degraded. 100.91 km2 of vegetation has been degraded,

representing 99.5% of the area of the region. In the southwestern

part of the area near the northern part of the Jinghe River wetland

and the area along the Bortala River (Figures 8I, J, M, N), the

vegetation has increased and decreased. Previously, the vegetation

was degraded due to fish and crab farming and human activities, but

after the artificial closure of the area, the vegetation grew better due

to the absence of human activities. However, due to the decrease in

precipitation, the river cut-off, and the shrinkage of the lake area of

Ebinur Lake, the water resource recharge has been reduced, the

shrinkage of the lake area has changed the local climatic

environment, and the surrounding area has been continuously

sanded and salinized, resulting in the degradation of part of the

vegetation. The area of increased and degraded vegetation in the

district was 50.9 km2 and 41.6 km2, respectively. In the lower

reaches of the Achiksu River (Figures 8K, L, O, P), the water around

the river was rich in nutrients, and the soil texture was good, which

was conducive to the growth of vegetation, and 54.6 km2 of

vegetation along the river has been significantly improved.

However, the vegetation in non-riverine areas was still seriously

degraded, with 100.4 km2 of degraded vegetation accounting for

66.9% of the area of the district.

The above findings showed that both the degradation and

improvement of the ecological environment were the result of the

joint action of the natural environment and human activities.
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Through the comprehensive management of ecological restoration,

although the overall degradation was evident, the local

implementation of the protection of some areas of ecological

recovery was obvious. Therefore, in the process of comprehensive

management, the protection program should be proposed in real time

in conjunction with the local natural environment, and a timely

return visit should be made to update the restoration program.
3.5 Analysis of meteorological factors

Spat ia l t rends of temperature , prec ipi tat ion, and

evapotranspiration were analyzed for the last 7 years in

ELWNNR (Figure 9). Temperature showed an increasing and

then decreasing trend from 2016 to 2022, with an overall

decreasing trend (Figure 9D). The decreasing trend of

temperature in the Toto River wetland and the upper edge of the

Jinghe River wetland was smaller, with a rate of change of -0.08–

0.03° per year. An area of significant temperature decline existed at

the eastern edge of the ELWNNR lake center, with a rate of change

of -0.20°–0.17° per year (Figure 9A). Overall, ELWNNR region-

wide temperature showed a decreasing trend over the 2016–2022

period. In contrast to the temperature trend, ELWNNR

precipitation has shown a decreasing trend in the last 7 years,

with an increase but a more pronounced decrease in precipitation.

In terms of spatial distribution, the northernmost and northeastern

part of the region showed the highest decreasing trend with a

decreasing rate of -2.28–2.05 mm per year (Figure 9B), while the

central to northeastern part of the region showed a more

pronounced decreasing trend with a decreasing rate of -2.05–1.97

mm per year. The evapotranspiration showed an increase and then

a decrease in the time series, with an overall slight increase. The

spatial distribution showed different areas of increase and decrease.
FIGURE 7

NDVI transfer changes from 2016 to 2022.
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A large area near the southeast corner of the Ebinur Lake shore

showed a clear upward trend, with a rate of increase of 0.22–0.57

mm per year (Figure 9C), and the fastest rate of decrease was in the

northern and southern parts of the Ebinur Lake shore and in the

northeast and southeast regions of the whole region, with a rate of

decrease of -0.57–0.23 mm per year. The rest of the rate of change

was relatively smooth. Climate change had an effect on NDVI to

some extent. According to statistical results from image elements,

the greatest amount of vegetation with a degradation trend was

found in the region, with a decreasing trend in precipitation of

-2.05–1.97 mm per year, a decreasing trend in temperature of -0.12–

0.10° per year, and an increasing trend in evapotranspiration of 0–

0.22 mm per year. The largest amount of vegetation with an
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increasing trend was found in areas with a decreasing trend in

precipitation of -1.90–1.80 mm per year, a decreasing trend in

temperature of -0.12–0.10° per year, and an increasing trend in

evapotranspiration of 0.22–0.57 mm per year.
3.6 Analysis of factors influencing NDVI

3.6.1 Factor detection
Factor detection can be used to reveal the degree of influence of

each influencing factor on the NDVI. In this study, the influence of

each factor on NDVI was determined by calculating the q-value of

each factor (Figure 10A), and the descending order of the degree of
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FIGURE 8

NDVI in 2016 (A, C, I, K). NDVI in 2022 (B, D, J, L). remote sensing image in 2016 (E, G, M, O). Remote sensing image in 2022 (F, H, N, P). NDVI
significance analysis (Q).
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influence was: precipitation (0.23) > evapotranspiration (0.18) >

land use type (0.15) > elevation (0.15) > vegetation type (0.14) > soil

type (0.13) > soil erosion (0.08) > slope (0.08) > temperature (0.06)

> aspect (0.02). Among them, precipitation had the largest q-value

with an explanatory power of 23%, which was much more

influential than the other factors. Therefore, precipitation was the

main driver of vegetation change in ELWNNR, water was one of the

most important factors for vegetation development, and the study

period was the growing season of vegetation, which promoted the

growth of vegetation (Li et al., 2021). Evapotranspiration, land use

type, elevation, vegetation type, and soil type had moderate

explanatory power for the spatial distribution of NDVI, with

explanatory power greater than 10%. While soil erosion, slope,
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temperature, and aspect were smaller and the explanatory power

was below 10%, the explanatory power was less than 10% and could

have an effect by interacting with other imaging factors.

From the temporal trends of the influencing factor q-values

(Figure 10B), aspect, temperature, evapotranspiration, and soil type

showed an increasing trend from 2017 to 2022. Aspect, soil erosion,

vegetation type, elevation, land use type, and precipitation showed a

decreasing trend. Among them, aspect, slope, temperature, soil

erosion, evapotranspiration, and soil type q-values changed more

smoothly, with rates of change of -0.29%, 0.14%, 0.06%, -0.14%,

0.23%, and 0.2%, respectively. Vegetation type and elevation q-

values changed more significantly, with rates of -0.54% and -0.57%,

respectively. The land use type q-value of NDVI decreased faster, at
A B

FIGURE 10

The q-values for factor detection in the ELWNNR in 2022 (A) and the changes in q-values for the ELWNNR factor from 2017 to 2022 (B).
A B
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FIGURE 9

Temperature significance analysis from 2016 to 2022 (A), precipitation significance analysis from 2016 to 2022 (B), evapotranspiration significance
analysis from 2016 to 2022 (C), and time series analysis of temperature, precipitation, and evapotranspiration (D).
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-3.54%. Natural factors dominated ecological and environmental

restoration, and anthropogenic closure and protection were only

auxiliary means. And among them, the fluctuation of precipitation

was large, but its rate of change was smaller than that of land use

types, with the q-value showing a decreasing trend in 2017–2019

and the opposite in 2019–2022, with an overall rate of change of

-0.77%, which was inextricably linked to the trend of precipitation

change in the six years period of first increasing and then

decreasing. This suggested that ELWNNR-NDVI changes were

related to environmental factors, and changes in environmental

conditions had a profound impact on the ecological environment,

leading to spatial differentiation in ELWNNR-NDVI.

3.6.2 Ecological detection
Ecological detection can reflect whether there were significant

differences in the effects of each detected factor on the spatial

distribution of NDVI. There was no significant difference between

vegetation type and soil type, elevation, land use type, elevation and soil

type, land use type, land use type and evapotranspiration (detection

value of N), and there was a significant difference in the effect of all

other factors on NDVI (detection value of Y). Specific values and

significance will be expressed in Table 2. The results of the factor

detection showed that precipitation was the dominant factor leading to

changes in NDVI, and the ecological detection results further proved

that the effect of precipitation was greater than that of other factors.

3.6.3 Interaction detection
Interaction detection mainly referred to detecting the interaction

of different factors on the changes of vegetation NDVI, analyzing

whether the explanatory power of the dependent variable NDVI will

be increased or weakened, or whether the effects on vegetation NDVI

were independent of each other, and further evaluating the

differences between single and two-factor. The interactions showed

that each factor interacted with each other on the effect of NDVI

(Figure 11). 29% of the interactions showed a two-factor

enhancement relationship, and 71% of the driver interactions
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showed a nonlinear enhancement relationship. The largest

interaction was between soil type and elevation, with a q-value of

0.45, which had the strongest explanatory power for spatial

differentiation among all factors. The interactions of

evapotranspiration and soil erosion, temperature, and precipitation

similarly exceeded 40%, with 44%, 40%, and 42%, respectively. Land

use type and soil erosion showed a nonlinear enhancement, and the

rest were two-way enhancements. The q value of the interaction

between the driving factors was higher than that of any single factor,

and the statistical analysis showed that the interaction between the

factors showed two-factor enhancement and nonlinear enhancement,

and there was no factor acting independently of each other, so that

the driving factors would increase the influence on the stability of the

NDVI when they acted together. In summary, the difference between

the ecological and interactive results showed that the spatial

variability of ELWNNR-NDVI was not a simple superposition of

factors but a result of the mutual enhancement of multiple factors.

3.6.4 Risk detection
Risk detection can explore the type or range of factors that were

most adapted for vegetation growth and test for statistical significance

at the 95% confidence level. The appropriate range or type of factor

was crucial for vegetation growth, and different ranges or types of

factors had a significant effect on NDVI, with higher NDVI indicating

that the eigenvalues of the factors were more suitable for vegetation

growth. NDVI varies greatly among the factors (Table 3).

NDVI had different values for different land use types (water

bodies, trees, submerged plants, crops, built-up areas, bare land, and

pasture), and was greatest in crop areas at 0.844. NDVI increased

with increasing precipitation and was greatest at 0.206 when

precipitation was between 11.8 mm and 13.6 mm. NDVI was at its

maximum at 0.178 when the temperature was between 25.4°C and

25.8°C. The evapotranspiration reached 0.238 when the

evapotranspiration was between 131 mm and 138 mm.

NDVI also varies with vegetation type, soil type, and soil erosion.

When the vegetation type was broad-leaved forest, the NDVI was
TABLE 2 Ecological detection of factors.

Factors X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

X1

X2 N

X3 Y Y

X4 N N Y

X5 Y Y Y Y

X6 Y Y N Y Y

X7 N Y Y N Y Y

X8 Y Y Y Y Y Y Y

X9 Y Y Y Y Y Y Y Y

X10 Y Y Y Y Y Y N Y Y
fr
Statistical significance of detection factors (95% confidence level).
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more than 0.180. When the soil type was water becomes soil, the soil

had a strong fertilizer-holding capacity, which was conducive to the

growth of vegetation, the NDVI was 0.206. Soil erosion also affects the

NDVI to some extent, with an NDVI of 0.280 for mild hydraulic

erosion. With the change in elevation, the NDVI also underwent a

certain change. When the elevation was 423–480 m, the altitude was

relatively suitable and favorable for the growth of vegetation, and the

NDVI was 0.177. NDVI was 0.173 and 0.127 for slopes between 0.74°

and 1.14° and for aspects of 0° to 22.5° and 337.5° to

360°, respectively.
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4 Discussion

4.1 Analysis of trends in vegetation change

ELWNNR, within the largest saltwater lake in Xinjiang, has some

unique features. The wetland is surrounded by abundant natural

medicinal herbs, vegetation, and halophytes, which are important for

the entire economic zone of the northern slope of TianshanMountain

(Li et al., 2019b). This study used Sentinel-2, Landsat-8, and MODIS

remote sensing data to quantitatively analyze the trend of vegetation in

ELWNNR, all of which showed good consistency and a similar spatial

distribution, that is, low in the middle and high in the surroundings.

The NDVI calculated from MODIS remote sensing data was higher

than the values calculated from Landsat-8 and Sentinel-2 remote

sensing data. The MODIS image adopted the maximum value

synthesis method, and the mixing effect was more obvious with the

loworiginal resolution,which led to thehighNDVIvalues.Meanwhile,

the Sentinel-2 remote sensing image had a higher original resolution,

and the sensor was more sensitive to the area around the lake, which

can recognize the unchanged area around the lake, thus leading to the

lowNDVI values. The standard deviation wasmostly between 0.0 and

0.1, and the fluctuation inNDVIwas relatively stable. The linearfitting

coefficients of Landsat-8 and MODIS, Sentinel-2 and MODIS, and

Sentinel-2 and Landsat-8 were 0.952, 0.842, and 0.861, respectively. As

mentionedbefore, thedifferences in spatial resolutionandwavebandof

multi-source remote sensing data lead to differences in the NDVI

generated from each data and the fitting effect between them.

Combining the similar results of previous studies and ours, it can be

seen that usingLandsat-8 remote sensingdata toanalyze the vegetation

changes in ELWNNR has better results. Some previous studies
TABLE 3 The suitable limits of the natural factors (95%
confidence level).

Factors
Suitable types
or range

NDVI

Vegetation Broad-leaved forest 0.180

Soil types Water becomes soil 0.206

Slope (°) 0.74–1.14 0.173

Elevation (m) 423–480 0.844

Aspect(°) 0–22.5、337.5–360 0.127

Soil erosion Mild hydraulic erosion 0.280

Land use type Crops 0.844

Temperature(°C) 25.4–25.8 0.178

Precipitation(mm) 11.8–13.6 0.206

Evapotranspiration
(mm)

131–138 0.238
FIGURE 11

ELWNNR factor interaction detection.
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obtained similar results to ours. Sentinel and Landsat fitted better, and

the fit with MODIS was relatively low (Hu et al., 2022; Wang et al.,

2022). Landsat slightly outperformed the other sensors in all

performance metrics (Sajadi et al., 2021). The correlation between

MODIS and SPOTwas better on a national scale, while the correlation

between dryland GIMMS andMODIS was better (Zhu et al., 2019). A

comparison of differences and functional relationships between two

different sets of sensors, the Advanced Very-High-Resolution

Radiometer (AVHRR)-NDVI and MODIS-NDVI, has also been

done (Zhang et al., 2016). Research and analysis of the Hanjiang

River vegetationchangesbyusing three sensors,AVHRR,MODIS, and

SPOT, showed thatMODIS-NDVIwas more similar to SPOT-NDVI,

andMODIS-NDVIwas able to clearly distinguish crops and reflect the

diversity of ground vegetation (Yuan and Maichun, 2015). Different

remote sensing data have different suitability for different study areas,

and the most suitable data should be selected.
4.2 Analysis of NDVI under
embargoed protection

The ecological recovery of the areas with localized

implementation of closure and protection was obvious, which

suggested that the prohibition of human activities was an effective

measure. The trend of vegetation change showed obvious spatial

heterogeneity. In the region of KokeBastao, where ecological

migration and human activities have been greatly reduced, the

vegetation has recovered on a large scale, and the ecological

environment has been significantly improved. The northern part of

the Jinghe wetland and the area along the Boltara River showed a

significant increase in vegetation after the ban on artificial farming

without human activities. The Akobastao and Achiksu rivers had

sufficient hydrothermal conditions, and the hydromorphic soils were

highly fertile and suitable for vegetation growth (Gao et al., 2022). By

contrast, the prehill floodplain area has experienced increased soil

desertification and obvious vegetation degradation due to increased

wind erosion. The area around the Kuitun River was significantly

degraded because of the river cutoff, the reduction in the lake area, and

the salinization around the lake (Wang et al., 2021a). Vegetation was

closely related to water conditions, and the magnitude of water

resources affects vegetation growth. The increase in temperature and

precipitation was positively correlated with the increase in

aboveground biomass (Yan et al., 2015). The average precipitation

and temperature in ELWNNRshowed a decreasing trend year by year,

and the decreasing trend of precipitation was significantly larger than

the decreasing trend of temperature; meanwhile, evaporation was fast,

whichwill lead to localized drying and inhibit the growth of vegetation

(Liu et al., 2014). The above trend of vegetation change indicated that

the vegetation of ELWNNR tended to degrade in the context of the

natural environment. Nevertheless, after the artificial relocation, the

vegetation in the area protected by the artificial closure improves

obviously, and the ecological environment was effectively enhanced.

Thus, the implementation of total closure can improve the ecological

environment of the protected area, and the current measures were

effective. By contrast, the ZhangyeHeiheWetland Reserve, which was

also an arid area, suffers from area shrinkage and vegetation
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degradation and requires improving vegetation cover under suitable

conditions (Li et al., 2019a). Vegetation testing of twowetland reserves

in the Dunhuang Yangguan Nature Reserve in Gansu found that soil

moisture availability had the greatest impact on vegetation in

extremely arid areas, with precipitation also having a partial effect

(Pan et al., 2018). TheTarimRiver Basin in the arid zone has shown an

increasing trend invegetation in recent years, andpartof thevegetation

degradation was related to downstream river breaks, overgrazing, and

intensified human activities, which was similar to the causes of

vegetation degradation in this study area (Wang et al., 2023).

According to a study of vegetation and rainfall in the semi-arid

Nylsvley Wetland Reserve in South Africa, many years of drought

and human activities have resulted in a negative pattern of NDVI

(Murungweni et al., 2020). On the contrary, the vegetation of the Lean

wetland in the humid zone was in good condition and continues to be

stable. Part of the vegetation degradation was anthropogenic, mainly

for economic development and construction (Ying et al., 2019). Most

of the vegetation in the Shengjin Lake Wetland Reserve in the humid

zone tends to improve with local degradation. The nature factor

showed a significant positive effect, while the social factor had an

opposite effect (Yang et al., 2016). Vegetation in the Fujian

Zhangjiangkou Mangrove Wetland Reserve in the humid zone was

generally improving, but the surrounding residents rely heavily on

mudflats; the relationship between humans and vegetation needed to

be harmonized to promote mangrove wetland restoration (Zhao

et al., 2011).

The results of previous studies and the present study showed that

ecological changes in arid, semiarid, andhumidzoneswere the resultof

the combined effects of the natural environment and human activities.

Localized improvement of the ecological environment can be achieved

by human-induced closure, which needed to be adapted to local

conditions and strictly managed. The overall vegetation recovery

depended mainly on the long-term shaping of the natural

environmental conditions, with the use of closure as a

supplementary measure. Therefore, the implementation of closed

protection can be an effective way to improve the ecological

environment of protected areas. Under the national management

policy, to strengthen the idea of ecological civilization construction

in protected areas, local governments should continue to carry out

ecological restoration and scientific management guided by

green development.
4.3 Analysis of NDVI driving factors

Trends in ELWNNR vegetation and the causes of change have

been confirmed, but the drivers needed to be explored further. We

used geographical detectors to investigate the effects of factors and

interactions between factors on NDVI and to determine the most

appropriate characteristics of the factors. Precipitation was the main

driver of vegetation change in ELWNNR and had the strongest

explanatory power for NDVI, exceeding 20%. It was followed by

evapotranspiration, land use type, elevation, vegetation type, and

soil type, which had moderate explanatory power for the spatial

distribution of NDVI, with explanatory power greater than 10%.

Meanwhile, soil erosion, slope, air temperature, and slope
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orientation all had less explanatory power, with explanatory power

below 10%. Accordingly, after the implementation of ecological

management projects and the change of the natural environment in

recent years, the effect of vegetation restoration in the area of

anthropogenic protection is very significant. The results of the

interaction analysis showed that the ecological restoration project

was a complex, multifactorial, and integrated process. No single

factor can have absolute explanatory power for NDVI, the value of

the interaction between the driving factors was higher than that of

any single factor, and the interaction between the factors showed a

two-factor and nonlinear enhancement relationship. No factor

acted independently, so the driving factors will increase their

influence on the stability of NDVI when they act together. The

different factors were explicitly discussed in the risk detection to

further understand their specific distribution values (Figure 12).

The greater the values of elevation and precipitation factors, the

higher the NDVI values, indicating that elevation and precipitation

were positively correlated with NDVI. The region with lower

elevation had high soil salinity, a low water table, and an uneven

distribution of temperature and precipitation due to topographic

factors, which results in a clear separation of high and low

vegetation indices. Among the land use types, crops corresponded

to high vegetation cover, flooded vegetation was moderate, and the

rest was low. Among the vegetation types, broadleaf forests had the

highest NDVI values, followed by mixed coniferous broadleaf

forests and coniferous forests. In ELWNNR, years of ecological

migration and afforestation increased the amount of vegetation.

Precipitation and temperature conditions were relatively good

under suitable elevation conditions (Chen et al., 2010). The most

suitable altitude in this study was 423–480 m. As the elevation

increased, the natural conditions changed, as did the NDVI. Slope

orientation usually changes the hydrothermal conditions for

vegetation growth by altering surface runoff and affecting sunlight

intensity, and shady slopes were more suitable for vegetation

growth than sunny slopes with abundant water and higher

nutrient content (Liu and Wang, 2013). However, the effects of

slope and orientation were relatively small in our study. In arid and

semiarid zones, precipitation and temperature were the main
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factors in vegetation changes (Liu et al., 2016). In most of the

northwestern region, vegetation was sensitive to hydrothermal

conditions, and climate change can greatly affect vegetation (Jiao

et al., 2021). In plains, anthropogenic impacts on vegetation were

significant (Sun et al., 2015). In the Inner Mongolia Plateau in

northern China, precipitation became the strongest factor

inhibiting vegetation growth (Sun et al., 2021). In summary,

vegetation dynamics are affected by a combination of factors, not

a single anthropogenic factor. Factors and anthropogenic factors

interact to make differences in vegetation change.
4.4 Shortcomings and prospects

In this study, Sentinel-2, Landsat-8, and MODIS remote sensing

data were utilized to quantitatively monitor the vegetation

restoration in ELWNNR, and the results of their monitoring

showed consistency in overall spatial distribution and temporal

trend. However, in the comparison of multi-source remote sensing

data, UAV (Unmanned Aerial Vehicle) imagery, multispectral, and

hyperspectral data have good performance for vegetation

information expression, which can be further analyzed and

compared. For vegetation indices, we chose NDVI, but given the

wide variety of vegetation indices in different bands, future studies

can add more vegetation indices for comparison. In particular, the

red-edge vegetation index performs well in sparsely vegetated areas,

and the accuracy of the data can be verified by combining it with

field surveys, which is one of the directions of our future research. In

the balanced relationship between ecological protection and

economic development, the relationship between the ecological

benefits brought by enclosing protected areas and the economic

benefits brought by allowing human production deserves in-depth

exploration. Comprehensive closure protection improves the

ecological environment to a certain extent, and we can consider

introducing activities that can generate economic benefits to

enhance the local Gross Domestic Product (GDP) and promote

the optimization of the ecological environment through the joint

management of enterprises and the government.
A B C

FIGURE 12

Risk detector results for each factor. (A) Vegetation, soil type, and slope; (B) elevation, aspect, soil erosion, and land use type; (C) temperature,
precipitation, and evapotranspiration.
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5 Conclusions

We used the comparative analysis of Sentinel-2, Landsat-8, and

MODIS multi-source remote sensing data, combined with the Mann-

Kendall trend test andgeographicaldetectormodel, to explore indepth

the trend of NDVI and the influence of each influencing factor on

NDVI from 2016 to 2022. We explored whether the total closure

protection measures can provide help for ecological recovery in the

protected area. Specific conclusions are presented below:
Fron
(1) The spatial distributions of NDVI based on Sentinel-2,

Landsat-8, and MODIS data were similar, showing a low

distribution in themiddle andahighdistributionaround,with

stable changes. Among the different data sources, MODIS-

NDVI had the highest value, while Sentinel-NDVI had the

lowest value. The coefficients of linear fit for Landsat-8 and

MODIS, Sentinel-2 andMODIS, and Sentinel-2 and Landsat-

8 were 0.952, 0.842, and 0.861, respectively.

(2) The 2016–2022 ELWNNR vegetation showed a general trend

of degradation, with significant improvement in localized

areas of anthropogenic protection. The whole region showed

the characteristics offew and sparse high values andmany and

extensive low values. Changes in the ecological environment

are the result of the joint role of man and nature. Human

intervention will affect the local ecological change of the

environment, but the overall ecological changes are still

dominated by natural environmental factors.

(3) The degree of influence of each factor on NDVI was

precipitation > evapotranspiration > land use type >

elevation > vegetation type > soil type > soil erosion >

slope > temperature > aspect. The interaction of each factor

on NDVI showed two-way and nonlinear enhancement

relationships, and each driver increased the influence on

vegetation cover stability when they acted together.
Therefore, the implementation of total closure can be a proven

way to promote ecological restoration. However, improvement

methods must be established under suitable natural conditions

and combined with policies to produce positive effects. Future

research can analyze the balance between ecological protection

and economic development together with future trends to provide

reasonable and effective recommendations for ecological

environment management and restoration in wetland reserves in

arid areas.
Data availability statement

The datasets presented in this study can be found in online

repositories. The names of the repository/repositories and accession

number(s) can be found below: https://earthexplorer.usgs.gov/,

http://www.gscloud.cn/, https://scihub.copernicus.eu/dhus/

#/home, http://www.gscloud.cn, https://www.resdc.cn/, https://

data.tpdc.ac.cn/homearcgis.com.
tiers in Plant Science 16
Author contributions

NX: Conceptualization, Data curation, Formal analysis,

Investigation, Methodology, Project administration, Software,

Validation, Writing – original draft, Writing – review & editing.

YT: Data curation, Formal analysis, Investigation, Methodology,

Project administration, Software, Validation, Writing – original

draft. MT: Software, Writing – review & editing. WQ:

Conceptualization, Writing – review & editing. ZX: Formal

analysis, Writing – review & editing. BZ: Project administration,

Writing – review & editing. YX: Software, Writing – review &

editing. YM: Funding acquisition, Writing – review & editing.
Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. This research

was funded by the Xinjiang Uygur Autonomous Region university

scientific research program (XJEDU2021Y011), the Xinjiang Tianchi

Doctoral Project (tcbs201821) and the Xinjiang Uygur Autonomous

Region innovation environment Construction special project & Science

and technology innovation base construction project (PT2107).
Acknowledgments

We thank the sponsor for its good role in data collection and

analysis and manuscript preparation. Acknowledgments for the

data support from “National Tibetan Plateau/Third Pole

Environment Data Center (http://data.tpdc.ac.cn)”.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fpls.2024.1332788/

full#supplementary-material
frontiersin.org

https://earthexplorer.usgs.gov/
http://www.gscloud.cn/
https://scihub.copernicus.eu/dhus/#/home
https://scihub.copernicus.eu/dhus/#/home
http://www.gscloud.cn
https://www.resdc.cn/
https://data.tpdc.ac.cn/homearcgis.com
https://data.tpdc.ac.cn/homearcgis.com
http://data.tpdc.ac.cn
https://www.frontiersin.org/articles/10.3389/fpls.2024.1332788/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fpls.2024.1332788/full#supplementary-material
https://doi.org/10.3389/fpls.2024.1332788
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Xia et al. 10.3389/fpls.2024.1332788
References
Bai, Y. Q., Yang, Y. P., and Jiang, H. (2019). Intercomparison of AVHRR GIMMS3g,
terra MODIS, and SPOT-VGT NDVI products over the Mongolian plateau. Remote
Sensing. 11 (17), 2030–2030. doi: 10.3390/rs11172030

Chang, J. J., Gong, L., Zeng, F. J., Xue, J., Mao, D. L., Cao, Y. X., et al. (2022). Using
hydro-climate elasticity estimator and geographical detector method to quantify the
individual and interactive impacts on NDVI in oasis-desert ecotone. Stochastic Environ.
Res. Risk Assessment. 36, 3131–3148. doi: 10.1007/s00477-022-02184-4

Chen, Q., Zhou, Q., Zhang, H., and Liu, F. (2010). Spatial disparity of NDVI response
in vegetation growing season to climate change in the Three-River Headwaters Region.
Ecol. Environ. Sci. 19 (6), 1284–1289. doi: 10.3969/j.issn.1674-5906.2010.06.004

Chen, Y., Sun, L., Xu, J., Liang, B., Wang, J., and Xiong, N. (2023). Wetland
vegetation changes in response to climate change and human activities on the
Tibetan Plateau during 2000–2015. Front. Ecol. Evol. 11. doi: 10.3389/
fevo.2023.1113802

Feng, J. M., Dong, B. Q., Qin, T. L., Liu, S. S., Zhang, J. W., and Gong, X. F. (2021).
Temporal and spatial variation characteristics of NDVI and its relationship with
environmental factors in Huangshui river basin from 2000 to 2018. Polish J. Environ.
Stud. 30, 3043–3063. doi: 10.15244/pjoes/130517

Fu, D., Xie, H., Yu, E., and Lv, G. (2009). An analysis on the Species Diversity of
Desert Plant Communities in the Ebinur Lake Wetland Natural Reserve. J. Arid Land
Resour. Environment. 24 (2), 145–149. doi: 10.13448/j.cnki.jalre.2009.01.002

Gao, S., Dong, G., Jiang, X., Nie, T., Guo, X., Dang, S., et al. (2022). Analysis of
vegetation coverage changes and natural driving forces of spatial distribution in the
source region of the Yellow River. Ecol. Environ. Sci. 31 (3), 429–439. doi: 10.16258/
j.cnki.1674-5906.2022.03.001

Gao, S. Q., Dong, G. T., Jiang, X. H., Nie, T., Yin, H. J., and Guo, X. W. (2021).
Quantification of natural and anthropogenic driving forces of vegetation changes in the
three-river headwater region during 1982-2015 based on geographical detector model.
Remote Sensing. 13 (20), 4175–4175. doi: 10.3390/rs13204175

Guo, P. C., Zhao, X., Shi, J. K., Huang, J. C., Tang, J., Zhang, R. R., et al. (2021). The
influence of temperature and precipitation on the vegetation dynamics of the tropical island
of Hainan. Theor. Appl. Climatol. 143, 429–445. doi: 10.1007/s00704-020-03430-x

Hu, J. M., Ye, B. Y., Bai, Z. K., and Hui, J. W. (2022). Comparison of the vegetation
index of reclamation mining areas calculated by multi-source remote sensing data.
Land 11 (3), 325–325. doi: 10.3390/land11030325

Hua, D., and Hao, X. (2021). Spatiotemporal change and drivers analysis of
desertification in the arid region of northwest China based on Geographic Detector.
Environmental Challenges. 4, 100082. doi: 10.1016/j.envc.2021.100082

Jiao, K., Gao, J., Liu, Z., and Wu, S. (2021). Revealing climatic impacts on the
temporal and spatial variation in vegetation activity across China: Sensitivity and
contribution. Adv. Clim. Change Res. 12 (3), 409–420. doi: 10.1016/j.accre.2021.04.006

Lamchin, M., Lee, W. K., Jeon, S. W., Wang, S. W., and Sung, M. (2018). Long-term
trend and correlation between vegetation greenness and climate variables in Asia based
on satellite data. Sci. Total Environ. 5, 803–807. doi: 10.1016/j.mex.2018.07.006

Li, J., Wang, J. L., Zhang, J., Liu, C. L., He, S. L., and Liu, L. F. (2022). Growing-season
vegetation coverage patterns and driving factors in the China-Myanmar Economic
Corridor based on Google Earth Engine and geographic detector. Ecol. Indicators. 136,
108620. doi: 10.1016/j.ecolind.2022.108620

Li, J., Wang, J. L., Zhang, J., Zhang, J. P., and Kong, H. (2021). Dynamic changes of
vegetation coverage in China-Myanmar economic corridor over the past 20 years. Int. J.
Appl. Earth Observation Geoinformation. 102, 102378. doi: 10.1016/j.jag.2021.102378

Li, X., Fu, Z., Tang, X., Li, Y., and Nie, D. (2019a). The monitoring and analysis of
vegetation in Zhangye Heihe wetland nature reserve. J. Gansu Forestry Sci. Technol 44,
53–56+62. doi: 10.3969/j.issn.1006-0960.2019.03.021

Li, Y. J., Ding, J. I., Zhang, J. Y., and Wu, P. F. (2019b). Response of vegetation cover
to drought in the northern slope of the Tianshan Mountains during 2001—2015 based
on the land-use and land-cover change. Acta Ecologica Sinica. 39 (17), 6206–6217.
doi: 10.5846/stxb201811112442

Liu, Y. S., and Li, J. T. (2017). Geographic detection and optimizing decision of the
differentiation mechanism of rural poverty in China. Acta Geographica Sinica. 72, 161–
173. doi: 10.11821/dlxb201701013

Liu, M., and Wang, G. (2013). Responses of plant community diversity and soil
factors to slope aspect in alpine meadow. Chin. J. Ecol. 32 (2), 259–265. doi: 10.13292/
j.1000-4890.2013.0135

Liu, Q., Yang, Z. P., Han, F., Wang, Z. G., and Wang, C. R. (2016). NDVI-based
vegetation dynamics and their response to recent climate change: a case study in the
Tianshan Mountains, China. Environ. Earth Sci. 75 (16), 1189. doi: 10.1007/s12665-
016-5987-5

Liu, X. F., Zhang, J. S., Zhu, X. F., Pan, Y. Z., Liu, Y. X., Zhang, D. H., et al. (2014).
Spatiotemporal changes in vegetation coverage and its driving factors in the Three-
River Headwaters Region during 2000-2011. J. Geographical Sci. 24, 288–302.
doi: 10.1007/s11442-014-1088-0
Frontiers in Plant Science 17
Liu, Y., Li, Y., Li, S. C., and Motesharrei, S. (2015). Spatial and temporal patterns of
global NDVI trends: Correlations with climate and human factors. Remote Sensing. 17
(10), 13233–13250. doi: 10.3390/rs71013233

Mberego, S., Sanga-Ngoie, K., and Kobayashi, S. (2013). Vegetation dynamics of
Zimbabwe investigated using NOAA-AVHRR NDVI from 1982 to 2006: a principal
component analysis. Int. J. Remote Sensing. 34, 6764–6779. doi: 10.1080/
01431161.2013.806833

Militino, A. F., Moradi, M., and Ugarte, M. D. (2020). On the performances of trend
and change-point detection methods for remote sensing data. Remote Sensing. 12 (6),
1008. doi: 10.3390/rs12061008

Murungweni, F. M., Mutanga, O., and Odiyo, J. O. (2020). Rainfall trend and its
relationship with normalized difference vegetation index in a restored semi-arid
wetland of South Africa. Sustainability. 12 (21), 8919. doi: 10.3390/su12218919

Nie, T., Dong, G. T., Jiang, X. H., and Lei, Y. X. (2021). Spatio-temporal changes and
driving forces of vegetation coverage on the loess plateau of northern Shaanxi. Remote
Sensing. 13 (4), 613. doi: 10.3390/rs13040613

Pan, F., Xie, J., Lin, J., Zhao, T., Ji, Y., Hu, Q., et al. (2018). Evaluation of climate
change impacts on wetland vegetation in the Dunhuang Yangguan national nature
reserve in northwest China using landsat derived NDVI. Remote Sensing. 10 (5), 735–
735. doi: 10.3390/rs10050735

Pang, G. J., Wang, X. J., and Yang, M. X. (2017). Using the NDVI to identify
variations in, and responses of, vegetation to climate change on the Tibetan Plateau
from 1982 to 2012. Quaternary Int. 444, 87–96. doi: 10.1016/j.quaint.2016.08.038

Peng, S., Ding, Y., Liu, W., and Zhi, L. I. (2019a). 1 km monthly temperature and
precipitation dataset for China from 1901 to 2017. Earth System Sci. Data. 11, 1931–
1946. doi: 10.5194/essd-11-1931-2019

Peng, Z. h., Dong, L. s., Zhang, X. d., and Zhou, J. x. (2006). Closing hillsides to
facilitate Aforestation: an important measure for the vegetation restoration of the loess
plateau in China. World Forestry Res. 19, 61–67. doi: 10.3969/j.issn.1001-
4241.2006.02.012

Peng, W. F., Kuang, T. T., and Tao, S. (2019b). Quantifying influences of natural
factors on vegetation NDVI changes based on geographical detector in Sichuan,
western China. J. Clean. Prod. 233, 353–367. doi: 10.1016/j.jclepro.2019.05.355

Qin, J. Y., Fei, Z., Yue, Z., and Juan, W. (2016). Changes of vegetation coverage in
Ebinur Lake Wetland National Nature Reserve in 4 periods. Wetland Sci. 16 (4), 895–
900. doi: 10.13248/j.cnki.wetlandsci.2016.06.019

Ren, L. (2022). Spatiotemporal change and driving force of vegetation in Ebinur Lake
Basin. Arid Land Geogr. 45 (2), 467–477. doi: 10.12118/j.issn.1000-6060.2021.199

Sajadi, P., Sang, Y. F., Gholamnia, M., Bonafoni, S., Brocca, L., Pradhan, B., et al.
(2021). Performance evaluation of long NDVI timeseries from AVHRR, MODIS and
landsat sensors over landslide-prone locations in Qinghai-Tibetan plateau. Remote
Sensing. 13 (16), 3172. doi: 10.3390/rs13163172

Sandra, E., Fabia, H., Hanspeter, L., and Elias, H. (2015). Trend analysis of MODIS
NDVI time series for detecting land degradation and regeneration in Mongolia. J. Arid
Environ. 113, 16–28. doi: 10.1016/j.jaridenv.2014.09.001

Schonlau, M., and Zou, R. Y. (2020). The random forest algorithm for statistical
learning. Stata J. 20, 3–29. doi: 10.1177/1536867X20909688

Shen, Y. L., Shen, G. L., Zhai, H., Yang, C., and Qi, K. L. (2021). A Gaussian Kernel-
based spatiotemporal fusion model for agricultural remote sensing monitoring. IEEE J.
Selected Topics Appl. Earth Observations Remote Sensing. 14, 3533–3545. doi: 10.1109/
JSTARS.2021.3066055

Su, L., Chopping, M. J., Rango, A., Martonchik, J. V., and Peters, D. P. C. (2007).
Support vector machines for recognition of semi-arid vegetation types using MISR
multi-angle imagery. Remote Sens. Environ. 107, 299–311. doi: 10.1016/
j.rse.2006.05.023

Sun, Z. H., Mao, Z. A., Yang, L. Y., Liu, Z., Han, J. C., Wanag, H. Y., et al. (2021).
Impacts of climate change and afforestation on vegetation dynamic in the Mu Us
Desert, China. Ecol. Indicators. 129, 108020. doi: 10.1016/j.ecolind.2021.108020

Sun, Y. L., Yang, Y. L., Zhang, L., andWang, Z. L. (2015). The relative roles of climate
variations and human activities in vegetation change in North China. Phys. Chem.
Earth. 87-88, 67–78. doi: 10.1016/j.pce.2015.09.017

Wang, J., Ding, J., Li, G., Liang, J., Yu, D., Aishan, T., et al. (2019a). Dynamic
detection of water surface area of Ebinur Lake using multi-source satellite data (Landsat
and sentinel-1A) and its responses to changing environment. CATENA 181-), 189–201.
doi: 10.1016/j.catena.2019.02.020

Wang, J., Ding, J., Yu, D., Ma, X., and Yu, D. (2019b). Capability of Sentinel-2 MSI
data for monitoring and mapping of soil salinity in dry and wet seasons in the Ebinur
Lake region, Xinjiang, China. Geoderma 353, 172–187. doi : 10.1016/
j.geoderma.2019.06.040

Wang, J. Z., Ding, J. l., Yu, D., Teng, D., He, B., Chen, X., et al. (2020). Machine
learning-based detection of soil salinity in an arid desert region, Northwest China: A
frontiersin.org

https://doi.org/10.3390/rs11172030
https://doi.org/10.1007/s00477-022-02184-4
https://doi.org/10.3969/j.issn.1674-5906.2010.06.004
https://doi.org/10.3389/fevo.2023.1113802
https://doi.org/10.3389/fevo.2023.1113802
https://doi.org/10.15244/pjoes/130517
https://doi.org/10.13448/j.cnki.jalre.2009.01.002
https://doi.org/10.16258/j.cnki.1674-5906.2022.03.001
https://doi.org/10.16258/j.cnki.1674-5906.2022.03.001
https://doi.org/10.3390/rs13204175
https://doi.org/10.1007/s00704-020-03430-x
https://doi.org/10.3390/land11030325
https://doi.org/10.1016/j.envc.2021.100082
https://doi.org/10.1016/j.accre.2021.04.006
https://doi.org/10.1016/j.mex.2018.07.006
https://doi.org/10.1016/j.ecolind.2022.108620
https://doi.org/10.1016/j.jag.2021.102378
https://doi.org/10.3969/j.issn.1006-0960.2019.03.021
https://doi.org/10.5846/stxb201811112442
https://doi.org/10.11821/dlxb201701013
https://doi.org/10.13292/j.1000-4890.2013.0135
https://doi.org/10.13292/j.1000-4890.2013.0135
https://doi.org/10.1007/s12665-016-5987-5
https://doi.org/10.1007/s12665-016-5987-5
https://doi.org/10.1007/s11442-014-1088-0
https://doi.org/10.3390/rs71013233
https://doi.org/10.1080/01431161.2013.806833
https://doi.org/10.1080/01431161.2013.806833
https://doi.org/10.3390/rs12061008
https://doi.org/10.3390/su12218919
https://doi.org/10.3390/rs13040613
https://doi.org/10.3390/rs10050735
https://doi.org/10.1016/j.quaint.2016.08.038
https://doi.org/10.5194/essd-11-1931-2019
https://doi.org/10.3969/j.issn.1001-4241.2006.02.012
https://doi.org/10.3969/j.issn.1001-4241.2006.02.012
https://doi.org/10.1016/j.jclepro.2019.05.355
https://doi.org/10.13248/j.cnki.wetlandsci.2016.06.019
https://doi.org/10.12118/j.issn.1000-6060.2021.199
https://doi.org/10.3390/rs13163172
https://doi.org/10.1016/j.jaridenv.2014.09.001
https://doi.org/10.1177/1536867X20909688
https://doi.org/10.1109/JSTARS.2021.3066055
https://doi.org/10.1109/JSTARS.2021.3066055
https://doi.org/10.1016/j.rse.2006.05.023
https://doi.org/10.1016/j.rse.2006.05.023
https://doi.org/10.1016/j.ecolind.2021.108020
https://doi.org/10.1016/j.pce.2015.09.017
https://doi.org/10.1016/j.catena.2019.02.020
https://doi.org/10.1016/j.geoderma.2019.06.040
https://doi.org/10.1016/j.geoderma.2019.06.040
https://doi.org/10.3389/fpls.2024.1332788
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Xia et al. 10.3389/fpls.2024.1332788
comparison between Landsat-8 OLI and Sentinel-2 MSI. Sci. Total Environ. 707,
136092. doi: 10.1016/j.scitotenv.2019.136092

Wang, X., Huo, A., Lyu, J., Zhao, Z., Chen, J., Zhong, F., et al. (2023). Dynamic changes
and driving factors of vegetation coverage in themainstream of Tarim River, China. Trans.
Chin. Soc. Agric. Engineering. 39, 284–292. doi: 10.11975/j.issn.1002-6819.202303016

Wang, H. N., Lv, X. Z., and Zhang, M. Y. (2021a). Sensitivity and attribution analysis
of vegetation changes on evapotranspiration with the Budyko framework in the
Baiyangdian catchment, China. Ecol. Indic. 120, 106963. doi: 10.1016/
j.ecolind.2020.106963

Wang, J. F., and Xu, C. D. (2017). Geodetectors: principles and prospects. Acta
Geographica Sinica. 72 (1), 116–134. doi: 10.11821/dlxb201701010

Wang, Z. Y., Xu, D. Y., Peng, D. L., and Zhang, Y. (2021b). Quantifying the
influences of natural and human factors on the water footprint of afforestation in desert
regions of northern China. Sci. Total Environ. 780, 146577–146577. doi: 10.1016/
j.scitotenv.2021.146577

Wang, Z., Zhang, T. L., Pei, C. Y., Zhao, X. N., Li, Y. Y., Hu, S., et al. (2022). Multisource
remote sensing monitoring and analysis of the driving forces of vegetation restoration in
the Mu us sandy land. Land 11(10), 1553–1553. doi: 10.3390/land11091553

Worku, Z., Elmar, C., and Luis, I. (2017). Monitoring ecosystem dynamics in
northwestern Ethiopia using NDVI and climate variables to assess long term trends
in dryland vegetation variability. Appl. Geogr. 79, 167–178. doi: 10.1016/
j.apgeog.2016.12.019

Wu, X., Lv, M., Jin, Z., Michishita, R., Chen, J., Tian, H., et al. (2014). Normalized
difference vegetation index dynamic and spatiotemporal distribution of migratory birds
in the Poyang Lake wetland, China. Ecol. Indic 47, 219–230. doi: 10.1016/
j.ecolind.2014.01.041

Yan, F., Wu, B., and Wang, Y. J. (2015). Estimating spatiotemporal patterns of
aboveground biomass using Landsat TM and MODIS images in the Mu Us Sandy
Land, China. Agric. For. Meteorol. 200, 119–128. doi: 10.1016/j.agrformet.2014.09.010

Yang, S. W., Dong, B., Sheng, S. W., Wang, Q., Yang, L., and Wang, T. (2016).
Changes in Vegetation Coverage and the main driving factors in Shengjin Lake
Wetland reserve. J. Northwest A&F University. 44 (8), 177–184. doi: 10.13207/
j.cnki.jnwafu.2016.08.026

Yang, X. G., Lu, G., Tian, Y., Yang, J., and Zang, X. (2009). Ecological groups of
plants in Ebinur Lake Wetland Nature Reserve of Xinjiang. Chin. J. Ecol. 28 (12), 2489–
2494. doi: 10.13292/j.1000-4890.2009.0407

Ying, M., Qiang, Y. Z., Ming, G. Q., Yao, H. J., Tong, H. L., Xin, W., et al. (2019).
Dynamic analysis of vegetation cover in Le'an wetland based on MODIS-NDVI.
J. Sichuan Forestry Sci. Technology. 40 (3), 42–46+70. doi: 10.16779/j.cnki.1003-
5508.2019.03.008
Frontiers in Plant Science 18
Yuan, L., and Maichun, Z. (2015). A comparative analysis of AVHRR, SPOT-VGT
and MODIS NDVI remote sensing data over Hanjiang River basin. J. South China
Agric. University. 36, 106–112. doi: 10.7671/j.issn.1001-411X.2015.01.020

Yue, Z., Fei, Z., Juan, W., Yan, R., Ghulam, A., Kung, H.-t., et al. (2017). Analysis of
the temporal and spatial dynamics of landscape patterns and hemeroby index of the
Ebinur Lake Wetland Nature Reserve, Xinjiang, over the last 40 year. Acta Ecologica
Sinica. 37 (21), 7082–7097. doi: 10.5846/stxb201609081825

Zhang, J. Y., Ding, J. L., Wu, P. F., Tan, J., Huang, S., Teng, D. X., et al. (2020).
Assessing arid inland lake watershed area and vegetation response to multiple temporal
scales of drought across the Ebinur lake watershed. Sci. Rep. 10 (1), 1354. doi: 10.1038/
s41598-020-57898-8

Zhang, C., Hu, Y., and Shi, X. (2016). Analysis of spatial-temporal evolution of
vegetation cover in loess plateau in recent 33 years based on AVHRR NDVI and
MODIS NDVI. J. Appl. Sci. 34, 702–712. doi: 10.3969/j.issn.0255-8297.2016.06.006

Zhang, M., Lin, H., Long, X., and Cai, Y. (2021b). Analyzing the spatiotemporal
pattern and driving factors of wetland vegetation changes using 2000–2019 time-series
Landsat data. Sci. Total Environ. 780, 146615. doi: 10.1016/j.scitotenv.2021.146615

Zhang, J., Lyu, G., Wang, H., Jiang, L., and Cai, Y. (2021a). Effect of plant diversity on
ecosystem multifunctionality in different water salt environments of Ebinur Lake basin.
J. Plant Resour. Environ. 30, 22–30. doi: 10.3969/j.issn.1674-7895.2021.04.03

Zhang, G. L., Xu, X. L., Zhou, C. P., Zhang, H. B., and Ouyang, H. (2011). Responses
of grassland vegetation to climatic variations on different temporal scales in Hulun Buir
Grassland in the past 30 years. J. Geographical Sci. 21, 634–650. doi: 10.1007/s11442-
011-0869-y

Zhang, X., Lv, G., Gong, L., Qin, L., Li, C., Sun, J., et al. (2013). Analysis on soil
inorganic carbon of different soil types in the Ebinur Lake Wetland Nature Reserve in
Xinjiang. J. Desert Res. 33 (4), 1084–1090. doi: 10.7522/j.issn.1000-694X.2013.00153

Zhang, Y., Zhang, K. C., An, Z. S., and Yu, Y. P. (2019). Quantification of driving
factors on NDVI in oasis-desert ecotone using geographical detector method.
J. Mountain Sci. 16, 2615–2624. doi: 10.1007/s11629-018-5361-7

Zhao, F., Zhang, H., Liu, H., Fang, B., Zhou, F., and Lin, W. (2011). Remote sensing
monitoring and protection of mangrove wetland reserve of the Zhangjiang estuary in Fujian
province. J. Northwest Forestry University. 26 (1), 160–165. doi: 10.3724/SP.J.1011.2011.00338

Zhu, L. J., Meng, J. J., and Zhu, L. K. (2020). Applying Geodetector to disentangle the
contributions of natural and anthropogenic factors to NDVI variations in the middle
reaches of the Heihe River Basin. Ecol. Indicators. 117, 106545. doi: 10.1016/
j.ecolind.2020.106545

Zhu, Y., Zhang, Y., Zu, J., Che, B., Tang, Z., Cong, N., et al. (2019). Performance
evaluation of GIMMS NDVI based on MODIS NDVI and SPOT NDVI data. Yingyong
Shengtai Xuebao. 30, 536–544. doi: 10.13287/j.1001-9332.201902.016
frontiersin.org

https://doi.org/10.1016/j.scitotenv.2019.136092
https://doi.org/10.11975/j.issn.1002-6819.202303016
https://doi.org/10.1016/j.ecolind.2020.106963
https://doi.org/10.1016/j.ecolind.2020.106963
https://doi.org/10.11821/dlxb201701010
https://doi.org/10.1016/j.scitotenv.2021.146577
https://doi.org/10.1016/j.scitotenv.2021.146577
https://doi.org/10.3390/land11091553
https://doi.org/10.1016/j.apgeog.2016.12.019
https://doi.org/10.1016/j.apgeog.2016.12.019
https://doi.org/10.1016/j.ecolind.2014.01.041
https://doi.org/10.1016/j.ecolind.2014.01.041
https://doi.org/10.1016/j.agrformet.2014.09.010
https://doi.org/10.13207/j.cnki.jnwafu.2016.08.026
https://doi.org/10.13207/j.cnki.jnwafu.2016.08.026
https://doi.org/10.13292/j.1000-4890.2009.0407
https://doi.org/10.16779/j.cnki.1003-5508.2019.03.008
https://doi.org/10.16779/j.cnki.1003-5508.2019.03.008
https://doi.org/10.7671/j.issn.1001-411X.2015.01.020
https://doi.org/10.5846/stxb201609081825
https://doi.org/10.1038/s41598-020-57898-8
https://doi.org/10.1038/s41598-020-57898-8
https://doi.org/10.3969/j.issn.0255-8297.2016.06.006
https://doi.org/10.1016/j.scitotenv.2021.146615
https://doi.org/10.3969/j.issn.1674-7895.2021.04.03
https://doi.org/10.1007/s11442-011-0869-y
https://doi.org/10.1007/s11442-011-0869-y
https://doi.org/10.7522/j.issn.1000-694X.2013.00153
https://doi.org/10.1007/s11629-018-5361-7
https://doi.org/10.3724/SP.J.1011.2011.00338
https://doi.org/10.1016/j.ecolind.2020.106545
https://doi.org/10.1016/j.ecolind.2020.106545
https://doi.org/10.13287/j.1001-9332.201902.016
https://doi.org/10.3389/fpls.2024.1332788
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

	Monitoring and evaluation of vegetation restoration in the Ebinur Lake Wetland National Nature Reserve under lockdown protection
	1 Introduction
	2 Datasets and methods
	2.1 Study area
	2.2 Data source and preprocessing
	2.3 Methods
	2.3.1 NDVI classification
	2.3.2 Sen slope estimation and Mann-Kendall trend test
	2.3.3 Geographical detector


	3 Results
	3.1 Spatial-temporal distribution of NDVI
	3.2 Standard deviation and trend analysis of NDVI
	3.3 Comparative analysis of linear fitting of NDVI
	3.4 Analysis of the spatial pattern change of NDVI
	3.5 Analysis of meteorological factors
	3.6 Analysis of factors influencing NDVI
	3.6.1 Factor detection
	3.6.2 Ecological detection
	3.6.3 Interaction detection
	3.6.4 Risk detection


	4 Discussion
	4.1 Analysis of trends in vegetation change
	4.2 Analysis of NDVI under embargoed protection
	4.3 Analysis of NDVI driving factors
	4.4 Shortcomings and prospects

	5 Conclusions
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


