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Low temperature is a type of abiotic stress affecting the tomato (Solanum

lycopersicum) growth. Understanding the mechanisms and utilization of

exogenous substances underlying plant tolerance to cold stress would lay the

foundation for improving temperature resilience in this important crop. Our

study is aiming to investigate the effect of exogenous glycine betaine (GB) on

tomato seedlings to increase tolerance to low temperatures. By treating tomato

seedlings with exogenous GB under low temperature stress, we found that 30

mmol/L exogenous GB can significantly improve the cold tolerance of tomato

seedlings. Exogenous GB can influence the enzyme activity of antioxidant

defense system and ROS levels in tomato leaves. The seedlings with GB

treatment presented higher Fv/Fm value and photochemical activity under

cold stress compared with the control. Moreover, analysis of high-throughput

plant phenotyping of tomato seedlings also supported that exogenous GB can

protect the photosynthetic system of tomato seedlings under cold stress. In

addition, we proved that exogenous GB significantly increased the content of

endogenous abscisic acid (ABA) and decreased endogenous gibberellin (GA)

levels, which protected tomatoes from low temperatures. Meanwhile,

transcriptional analysis showed that GB regulated the expression of genes

involved in antioxidant capacity, calcium signaling, photosynthesis activity,

energy metabolism-related and low temperature pathway-related genes in

tomato plants. In conclusion, our findings indicated that exogenous GB, as a

cryoprotectant, can enhance plant tolerance to low temperature by improving

the antioxidant system, photosynthetic system, hormone signaling, and cold

response pathway and so on.
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Introduction

Cold stress is a significant environmental factor that has a

detrimental impact on plant growth and productivity (Liu et al.,

2012; Ré et al., 2017). When exposed to low temperature, plants

undergo physiological and biochemical responses, including the

production of reactive oxygen species (ROS), inhibiting

photosynthesis and changes in osmotic solutes (Lu et al., 2020;

Rahman et al., 2023; Xu et al., 2023). In order to survive under cold

stress, plant activates cold response signals and transduction to

regulatory networks which initiates multiple responses, including

physiological and biochemical responses (Ding et al., 2020). These

responses include hormone metabolism and signal transduction,

synthesis of various protective compounds (e.g., proline and soluble

sugars), enhancement of antioxidant capacity, changes in

stabilization of membrane systems, and improvement of cold

tolerance (Zhang et al., 2022).

Using multiple exogenous cryoprotectants to enhance plant’s

tolerance to cold stress is an effective way (Román-Figueroa et al.,

2021). The latest research indicates that the regulation mechanisms

of cryoprotectants in plants to cold stress are complex processes,

including efficiently scavenging ROS, the production of osmotic

agents, activation of cold regulating (COR) genes, and so on (Jahed

et al., 2023). Exogenous melatonin application improves the cold

tolerance of strawberry seedlings by stimulating the expression of

downstream genes in the DREB/CBF-COR pathway (Hayat et al.,

2022). Moreover, the application of exogenous hormone has a

positive effect (Larkindale and Huang, 2005). Abscisic acid (ABA)

can increase tolerance to drought and cold stress by decreasing

water loss and activating downstream signaling (Heidari et al.,

2021a). Brassinosteroids(BRs) can improve the plant heat

tolerance in the regulation of ROS metabolism through the

expression of many antioxidant genes that enhance the activity of

antioxidant enzymes (Ogweno et al., 2008).Additionally, plant

secondary metabolites have been found to reduce damage from

abiotic stress, such as proline, soluble sugars and so on (Kumar

et al., 2011). Therefore, the study of improving plant cold resistance

with exogenous substances has important practical production

application value.

Glycine betaine (GB) is one of the well-known stress protectants

(Park et al., 2006; Yao et al., 2018; Shemi et al., 2021). The

accumulation of GB produced by exogenous or transgenic

applications can induce the expression of certain stress-responsive

genes, including those for enzymes that scavenge reactive oxygen

species (Chen and Murata, 2011). CodA gene, which encodes a

choline oxidase to catalyze the conversion of choline to GB, was

transferred into tomato that normally does not accumulate GB.

These transgenic plants had accumulated GB and are more tolerant

of chilling stress than their wild-type counterparts (Park et al.,

2004).Previous studies have revealed that application of exogenous

GB enhances the ability to combat abiotic stresses in crops (Khalid

et al., 2022). Exogenous-applied GB can improve drought tolerance

in wheat during reproductive growth stages (Shemi et al., 2021).

Transcriptome analysis showed it improved the plant growth
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through up-regulating osmoprotection, increasing net

photosynthetic rate and the catalase activity, decreasing ion

leakage and protecting the antioxidant defense system (Khalid

et al., 2022). In tomato, exogenous GB increases the seed

germination by reducing ROS formation, altering the contents of

metabolites and plant hormones (Zhang et al., 2022).

Tomato is amongst the most widely cultivated vegetables, and it

is highly sensitive to chilling stress (Liu et al., 2020a). In this

research, we applied exogenous GB to the seedlings to evaluate

the impact of GB on the cold stress during the tomato seedling

stage. We evaluated the following parameters: high-throughput

plant phenotyping, chlorophyll-related parameters and hormone

levels, as well as the gene expression related to low temperature

response. This study aims to uncover the regulatory mechanism of

exogenous GB on the chilling tolerance of tomato seedlings and

identified exogenous substances that regulate plant cold tolerance-

related genes in order to understand their expression patterns.
Materials and methods

Plants and growth conditions

The material NRP20 used in this experiment is a cold-sensitive

species obtained from Shanghai Academy of Agricultural Sciences.

Tomato seedlings were grown in greenhouse in controlled

conditions (18-h light/6-h dark cycles, 25°Cday/18°C night. And

60% relative humidity) and were treated using exogenous GB

(containing 0.01% Tween-20 surfactant) one time at the four-leaf

stage in order to do different experiments. Different concentrations

of GB, 20 mmol/L, 30 mmol/L, 40 mmol/L, 50 mmol/L were

sprayed one time on tomato seedling groups while the control

was sprayed with distilled water, each group with 72 seedlings. The

plants grew in the normal temperature in the greenhouse for 24

hours after GB treatment and then were subjected to cold stress (4°

C) for observing the phenotype and were selected the most suitable

concentration of GB. Based on the previous study, the 30 mmol/L

GB solution was selected to pretreat tomato seedlings while the

control group was pretreated with distilled water. Under the same

culturing conditions as the mentioned above, the seedlings grew at

room temperature for 24 hours before undergoing low-temperature

treatment for the following experiment. They were used for

measuring plant hyperspectral phenotyping, enzyme activities,

chlorophyll fluorescence, hormone levels, and the gene expression.
Morphological observation and
measurement of tomato seedlings

On the 7th day, the growth status of tomato seedlings from

different treatments was observed, and the survival rate and

embryonic root length were measured using a vernier caliper (72

independent biological replicates were measured).
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Determination of antioxidant enzyme
activities and DAB chemical staining

Leaves (5th from cotyledon) under GB and water treatment

were harvested at different time points according to experimental

requirements. The levels of proline content, MDA content,H2O2

content,O2
·- content superoxide dismutase (SOD), catalase (CAT),

and peroxidase (POD) activities were measured using an enzyme-

linked immunosorbent assay (ELISA). Each measurement was

performed in triplicate, and the detection methods were

performed according to the instructions from Suzhou Kemi

Biotechnology Co., Ltd. Tomato seedlings at the same

developmental stage were selected for 3-diaminobenzidine (DAB)

staining. The 5th leaves were immediately placed in a DAB solution

(pH 3.8, 1mg/ml) and subjected to vacuum infiltration until the

leaves sank to the bottom. The stained leaves were then incubated at

28°C for 6-10h, during which a dark red precipitate was observed.

The stained leaves were subsequently subjected to a series of washes

in 95% ethanol, followed by boiling water for 10 minutes, and then

subjected to three cycles of washing in 85%, 70%, and 50% ethanol

solutions. Finally, the stained leaves were photographed using

a camera.
Plant hyperspectral phenotyping

The tomato seedlings was placed on a black light-absorbing

background cloth in a darkroom, and a hyperspectral imaging

system was used to obtain hyperspectral images of the tomato

seedlings. In the environment for visualizing images (ENVI)

software, the decision tree classification method was used to

separate each tomato seedling area from the background in the

hyperspectral image, and the chemical properties of the plant were

quantitatively measured at the individual plant level. The average

spectral reflectance data of all pixel reflectance in the pure tomato

seedling image area were calculated as its spectral reflectance data.

The partial least squares discriminant analysis (PLS-DA) was used

to analyze the spectral reflectance differences of WR and GR, WL

and GL tomato seedlings before and after processing. PLS-DA was

used to establish a relationship model between spectral parameters

and sample categories to achieve sample category prediction and

establish a reliable mathematical model to summarize and

generalize the spectral characteristics of the research object. The

parameters of the PLS-DA evaluation model are explanatory rate of

the model for the X matrices (R2X), explanatory rate of the model

for the Y matrices (R2Y), and prediction ability of the model (Q2).

The spectral reflectance of each tomato seedling was used to

calculate normalized difference vegetation index (NDVI),

structure insensitive pigment index (SIPI), carotenoid reflectance

index 1 (CRI1), carotenoid reflectance index 2 (CRI2), pigment

specific normalized difference a (PSNDa) and pigment specific

normalized difference b (PSNDb), which were closely related to

the plant physiology (Blackburn, 1998; Gitelson et al., 2002;

Vásquez et al., 2018; Rasheed et al., 2020).
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Measurement of chlorophyll fluorescence
and P700 parameters

The chlorophyll fluorescence imaging system (WALZ, IMAG-

MAX/L) was used to observe and analyze the photosynthetic system

of tomato leaves at the same location, measure the chlorophyll

fluorescence and P700 oxidation-reduction state of the leaves.

Before measurement, tomato seedlings were dark-adapted for 15

minutes. The maximum photochemical efficiency of photosystem II

(PSII) after dark adaptation (Fv/Fm), the non-photochemical

quenching coefficient (NPQ), the apparent photosynthetic

electron transport rate (ETR) of PSII, and the photochemical

quenching coefficient (qP) were determined by measuring the

fluorescence intensity emitted by the PSII antenna during light

energy conversion, obtaining information on the operation of PSII.

Six leaves at the same location of each treatment were randomly

selected, and three points were randomly selected for each leaf,

avoiding the veins.
Extraction and determination of plant
hormones ABA and GA

The contents of ABA and GA of the samples at different time (0,

24, 48, and 72h) after chilling treatment were determined to use an

enzyme-linked immunosorbent assay (ELISA) supplied by China

Agricultural University (Zhang et al., 2022). Six independent

biological replicates were tested.
RNA extraction and real-time
quantitative PCR

Total RNA was extracted from tomato seedling leaves at

different time points (0, 1, 2, and 12h) after chilling treatment by

the Biospin Plant Total RNA Extraction Kit (Hangzhou Bioer

Technology Co., Ltd.). The RNA extraction process followed our

laboratory’s experimental protocol (Zhang et al., 2022). The

extracted RNA was reverse transcribed by the HiScript II One

Step RT-PCR Kit (Novogene Corporation) to obtain cDNA. The

EIF gene was used as an internal reference gene, and qRT-PCR

analysis was performed using the Hieff UNICON® Universal Blue

qPCR SYBR Green Master Mix (Shanghai Yisheng Biological

Technology Co., Ltd.). Each reaction was performed in triplicate,

and the relative expression levels were calculated by 2-△△CT

method. The primer design was conducted using Primer5

software (see ST1).
Statistical analysis

Data were processed with Excel, and statistical analysis was

performed with SPSS 22.0 (IBM Corp., Armonk, NY, USA) with a

significant level of P < 0.05 (Zhang et al., 2022). GraphPad Prism 8
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(GraphPad Software, Inc., USA) was used for data visualization.

Phenotypic observations were recorded using a Canon camera.
Results

Exogenous application of GB promotes the
cold stress tolerance of tomato seedlings

Tomato plants were subjected to water treatment and GB

treatment and placed them at 4°C for 7 days. We then performed

a phenotypic analysis of the overall growth status and leaf wilting

degree of the tomato seedlings. As shown in Figure 1A, after 7 days

of cold treatment, the leaves of the tomato plants treated with water

had withered, while the plants treated with GB appeared good

growth compared to the water-treated plants (Figure 1A). We

subsequently measured the root length of the tomato plants with

a vernier caliper and calculated their survival rates. The results

demonstrated that after cold treatment, the root diameter of the

tomato plants treated with water became thinner, and the root

length was significantly shorter. In contrast, the survival rates of the

tomato plants treated with GB (20mmol/L, 30mmol/L, 40mmol/L,

50mmol/L) were all significantly increased, while the roots of the

seedlings were all longer than control (P < 0.01) (Figures 1C, D).

The treatment effect of the 30mmol/L concentration was superior to

that of the other concentration (Figure 1B). This suggested that GB

treatment exerted a stimulating influence on the development of

tomato seedlings under cold stress. Notably, the seedlings showed

the best survival rate under the treatment of GB 30mmol/L.

Exogenous GB effectively mitigates the detrimental effects of cold

stress on the growth and development of tomato seedlings, fostering

the growth of both the aerial and subterranean parts of the

seedlings, thereby enhancing their morphological architecture.
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GB treatment enhances ROS scavenging
capacity of tomato seedlings under
cold stress

When plants suffer cold stress, they induce excessive production of

ROS. Leaf phenotypes were observed using DAB histochemical

staining and the contents of H2O2 and O2
- were measured. The

contents of malondialdehyde (MDA) and proline were also

measured and compared as indicators of oxidative damage. As

shown in Figures 2F–H, there was no obvious difference in the

contents of H2O2, O2
-, MDA, and proline in tomato plants at room

temperature. Cold stress increased excessive production of ROS. in

both treatment groups. However, we found that tomato leaves treated

with GB had less accumulation of MDA, H2O2, and O2
-, while a huge

increase in proline content with significant differences at the rate of

increase (P < 0.01). In contrast, the WL treatment reached maximum

levels of H2O2 and MDA accumulation on the 7th day of cold stress,

with a daily decrease in proline content, which reached its lowest value

on the 7th day (Figures 2D–H). It indicates that tomato seedlings

treated with GB can effectively reduce oxidative stress damage caused

by cold stress. Plants initiate protective enzyme systems to scavenge

excess ROS and prevent cell damage caused by abiotic stress. At room

temperature, no significant differences were discovered among SOD,

CAT and POD activities in tomato seedlings. However, the activities of

antioxidant enzymes in tomato seedlings were significantly enhanced

under cold stress, and the activities of SOD, POD, and CAT were

observed to be higher (P < 0.01) than in the GB-treated group

compared to the WL treatment group (Figures 2A–C). It indicates

that under cold stress, the external application of GB externally

enhances the ability of tomato seedlings to scavenge excess ROS by

strengthening the enzymatic antioxidant defense system to varying

degrees, and the effect is the most significant at a concentration of

30mmol/L.
A

B DC

FIGURE 1

Effects of different concentrations of GB on growth of tomato seedlings under cold stress. (A) Tomato seedling phenotype. (B) Seedling root length and
growth at day 7. (C) Survival rate of seedlings at day 7. (D) Seedling root length at day 7. In all cases, the asterisk indicated a significant difference among
the groups according to Tukey’s test. (**P < 0.01). WL: Tomato seedlings treated with water at low temperature; GL&20: 20mmol/L GB was applied
externally at low temperature; GL&30: 30mmol/L GB was applied externally at low temperature. GL&40: 40mmol/L GB was applied externally at low
temperature; GL&50: 50mmol/L GB was applied externally at low temperature.
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Exogenous application of GB enhances the
photosynthetic capacity and cold tolerance
of tomato seedlings

The photosynthetic system was observed and analyzed by a

chlorophyll fluorescence imaging system (WALZ, IMAG-MAX/L) in

the same part of tomato leaves. Chlorophyll fluorescence phenotype

analysis results showed that the tomato leaves treated with WL were

significantly damaged, and the photosystem II (PSII) activity was

disrupted. In contrast, tomato plants treated with GB (20mmol/L,

30mmol/L, 40mmol/L, and 50mmol/L) grew well, with no apparent

damage (Figure 3A). Subsequently, the data analysis of the fluorescence

yieldatvariouspointsof theOJIPchlorophyllfluorescencekinetics curve

of the leaves revealed that the PSII reaction center activity was reduced.

Nevertheless, therewasalmostnodifference in the leaves treatedwithGB

at low temperature compared to the control at room temperature, and

the leaves appeared a normal physiological phenotype, with the activity

of light andPSII significantly improved (Figure3B). Itwas found that the

application of GB with a concentration of 30mmol/L had the most

significant alleviating effect. To further investigate the effects of GB

treatment, the chlorophyll fluorescence-related parameters in tomato

leaves were measured using the plant efficiency analyzer before and on

the sixthdayof low-temperature treatment. It shows that the chlorophyll

fluorescence-related parameters of the tomato leaves treated with water

were all inhibited in photosynthesis. The maximum photochemical

efficiency of PSII (Fv/Fm value) decreased significantly (P < 0.01), while

that of GL treatment increased significantly compared toWL treatment,

indicating thatGB treatmenthelpspreventPSIIphoto-inhibition caused

by cold stress (Figure 3C). In addition, NPQ, ETR (II), and qP increased

significantly compared to WL treatment (P < 0.01) (Figures 3D–F).

These results suggest that cold stress reduces the capacity of light energy

absorption and theoxygen release ofPSII.However, external application

GB can maintain the stability of PSII under cold stress by dissipating
Frontiers in Plant Science 05
excess light energy throughNPQ,whichmaintains its structural integrity

and reduces light damage caused by cold stress. Furthermore, GB

treatment helps in improving the rate of photosynthetic electron

transfer, enhancing the photochemical activity under cold stress,

which protects PSII from light damage.
Effects of exogenous GB on high-flux plant
phenotypes of tomato seedlings under
cold stress

A hyperspectral imaging system was used to obtain hyperspectral

images of the tomato seedlings (Figure 4A). No significant differences

were found in the spectral reflectance in the four treatments before low

temperature treatment, as well as between CB treatment and the

control for day 6 at normal temperature (Figures 4B, C). Compared

with GL treatment, the spectral reflectance of WL treatment was

R2Y=0.899 and R2Q=0.86, indicating the significant differences of the

spectral reflectance of WL treatment and GL treatment under cold

stress. The above results showed that tomato leaves were severely

damaged under cold stress, and the external application of GB could

significantly alleviate the damage. Additionally, the NDVI value of the

low temperature treatment group was lower than that of the control

group, indicating that the growth was inhibited. However, the NDVI

value of GB treatment group was significantly higher (P < 0.01) than

that of low-temperature water treatment (Figure 4D). Carotenoid

content, as measured by SIPI, CRI1 and CRI2, showed a positive

correlation with growth accumulation. However, the overall carotenoid

content of low-temperature treatment group was lower than that of

normal temperature group, while the GB treatment group exhibited

higher carotenoid content than the low-temperature water treatment

group (Figures 4E–G). Chlorophyll a and b content, as measured by

PSNDa and PSNDb, respectively, showed significantly higher levels (P
A B D

E

F G H

C

FIGURE 2

Different concentrations of GB on the accumulation of reactive oxygen species (ROS) and the activities of antioxidant enzymes in tomato seedlings
at 0, 1, 3, 5 and 7 days of cold treatment (A) SOD activity. (B) POD activity. (C) CAT activity. (D) proline (Pro) content. (E) DAB staining. (F) the
accumulation of malondialdehyde (MDA). (G) H2O2 content. (H)O2

- content. In all cases, the asterisk indicated a significant among the groups
according to Tukey’s test. (**P < 0.01). WR: tomato seedlings treated with water at room temperature; WL: Tomato seedlings treated with water at
low temperature; GL&20: 20mmol/L GB was applied externally at low temperature; GL&30: 30mmol/L GB was applied externally at low
temperature. GL&40: 40mmol/L GB was applied externally at low temperature; GL&50: 50mmol/L GB was applied externally at low temperature.
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A

B

D

E F

C

FIGURE 3

Effects of different concentrations of GB on photosynthetic capacity of tomato seedlings under cold stress (A) Chlorophyll fluorescence. (B) Chlorophyll
fluorescence kinetic curve (OJIP) (C) Maximum photochemical efficiency of PSII (Fv/Fm). (D) Non-photochemical quenching coefficient (NPQ). (E)
Photochemical quenching coefficient (qP). (F) Apparent photosynthetic electron transport rate (ETR). In all cases, the asterisk indicated a significant
difference among the groups according to Tukey’s test. (**P < 0.01). WR: tomato seedlings treated with water alone at room temperature; WL: Tomato
seedlings treated with water at low temperature; GL&20: 20mmol/L GB was applied externally at low temperature; GL&30: 30mmol/L GB was applied
externally at low temperature. GL&40: 40mmol/L GB was applied externally at low temperature; GL&50: 50mmol/L GBe was applied externally at low
temperature; GL: Tomato seedlings treated with 30mmol/L GB at low temperature.
A

B

D E

F G

IH
C

FIGURE 4

Effects of different concentrations of GB applied on high-throughput plant phenotyping of tomato seedlings under cold stress. (A) Acquisition and processing of
hyperspectral data. (B)Classification results of PLS-DAmodel and PLS-DAmodel of spectral reflectance before low temperature treatment. (C) The spectral
reflectance classification results of PLS-DAmodel and PLS-DAmodel on the 6th day of low temperature treatment (0.5 was taken as the threshold value, WR
andWL categories were set as the value 0, GR and GL categories were set as the value 1, and the y-coordinate was the predicted value of the model for the
category values; The closer the predicted value was to the set value, the better classification effect was and the higher distinction between the two categories).
(D)NDVI biomass growth status. (E) SIPI. (F)CRI1. (G)CRI2. (H) PSNDa. (I) PSNDb. In all cases, the asterisk indicated a significant difference among the groups
according to Tukey’s test (**P < 0.01). WR: tomato seedlings treated with water at room temperature; GR: tomato seedlings treated with 30mmol/L GB at room
temperature; WL: Tomato seedlings treated with water at low temperature; GL: Tomato seedlings treated with 30mmol/L GB at low temperature.
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< 0.01) in the GB treatment group compared to low-temperature water

treatment group (Figures 4H, I). In conclusion, it highlights the

significant damage to tomato seedling leaves under cold stress, and

demonstrates that the external application of GB can effectively

mitigates the detrimental effects of the cold stress.
The effect of GB on GA and ABA content in
tomato seedlings

After cold stress, the GA contents of all plants gradually

decreased. As time goes on, the content of GA in the seedlings

treated with GB is the lowest (P < 0.01) (Figure 5A) ABA content

gradually accumulated in tomato seedlings treated with WL and

GL, and the ABA content in tomato plants treated with WL began

to decrease at 48h of stress, inhibiting ABA compound synthesis.

On the contrary, the ABA content in tomato seedlings treated with

GL significantly increased compared to WL treatment (P < 0.01)

(Figure 5B), with an increase of 138.1%, 32.4%, and 97.6% at 24, 48,

and 72h of treatment, respectively, and the ABA synthesis pathway

was activated, reaching its peak at 72h of cold stress.
Effects of GB on cold-regulated genes
expression in tomato seedlings

To further explore the molecular mechanisms of GB on the cold

tolerance of tomato seedlings, we analyzed the expression levels of

cold-regulated genes under cold stress. Our results showed that the

expression levels of SlGRAS4, ICE1, SlCBF3, Lox2, and ZAT12 in

tomato plants treated with GB were significantly up-regulated (P <

0.01) compared to those treated with water, reaching their maximum

levels after 1h, 12h, 2h, 1h, and 12h of cold stress, respectively

(Figure 6A). However, the expression of SlCBF1 and SlCBF2 genes

was not detected due to their low abundance. SlGRAS4 which plays

an important role in tomato cold resistance was also tested and found

to be regulated. At the same time, it was also found that the gene
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expression level in the SlGRAS4 pathway including antioxidant

capacity (SlPOD, GPX/GST, Glut, and SlAPX), calcium signaling

pathways (Cal-ATPase and Cam), photosynthesis (Rubsico), and

energy metabolism (PEPCK and MDH), has changed as shown in

Figure 6B. Our results demonstrated that during cold stress, the

expression levels of genes associated with antioxidant capacity

(SlPOD, GPX/GST, SlAPX, and Glut), photosynthesis (Rubsico),

and energy metabolism (PEPCK and MDH) in tomato plants

treated with GB were significantly up-regulated compared to those

treated with water (P < 0.01). The expression of calcium signaling

pathways genes (Cal-ATPase and Cam), was notably significantly up-

regulated in GL-treated plants compared to WL-treated plants

(P < 0.01). Moreover, we measured the expression levels of Pirin,

TBN1, and SBT3 which associated with programmed cell death

(PCD) and found that the expression levels of three PCD genes

were elevated in tomato plants treated with water, reaching their

highest levels after 12h of cold stress. Instead, the expression of these

three PCD genes was significantly down-regulated (P < 0.01) in

tomato plants treated with GB, showing significant differences

(Figure 6C). Our results indicate that low temperature leads to the

expression of genes related to PCD, and GB treatment can mitigate

the extent of PCD under cold stress, thereby enhancing the cold

tolerance of tomato seedlings.
Discussion

Cold stress is well-known in affecting plant growth and

development, resulting in suppressed seed germination, impaired

growth, compromised reproductive capacity, reduced crop and

yield and quality (Wang et al., 2022). Tomato shows high

sensitivity to low temperature at all stages during growth. The use

of exogenous agents in agricultural production can enhance cold

tolerance, promote growth, and increase crop yield. The application

24-epi-brassinolide (EBR) on tomato seedling induced oxidative

stress and changed the content of endogenous phytohormones

under low-temperature (Heidari et al., 2021b). In our previous

study, exogenous GB was found to successfully enhance the seed

germination rate under cold stress (Zhang et al., 2022). Here, the
A B

FIGURE 5

Effects of different concentrations of GB on plant hormone levels in tomato seedlings under cold stress (A) GA content (B) ABA content. In all cases
the asterisk indicates a significant difference among the groups according to Tukey’s test (*P < 0.05, **P < 0.01, *** P < 0.001). WR: tomato seedlings
treated with water alone at room temperature; GR: tomato seedlings treated with 30mmol/L GB at room temperature; WL: Tomato seedlings
treated with water at low temperature; GL: Tomato seedlings treated with 30mmol/L GB at low temperature.
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appropriate exogenous GB was also found to effectively mitigate the

effects of cold stress on tomato seedlings and significantly improve

the survival rate.

Cold stress induces physiological and biochemical changes

including photosynthesis, respiration, and ROS, including O2
-

and H2O2 (Hayat et al., 2022). To counteract the detrimental

effects of ROS, plants activate protective enzyme systems,

including SOD, POD, and CAT to reduce oxidants and

regulate cellular homeostasis (Hasanuzzaman et al., 2020;

Kamran et al., 2020). In this study, the accumulation of H2O2

in the leaves appeared altered by different treatment under low

temperature. The tomato seedling treated with GB had

significantly lower levels of H2O2, O2
-, and MDA, as while as

higher level of SOD, POD, and CAT than water-treated tomato

seedling under cold stress (Figure 2). In addition, we also

analyzed the gene expression levels of SlPOD, GPX/GST,

SlAPX, and Glut, which is involved in antioxidant activity

regulation. Their expression was significantly up-regulated

after treatment of exogenous GB under cold stress compared

with the control. The accumulation of proline has also been

substantiated to enhance plant resistance (Hayat et al., 2012).

We also found the proline content, which was reported to reduce

lipid peroxidation and acts as an antioxidant to overcome the

oxidative stress created by cold stress (Heidari et al., 2021b), was

also significantly increased. Collectively, it can be inferred that

exogenous GB can serve as a cryoprotectant to regulate the cold

tolerance of plants by activating the enzymatic antioxidant

defense system to scavenge excess ROS and alleviate the

inhibitory effects of chilling stress.

Plant photosynthesis as a crucial process in plants is highly

susceptible to temperature. PSII is recognized as the main

component inhibited by temperature stress, while chlorophyll a

fluorescence transient has been widely used to study PSII

performance in plants under environmental stresses (Devacht

et al., 2011; Yan et al., 2013; Kalisz et al., 2016). In our study, the

expression of Rubsico, the photosystem-related gene, was

significantly up-regulated with exogenous GB treatment under

cold stress The photoinhibition of PSII in tomato plants treated

with exogenous GB was effectively alleviated (Figure 3). Fv/Fm,

ETR, and qP in PSII chlorophyll fluorescence were significantly

increased, while the value of NPQ was decreased, indicating

reduced energy dissipation and enhanced electron transfer

activity. Our findings revealed that exogenous cryoprotectants can

maintain the stability of PSII under cold stress, maintaining its

photochemical activity and enhancing the rate of photosynthetic

electron transfer.

In recent years, plant phenomics offers a suite of new

technologies to investigate crop breeding and to environmental

responses (Pasala and Pandey, 2020; Wang et al., 2023). High-

throughput plant phenotyping approaches are developing rapidly

and are already helping to bridge the genotype phenotype gap (Hall

et al., 2022). Recently, the use of an automated high-throughput

phenotyping platform to analyze the dynamics of maize growth

provides a valuable tool for molecular design breeding and

predicting maize varieties with ideal plant architectures (Wang

et al., 2023). Here, we analyzed the effect of GB on tomato
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seedlings under cold stress using the high-throughput

phenotyping tools. Our finding revealed that GB could

significantly alleviate the damage caused by low temperature and

keep the normal growth and development of seedlings for image

analysis. Our high-throughput phenotype data is consistent with

other molecular, physiological and metabolic characteristics. Taken

together, combining plant phenomics with other methods is a novel

approach for dissecting plants characteristics under low

temperature stress, which will be useful for studying the

mechanisms of abiotic stress in crops.

Phytohormones play central roles in the ability of plants to

adapt to changing environments by regulating growth,

development, nutrient allocation, and source/sink transitions

(Peleg and Blumwald, 2011). The ABA signaling pathway and

other hormonal interactions have been identified as crucial roles

in enabling plants to respond to various abiotic stresses (Peleg and

Blumwald, 2011; Finkelstein, 2013; Rezaul et al., 2019). On the other

hand, the balance between GA and ABA mediates plant

developmental processes in conferring stress resistance (Vishal

and Kumar, 2018). ABA positively regulates transcriptional

control and metabolomics alterations enhanced tolerance to cold

when maize encountered extreme temperatures (Guo et al., 2021).

Under low-temperature conditions, DELLA proteins, as the

negative transcription factor in GA pathway, are components of

the CBF1-mediated cold stress response and promote plant

adaptation to cold stress in rice (Achard et al., 2008). In this

study, tomato seedlings treated with GB exhibited higher ABA

and less GA levels compared to those in the water treatment group.

Consequently, the changing of GA and ABA levels after GB

treatment may ultimately enhance the survival and adaptability of

tomato plants under cold stress. These results further indicated that

the cross-talk between plant hormones plays a crucial role in the

response of plants to abiotic stress.

Cold-induced second messengers such as Ca2+ signal and ROS

activate the expressions of cold-responded genes. OsCNGC9, a

cyclic nucleotide-gated channel, positively regulates the cold-

induced calcium influx and cytoplasmic calcium elevation to

enhance chilling tolerance in rice (Wang et al., 2021). In the

current study, the expressions of Cal-ATPase and Cam involved

in calcium signaling pathway were significantly up-regulated under

cold stress. Previous studies have revealed that the CBF/DREB1-

dependent transcriptional regulatory pathway is essential for plant

responses to cold stress (Jaglo-Ottosen et al., 1998; Gilmour et al.,

2000; Shi et al., 2018). The expression of CBFs rapidly induced by

various transcription factors, such as ICE1 and GRAS4 under cold

stress (Chinnusamy et al., 2003; Kim et al., 2015; Liu et al., 2020b).

However, the RNA-seq results of leaf tissues under cold stress

showed differences in the gene expression, alternative splicing

events, and miRNA between two tomato species with different

cold tolerance capacities (Chen et al., 2015). In our study, we have

observed significant up-regulation of cold response pathway-related

genes, including SlCBF3, SlICE1, SlLos2, SlGRAS4 and SlZAT12,

after exposure to cold stress. While, SlCBF1 and SlCBF2 genes

showed no detectable expression levels. The above results suggested

that CBF genes were involved in responses to cold stress, but their

functions differ little in tomato and GB also probably controls COR
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genes through a CBF-dependent pathway in tomato in response to

low-temperature stress. Both abiotic and biotic stressors can trigger

programmed cell death (PCD) (Lee et al., 2014; Wang et al., 2015).

PCD-related genes including Pirin, TBN1, SBT3, play important
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roles for proper growth, development and biotic/abiotic stress in

plants (Orzaez et al., 2001; Koval et al., 2013; Buono et al., 2019). We

observed a significant upregulation of the three PCD genes (Pirin,

TBN1, SBT3) under WL treatment, while PCD genes were
FIGURE 7

A mechanism diagram shows the mechanism of cold stress tolerance in tomato seedlings mediated by GB. Exogenous GB not only regulates
antioxidant system, osmotic regulation, hormone levels, light and system II stability; It also enhances cold tolerance in tomato by regulating signal
networks to activate stress-responsive genes.
A

B

C

FIGURE 6

Effect of GB treatment on cold regulation genes expression in tomato seedlings under cold stress. (A) Cold regulatory genes SlICE1, SlCBF3,
SlGRAS4, Los2, ZAT12. (B) Genes involved in antioxidant capacity (SlPOD, GPX/GST, SlAPX,Glut), calcium signaling pathways (Cal-ATPase) and
calmodulin-binding protein (Cam), photosynthesis (Rubsico), energy metabolism (PEPCK) and MDH. (C) Genes related to programmed cell death
(Pirin, TBN1, and SBT3). The bar is represented as the average of three repeated calculations. In all cases, an asterisk indicated a significant difference
among the groups according to Tukey’s test (*P < 0.05, **P < 0.01, *** P < 0.001, **** P < 0.0001). WR: tomato seedlings treated with water alone at
room temperature; GR: tomato seedlings treated with 30mmol/L GB at room temperature; WL: Tomato seedlings treated with water at low
temperature; GL: Tomato seedlings treated with 30mmol/L GB at low temperature.
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significantly down-regulated after GL treatment. In plants, PCD is a

part of the defense responses against environmental stresses (Locato

and De Gara, 2018). Overall, changes in the expression patterns of

PCD related genes indicate that plant PCD is involved in tomato

response to cold stress.
Conclusion

Low temperature is a major limiting factor for the growth and

reproduction of crop. Using certain exogenous cryoprotectants to

enhance crop tolerance to temperature stress is one of the effective

ways to protect plant development and agricultural production.

This study investigated the effect of exogenous GB on tomato cold

sensitive species under cold stress. A working model illustrated the

role and complex mechanism of GB to enhance tomato tolerance

under cold stress (Figure 7). Exogenous GB activates the expression

of different genes expression. which in turn regulates its target

metabolism and signaling pathways, leading to enhanced cold

tolerance. The results depicted that GB regulated the expression

of antioxidant system, photosynthetic system, calcium signaling,

energy metabolism-related and low temperature pathway-related

genes and so on in tomato plants. Moreover, GB application

increased the content of antioxidant enzymes to reduce ROS and

protected the photosynthetic system under cold stress. GB

treatment could increase the content of proline, ABA and

decrease the content of MDA, GA in response to low-temperature

stress. In conclusion, GB, as a cryoprotectant, can improve the

growth of tomato seedlings under cold stress through complex

biological processes and multifaceted mechanism.
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